2020 Volume 10 Issue 5
Article Contents

Jiawei Guo, Tongke Wang. FRACTIONAL HERMITE DEGENERATE KERNEL METHOD FOR LINEAR FREDHOLM INTEGRAL EQUATIONS INVOLVING ENDPOINT WEAK SINGULARITIES[J]. Journal of Applied Analysis & Computation, 2020, 10(5): 1918-1936. doi: 10.11948/20190288
Citation: Jiawei Guo, Tongke Wang. FRACTIONAL HERMITE DEGENERATE KERNEL METHOD FOR LINEAR FREDHOLM INTEGRAL EQUATIONS INVOLVING ENDPOINT WEAK SINGULARITIES[J]. Journal of Applied Analysis & Computation, 2020, 10(5): 1918-1936. doi: 10.11948/20190288

FRACTIONAL HERMITE DEGENERATE KERNEL METHOD FOR LINEAR FREDHOLM INTEGRAL EQUATIONS INVOLVING ENDPOINT WEAK SINGULARITIES

  • Corresponding authors: Email address: jiawei94@sina.cn(J. Guo);  Email address: wangtke@sina.com(T. Wang)
  • Fund Project: This project is supported by the National Natural Science Foundation of China(grant No.11971241), the program for Innovative Research Team in Universities of Tianjin (TD13-5078) and 2017-Outstanding Young Innovation Team Cultivation Program of Tianjin Normal University (135202TD1703)
  • In this article, the Fredholm integral equation of the second kind with endpoint weakly singular kernel is considered and suppose that the kernel possesses fractional Taylor's expansions about the endpoints of the interval. For this type kernel, the fractional order interpolation is adopted in a small interval involving the singularity and piecewise cubic Hermite interpolation is used in the remaining part of the interval, which leads to a kind of fractional degenerate kernel method. We discuss the condition that the method can converge and give the convergence order. Furthermore, we design an adaptive mesh adjusting algorithm to improve the computational accuracy of the degenerate kernel method. Numerical examples confirm that the fractional order hybrid interpolation method has good computational results for the kernels involving endpoint weak singularities.
    MSC: 45B05, 65R20
  • 加载中
  • [1] Q. Alfio, R. Sacco and F. Saleri, Numerical Mathematics, Springer Press, Berlin, 2000.

    Google Scholar

    [2] C. Allouch, D. Sbibih and M. Tahrichi, Numerical solutions of weakly singular Hammerstein integral equations, Appl. Math. Comput., 2018, 329, 118-128.

    Google Scholar

    [3] P. Assari, A meshless local Galerkin method for the numerical solution of Hammerstein integral equations based on the moving least squares technique, J. Appl. Anal. Comput., 2019, 9(1), 75-104.

    Google Scholar

    [4] K. E. Atkinson, The Numerical Solution of Integral Equations of the Second Kind, Cambridge University Press, Cambridge, 1997.

    Google Scholar

    [5] K. E. Atkinson, A Survey of Numerical Methods for the Solution of Fredholm Integral Equations of the Second Kind, SIAM, Philadelphia, 1976.

    Google Scholar

    [6] Y. Cao and Y. Xu, Singularity preserving Galerkin methods for weakly singular Fredholm integral equations, J. Integral Equations Appl., 1994, 6(3), 303-334. doi: 10.1216/jiea/1181075816

    CrossRef Google Scholar

    [7] T. Diogo, S. McKee and T. Tang, A Hermite-type collocation method for the solution of integral equations with a certain weakly singular kernels, IMA J. Numer. Anal., 1991, 11(3), 595-605.

    Google Scholar

    [8] L. Fermo and M. G. Russo, A Nyström method for Fredholm integral equations with right-hand sides having isolated singularities, Calcolo, 2009, 46(2), 61-93. doi: 10.1007/s10092-009-0004-y

    CrossRef Google Scholar

    [9] L. Fermo and M. G. Russo, Numerical methods for Fredholm integral equations with sigular right-hand sides, Adv. Comput. Math., 2010, 33(3), 305-330. doi: 10.1007/s10444-009-9137-4

    CrossRef Google Scholar

    [10] L. Grammont, R. P. Kulkarni and T. Nidhin, Modified projection method for Urysohn integral equations with non-smooth kernels, J. Comput. Appl. Math., 2016, 294, 309-322. doi: 10.1016/j.cam.2015.08.020

    CrossRef Google Scholar

    [11] C. Groetsch, Inverse Problems in the Mathematical Sciences, Springer, Wiesbaden, 1993.

