[1]
|
Q. Alfio, R. Sacco and F. Saleri, Numerical Mathematics, Springer Press, Berlin, 2000.
Google Scholar
|
[2]
|
C. Allouch, D. Sbibih and M. Tahrichi, Numerical solutions of weakly singular Hammerstein integral equations, Appl. Math. Comput., 2018, 329, 118-128.
Google Scholar
|
[3]
|
P. Assari, A meshless local Galerkin method for the numerical solution of Hammerstein integral equations based on the moving least squares technique, J. Appl. Anal. Comput., 2019, 9(1), 75-104.
Google Scholar
|
[4]
|
K. E. Atkinson, The Numerical Solution of Integral Equations of the Second Kind, Cambridge University Press, Cambridge, 1997.
Google Scholar
|
[5]
|
K. E. Atkinson, A Survey of Numerical Methods for the Solution of Fredholm Integral Equations of the Second Kind, SIAM, Philadelphia, 1976.
Google Scholar
|
[6]
|
Y. Cao and Y. Xu, Singularity preserving Galerkin methods for weakly singular Fredholm integral equations, J. Integral Equations Appl., 1994, 6(3), 303-334. doi: 10.1216/jiea/1181075816
CrossRef Google Scholar
|
[7]
|
T. Diogo, S. McKee and T. Tang, A Hermite-type collocation method for the solution of integral equations with a certain weakly singular kernels, IMA J. Numer. Anal., 1991, 11(3), 595-605.
Google Scholar
|
[8]
|
L. Fermo and M. G. Russo, A Nyström method for Fredholm integral equations with right-hand sides having isolated singularities, Calcolo, 2009, 46(2), 61-93. doi: 10.1007/s10092-009-0004-y
CrossRef Google Scholar
|
[9]
|
L. Fermo and M. G. Russo, Numerical methods for Fredholm integral equations with sigular right-hand sides, Adv. Comput. Math., 2010, 33(3), 305-330. doi: 10.1007/s10444-009-9137-4
CrossRef Google Scholar
|
[10]
|
L. Grammont, R. P. Kulkarni and T. Nidhin, Modified projection method for Urysohn integral equations with non-smooth kernels, J. Comput. Appl. Math., 2016, 294, 309-322. doi: 10.1016/j.cam.2015.08.020
CrossRef Google Scholar
|
[11]
|
C. Groetsch, Inverse Problems in the Mathematical Sciences, Springer, Wiesbaden, 1993.
Google Scholar
|
[12]
|
H. Guebbai and L. Grammont, A new degenerate kernel method for a weakly singular integral equation, Appl. Math. Comput., 2014, 230, 414-427.
Google Scholar
|
[13]
|
R. Kress, Linear Integral Equations, Springer-Verlag, Berlin, 1989.
Google Scholar
|
[14]
|
L. Lardy, A variation of Nyström's method for Hammerstein equations, J. Integral Equations, 1981, 3, 43-60.
Google Scholar
|
[15]
|
Z. Liu, T. Wang and G. Gao, A local fractional Taylor expansion and its computation for insufficiently smooth functions, East Asian J. Appl. Math., 2015, 5(2), 176-191. doi: 10.4208/eajam.060914.260415a
CrossRef Google Scholar
|
[16]
|
M. Mandal and G. Nelakanti, Superconvergence results for weakly singular Fredholm Hammerstein integral equations, Numer. Funct. Anal. Optim., 2019, 40(5), 548-570. doi: 10.1080/01630563.2018.1561468
CrossRef Google Scholar
|
[17]
|
M. Mandal and G. Nelakanti, Superconvergence results of Legendre spectral projection methods for weakly singular Fredholm Hammerstein integral equations, J. Comput. Appl. Math., 2019, 349, 114-131. doi: 10.1016/j.cam.2018.09.032
CrossRef Google Scholar
|
[18]
|
T. Okayama, T. Matsuo and M. Sugihara, Sinc-collocation methods for weakly singular Fredholm integral equations of the second kind, J. Comput. Appl. Math., 2010, 234(4), 1211-1227. doi: 10.1016/j.cam.2009.07.049
CrossRef Google Scholar
|
[19]
|
T. Osler, Taylor's series generalized for fractional derivatives and applications, SIAM J. Numer. Anal., 1971, 2(1), 37-48.
Google Scholar
|
[20]
|
J. Trujillo, M. Rivero and B. Bonilla, On a Riemann-Liouville generalized Taylor's formula, J. Math. Anal. Appl., 1999, 231, 255-265. doi: 10.1006/jmaa.1998.6224
CrossRef Google Scholar
|
[21]
|
G. Vainikko and A. Pedas, The properties of solutions of weakly singular integral equations, J. Aust. Math. Soc. Series B, Appl. Math, 1981, 22(4), 419-430. doi: 10.1017/S0334270000002769
CrossRef Google Scholar
|
[22]
|
T. Wang and M. Fan, Fractional order degenerate kernel methods for Fredholm integral equations of the second kind with endpoint singularities, Math. Numer. Sinica, 2019, 41(1), 66-81 (in Chinese).
Google Scholar
|
[23]
|
T. Wang, Z. Liu and Z. Zhang, The modified composite Gauss type rules for singular integrals using Puiseux expansions, Math. Comp., 2017, 86(303), 345-373.
Google Scholar
|
[24]
|
T. Wang, Z. Zhang and Z. Liu, The practical Gauss type rules for Hadamard finite-part integrals using Puiseux expansions, Adv. Comput. Math., 2017, 43(2), 319-350. doi: 10.1007/s10444-016-9487-7
CrossRef Google Scholar
|
[25]
|
Y. Yang, Z. Tang and Y. Huang, Numerical solutions for Fredholm integral equations of the second kind with weakly singular kernel using spectral collocation method, Appl. Math. Comput., 2019, 349, 314-324.
Google Scholar
|
[26]
|
X. Zhong, A new Nyström-type method for Fredholm integral equations of the second kind, Appl. Math. Comput., 2013, 219(17), 8842-8847.
Google Scholar
|