Citation: | Yaru Fu, Xiaoyu Jiang, Zhaolin Jiang, Seongtae Jhang. INVERSES AND EIGENPAIRS OF TRIDIAGONAL TOEPLITZ MATRIX WITH OPPOSITE-BORDERED ROWS[J]. Journal of Applied Analysis & Computation, 2020, 10(4): 1599-1613. doi: 10.11948/20190287 |
[1] | R. H. Chan and X. Jin, Circulant and skew-circulant preconditioners for skew-Hermitian type Toeplitz systems, JBIT, 1991, 31, 632-646. |
[2] | S. Cheng, Partial difference equations, Taylor and Francis, London, 2003. |
[3] | B. Choudhury, Diffusion of heat in multidimensional composite spherical body, IMA J. Appl. Math., 2013, 78(3), 474-493. doi: 10.1093/imamat/hxr062 |
[4] |
M. El-Mikkawy and F. Atlan, A new recursive algorithm for inverting general $k$-tridiagonal matrices, Appl. Math. Lett., 2015, 44, 34-39. doi: 10.1016/j.aml.2014.12.018
CrossRef $k$-tridiagonal matrices" target="_blank">Google Scholar |
[5] | M. El-Mikkawy and A. Karawia, Inversion of general tridiagonal matrices, Appl. Math. Lett., 2006, 19(8), 712-720. doi: 10.1016/j.aml.2005.11.012 |
[6] | M. El-Shehawey, G. El-Shreef and A. Shal-Henawy, Analytical inversion of general periodic tridiagonal matrices, J. Math. Anal. Appl., 2008, 345, 123-134. |
[7] | C. M. da Fonseca, On the eigenvalues of some tridiagonal matrices, J. Comput. Appl. Math., 2007, 200(1), 283-286. |
[8] |
C. M. da Fonseca and F. Yılmaz, Some comments on ${\rm k}$-tridiagonal matrices: Determinant, spectra and inversion, Appl. Math. Comput., 2015, 270, 644-647.
${\rm k}$-tridiagonal matrices: Determinant, spectra and inversion" target="_blank">Google Scholar |
[9] | C. M. da Fonseca and J. Petronilho, Explicit inverses of some tridiagonal matrices, Linear Algebra Appl., 2001, 325, 7-21. doi: 10.1016/S0024-3795(00)00289-5 |
[10] |
C. M. da Fonseca and J. Petronilho, Explicit inverse of a tridiagonal ${\rm k}$-Toeplitz matrix, Numer. Math., 2005, 100, 457-482. doi: 10.1007/s00211-005-0596-3
CrossRef ${\rm k}$-Toeplitz matrix" target="_blank">Google Scholar |
[11] | C. Fischer and R. Usmani, Properties of some tridiagonal matrices and their application to boundary value problems, SIAM J. Numer. Anal., 1969, 6(1), 127-142. |
[12] | P. L. Giscard, S. J. Thwaite and D. Jaksch, Evaluating matrix functions by resummations on graphs: The method of path-sums, SIAM J. Matrix Anal. Appl., 2013, 34(2), 445-469. doi: 10.1137/120862880 |
[13] | S. Holmgren and K. Otto, Iterative solution methods and preconditioners for non-symmetric non-diagonally dominant block-tridiagonaI systems of equations, Dept. of Computer Sci., Sweden, 1989. |
[14] | Y. Huang and W. F. McColl, Analytical inversion of general tridiagonal matrices, J. Phys. A: Math. Gen., 1997, 30, 7919-7933. doi: 10.1088/0305-4470/30/22/026 |
[15] | G. G. Jesús, Powers of tridiagonal matrices with constant diagonals, Appl. Math. Comput., 2008, 206, 885-891. |
[16] | J. T. Jia, A breakdown-free algorithm for computing the determinants of periodic tridiagonal matrices, Numer. Algorithms, 2020, 83, 149-163. doi: 10.1007/s11075-019-00675-0 |
[17] | J. Jia and S. Li, New algorithms for numerically solving a class of bordered tridiagonal systems of linear equations, Comput. Math. Appl., 2019, 78, 144-151. doi: 10.1016/j.camwa.2019.02.028 |
[18] | J. Jia and S. Li, On the inverse and determinant of general bordered tridiagonal matrices, Comput. Math. Appl., 2015, 69, 503-509. doi: 10.1016/j.camwa.2015.01.012 |
[19] |
J. Jia and S. Li, Symbolic algorithms for the inverses of general $k$-tridiagonal matrices, Comput. Math. Appl., 2015, 70, 3032-3042. doi: 10.1016/j.camwa.2015.10.018
CrossRef $k$-tridiagonal matrices" target="_blank">Google Scholar |
[20] |
J. Jia, T. Sogabe and M. El-Mikkawy, Inversion of $k$-tridiagonal matrices with Toeplitz structure, Comput. Math. Appl., 2013, 65, 116-125. doi: 10.1016/j.camwa.2012.11.001
CrossRef $k$-tridiagonal matrices with Toeplitz structure" target="_blank">Google Scholar |
[21] | Z. Jiang, X. Chen and J. Wang, The explicit inverses of CUPL-Toeplitz and CUPL-Hankel matrices, E. Asian. J. Appl. Math., 2017, 7(1), 38-54. |
[22] | X. Jiang and K. Hong, Skew cyclic displacements and inversions of two innovative patterned matrices, Appl. Math. Comput., 2017, 308, 174-184. |
[23] | X. Jiang, K. Hong and Z. Fu, Skew cyclic displacements and decompositions of inverse matrix for an innovative structure matrix, J. Nonlinear Sci. Appl., 2017, 10, 4058-4070. doi: 10.22436/jnsa.010.08.02 |
[24] | Z. Jiang and D. Wang, Explicit group inverse of an innovative patterned matrix, Appl. Math. Comput., 2016, 274, 220-228. |
[25] | R. Mattheij and M. Smooke, Estimates for the inverse of tridiagonal matrices arising in boundary-value problems, Linear Algebra Appl., 1986, 73, 33-57. doi: 10.1016/0024-3795(86)90232-6 |
[26] | G. Meurant, A review on the inverse of symmetric tridiagonal and block tridiagonal matrices, SIAM J. Matrix Anal. Appl., 1992, 13(3), 707-728. doi: 10.1137/0613045 |
[27] | K. H. Rosen, Discrete Mathematics and Its Applications, (sixth ed.) New York: McGraw-Hill, 2011. |
[28] | K. Thomas. Fibonacci and Lucas Numbers with Applications, John Wiley & Sons, 2001. |
[29] | H. Tim and K. Emrah, An analytical approach: Explicit inverses of periodic tridiagonal matrices, J. Comput. Appl. Math., 2018, 335, 207-226. doi: 10.1016/j.cam.2017.11.038 |
[30] | R. A. Usmani, Inversion of a tridiagonal Jacobi matrix, Linear. Algebra Appl., 1994, 212(213), 413-414. |
[31] |
A. Yalçiner, The LU factorizations and determinants of the $k$-tridiagonal matrices, Asian-Eur. J. Math., 2011, 4(1), 187-197. doi: 10.1142/S1793557111000162
CrossRef $k$-tridiagonal matrices" target="_blank">Google Scholar |
[32] | W. C. Yueh and S. Cheng, Explicit eigenvalues and inverses of tridiagonal Toeplitz matrices with four perturbed corners, ANZIAM J., 2008, 49, 361-387. doi: 10.1017/S1446181108000102 |
[33] | W. C. Yueh and S. Cheng, Explicit eigenvalues and inverses of several Toeplitz matrices, ANZIAM J., 2006, 48(1), 73-97. doi: 10.1017/S1446181100003424 |
[34] | F. Zhang. The Schur Complement and Its Applications, Springer Science & Business Media, 2006. |
[35] | Y. Zheng, S. Shon and J. Kim, Cyclic displacements and decompositions of inverse matrices for CUPL Toeplitz matrices, J. Math. Anal. Appl., 2017, 455, 727-741. doi: 10.1016/j.jmaa.2017.06.016 |
[36] | Y. Zheng and S. Shon, Exact determinants and inverses of generalized Lucas skew circulant type matrices, Appl. Math. Comput., 2015, 270, 105-113. |