    Google Scholar

    [12] H. Guebbai and L. Grammont, A new degenerate kernel method for a weakly singular integral equation, Appl. Math. Comput., 2014, 230, 414-427.

    Google Scholar

    [13] R. Kress, Linear Integral Equations, Springer-Verlag, Berlin, 1989.

    Google Scholar

    [14] L. Lardy, A variation of Nyström's method for Hammerstein equations, J. Integral Equations, 1981, 3, 43-60.

    Google Scholar

    [15] Z. Liu, T. Wang and G. Gao, A local fractional Taylor expansion and its computation for insufficiently smooth functions, East Asian J. Appl. Math., 2015, 5(2), 176-191. doi: 10.4208/eajam.060914.260415a

    CrossRef Google Scholar

    [16] M. Mandal and G. Nelakanti, Superconvergence results for weakly singular Fredholm Hammerstein integral equations, Numer. Funct. Anal. Optim., 2019, 40(5), 548-570. doi: 10.1080/01630563.2018.1561468

    CrossRef Google Scholar

    [17] M. Mandal and G. Nelakanti, Superconvergence results of Legendre spectral projection methods for weakly singular Fredholm Hammerstein integral equations, J. Comput. Appl. Math., 2019, 349, 114-131. doi: 10.1016/j.cam.2018.09.032

    CrossRef Google Scholar

    [18] T. Okayama, T. Matsuo and M. Sugihara, Sinc-collocation methods for weakly singular Fredholm integral equations of the second kind, J. Comput. Appl. Math., 2010, 234(4), 1211-1227. doi: 10.1016/j.cam.2009.07.049

    CrossRef Google Scholar

    [19] T. Osler, Taylor's series generalized for fractional derivatives and applications, SIAM J. Numer. Anal., 1971, 2(1), 37-48.

    Google Scholar

    [20] J. Trujillo, M. Rivero and B. Bonilla, On a Riemann-Liouville generalized Taylor's formula, J. Math. Anal. Appl., 1999, 231, 255-265. doi: 10.1006/jmaa.1998.6224

    CrossRef Google Scholar

    [21] G. Vainikko and A. Pedas, The properties of solutions of weakly singular integral equations, J. Aust. Math. Soc. Series B, Appl. Math, 1981, 22(4), 419-430. doi: 10.1017/S0334270000002769

    CrossRef Google Scholar

    [22] T. Wang and M. Fan, Fractional order degenerate kernel methods for Fredholm integral equations of the second kind with endpoint singularities, Math. Numer. Sinica, 2019, 41(1), 66-81 (in Chinese).

    Google Scholar

    [23] T. Wang, Z. Liu and Z. Zhang, The modified composite Gauss type rules for singular integrals using Puiseux expansions, Math. Comp., 2017, 86(303), 345-373.

    Google Scholar

    [24] T. Wang, Z. Zhang and Z. Liu, The practical Gauss type rules for Hadamard finite-part integrals using Puiseux expansions, Adv. Comput. Math., 2017, 43(2), 319-350. doi: 10.1007/s10444-016-9487-7

    CrossRef Google Scholar

    [25] Y. Yang, Z. Tang and Y. Huang, Numerical solutions for Fredholm integral equations of the second kind with weakly singular kernel using spectral collocation method, Appl. Math. Comput., 2019, 349, 314-324.

    Google Scholar

    [26] X. Zhong, A new Nyström-type method for Fredholm integral equations of the second kind, Appl. Math. Comput., 2013, 219(17), 8842-8847.

    Google Scholar

Figures(4)  /  Tables(2)

Article Metrics

Article views(3113) PDF downloads(494) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint