[1]
|
Y. Chen, H. An, Numerical solutions of a new type of fractional coupled nonlinear equations, Commun. Theor. Phys., 2008, 49, 839-844. doi: 10.1088/0253-6102/49/4/07
CrossRef Google Scholar
|
[2]
|
Y. Chen, H. An, Numerical solutions of coupled Burgers equations with time-and space-fractional derivatives, Appl. Math. Comput., 2008, 200, 87-95.
Google Scholar
|
[3]
|
V. D. Djordjevic, T. M. Atanackovic, Similarity solutions to nonlinear heat conduction and Burgers/Korteweg-deVries fractional equations, Comput. Appl. Math., 2008, 212, 701-714.
Google Scholar
|
[4]
|
A. M. A. El-Sayed, M. Gaber, The Adomian decomposition method for solving partial differential equations of fractal order in finite domains, Phys. Lett.A., 2006, 359, 175-182. doi: 10.1016/j.physleta.2006.06.024
CrossRef Google Scholar
|
[5]
|
S. Guo, L. Mei, Y. Li, Y. Sun, The improved fractional sub-equation method and its applications to the space-time fractional differential equations in fluid mechanics, Phys. Lett. A., 2012, 376, 407-411. doi: 10.1016/j.physleta.2011.10.056
CrossRef Google Scholar
|
[6]
|
R. K. Gazizov, A. A. Kasatkin, S. Yu. Lukashchuk, Symmetry properties of fractional diffusion equations, Phys. Scr. T., 2009, 136, 014-016.
Google Scholar
|
[7]
|
V. A. Galaktionov, S. R. Svirshchevskii, Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics, Chapman and Hall/CRC, Boca Raton, Florida, 2006.
Google Scholar
|
[8]
|
S. Hu, W. Chen, X. Gou, Modal analysis of fractional derivative damping model of frequency dependent viscoelastic soft matter, Advancesin Vibration Engineering, 2011, 10, 187-196.
Google Scholar
|
[9]
|
J. He, A coupling method of a homotopy technique and a perturbation technique for nonlinear problems, J. Non-LinearMech., 2000, 35, 37-43. doi: 10.1016/S0020-7462(98)00085-7
CrossRef Google Scholar
|
[10]
|
G. Jumarie, Modied Riemann-Liouville derivative and fractional Taylor series of non-differentiable functions further results, Comput. Math. Appl., 2006, 51, 1367-1376. doi: 10.1016/j.camwa.2006.02.001
CrossRef Google Scholar
|
[11]
|
G. F. Jefferson, J. Carminati, FracSym: automated symbolic computation of Lie symmetries of fractional differential equations, Comput. Phys. Commun., 2014, 185, 430-441. doi: 10.1016/j.cpc.2013.09.019
CrossRef Google Scholar
|
[12]
|
J. Klafter and R. Metzler, The fractional Fokker-Planck equation: dispersive transport in an external force field, Journal of Molecular Liquids, 2000, 86(1), 219-228.
Google Scholar
|
[13]
|
V. Kiryakova, Generalized fractional calculus and applications, Pitman Res. Notesin Math., 1994, 301.
Google Scholar
|
[14]
|
Y. Liang, W. Chen, A survey on numerical evaluation of Lvy stable distributions and a new MATLAB tool box, Signal Processing, 2013, 93, 242-251. doi: 10.1016/j.sigpro.2012.07.035
CrossRef Google Scholar
|
[15]
|
B. Lu, Baklund transformation of fractional Riccati equation and its applications to nonlinear fractional partial differential equations, Phys. Lett. A., 2012, 376, 2045-2048. doi: 10.1016/j.physleta.2012.05.013
CrossRef Google Scholar
|
[16]
|
X. Li, W. Chen, Analytical study on the fractional anomalous diffusion in a half-plane, J. Phys. A: Math. Theor., 2010, 43, 495206. doi: 10.1088/1751-8113/43/49/495206
CrossRef Google Scholar
|
[17]
|
S. Momani, Z. Odibat, Comparison between homotopy perturbation method and the variational iteration method for linear fractional partial differential equations, Comput. Math. Appl., 2007, 54, 910-919. doi: 10.1016/j.camwa.2006.12.037
CrossRef Google Scholar
|
[18]
|
S. Momani, Z. Odibat, Homotopy perturbation method for nonlinear partial differential equations of fractional order, Phys. Lett. A., 2007, 365, 345-350. doi: 10.1016/j.physleta.2007.01.046
CrossRef Google Scholar
|
[19]
|
K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, Wiley, New York, 1993.
Google Scholar
|
[20]
|
Z. Odibat, S. Momani, Modified homotopy perturbation method: Application to quadratic Riccati differential equation of fractional order, Chaos Solitons Fractals, 2008, 36, 167-174. doi: 10.1016/j.chaos.2006.06.041
CrossRef Google Scholar
|
[21]
|
Z. Odibat, S. Momani, A generalized differential transform method for linear partial differential equations of fractional order, Appl. Math. Lett., 2008, 21, 194-199. doi: 10.1016/j.aml.2007.02.022
CrossRef Google Scholar
|
[22]
|
W. Peng, S. Tian, et al, RiemannšCHilbert method and multi-soliton solutions for three-component coupled nonlinear Schrödinger equations, J. Geom. Phys., 2019, 146, 103508. doi: 10.1016/j.geomphys.2019.103508
CrossRef Google Scholar
|
[23]
|
W. Peng, S. Tian, X. Wang, T. Zhang, Characteristics of rogue waves on a periodic background for the Hirota equation, Wave Motion, 2020, 93, 102454. doi: 10.1016/j.wavemoti.2019.102454
CrossRef Google Scholar
|
[24]
|
W. Peng, S. Tian, et al, Dynamics of breather waves and higher-order rogue waves in a coupled nonlinear Schrödinger equation, EPL (Europhysics Letters), 2018, 123(5), 50005. doi: 10.1209/0295-5075/123/50005
CrossRef Google Scholar
|
[25]
|
W. Peng, S. Tian, T. Zhang, Breather waves, high-order rogue waves and their dynamics in the coupled nonlinear Schrödinger equations with alternate signs of nonlinearities, EPL (Europhysics Letters), 2019, 127(5), 50005. doi: 10.1209/0295-5075/127/50005
CrossRef Google Scholar
|
[26]
|
I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, CA, 1999.
Google Scholar
|
[27]
|
C. Qin, S. Tian, X. Wang, T. Zhang, Lie symmetry analysis, conservation laws and analytical solutions for a generalized time-fractional modified KdV equation, Waves Rand Compl. Med., 2019, 29(3), 456-476. doi: 10.1080/17455030.2018.1450538
CrossRef Google Scholar
|
[28]
|
C. Qin, S. Tian, et al, Lie symmetry analysis, conservation laws and exact solutions of fourth-order time fractional Burgers equation, J. Appl. Anal. Comput., 2018, 8(6), 1727-1746.
Google Scholar
|
[29]
|
R. Sahadevan, T. Bakkyaraj, Invariant analysis of time fractional generalized Burgers and Korteweg-de Vries equations, J. Math. Anal. Appl., 2012, 393, 341-347. doi: 10.1016/j.jmaa.2012.04.006
CrossRef Google Scholar
|
[30]
|
S. Tian, Lie symmetry analysis, conservation laws and solitary wave solutions to a fourth-order nonlinear generalized Boussinesq water wave equation, Appl. Math. Lett., 2020, 100, 106056. doi: 10.1016/j.aml.2019.106056
CrossRef Google Scholar
|
[31]
|
S. Tian, H. Zhang, On the integrability of a generalized variable-coefficient Kadomtsev-Petviashvili equation, J. Phys. A: Math. Gen., 2012, 192(1), 35-43.
Google Scholar
|
[32]
|
G. Wu, E. W. M. Lee, Fractional variational iteration method and its application, Phys. Lett. A., 2010, 374, 2506-2509. doi: 10.1016/j.physleta.2010.04.034
CrossRef Google Scholar
|
[33]
|
G. Wang, X. Liu, Y. Zhang, Lie symmetry analysis to the time fractional generalized fifth-order KdV equation, Commun. Nonlinear Sci. Numer. Simul., 2013, 18, 2321-2326. doi: 10.1016/j.cnsns.2012.11.032
CrossRef Google Scholar
|
[34]
|
G. Wang, T. Xu, Invariant analysis and exact solutions of nonlinear time fractional Sharma-Tasso-Olver equation by Lie group analysis, Nonlinear Dyn., 2014, 76, 571-580. doi: 10.1007/s11071-013-1150-y
CrossRef Google Scholar
|
[35]
|
E. Yasar, Y. Yildirim, C.M. Khalique, Lie symmetry analysis, conservation laws and exact solutions of the seventh-order time fractional sawada-koteraito equation, Results Phys., 2016, 6, 322-328. doi: 10.1016/j.rinp.2016.06.003
CrossRef Google Scholar
|
[36]
|
X. Yan, S. Tian, et al, Rogue Waves and Their Dynamics on Bright-Dark Soliton Background of the Coupled Higher Order Nonlinear Schrödinger Equation, J. Phys. Soc. Japan., 2019, 88(7), 074004. doi: 10.7566/JPSJ.88.074004
CrossRef Google Scholar
|
[37]
|
G. M. Zaslavsky, Chaos, fractional kinetics, and anomalous transport, Phys., 2002, 371, 461-580.
Google Scholar
|
[38]
|
S. Zhang, H. Zhang, Fractional sub-equation method and its applications to nonlinear fractional PDEs, Phys. Lett. A., 2011, 375, 1069-1073. doi: 10.1016/j.physleta.2011.01.029
CrossRef Google Scholar
|
[39]
|
L. Zou, Z. Yu, S. Tian, et al, Lie point symmetries, conservation laws, and analytical solutions of a generalized time-fractional Sawada-Kotera equation, Waves Rand Compl. Med., 2018, 3, 1-14.
Google Scholar
|
[40]
|
T. Zhang, On Lie symmetry analysis, conservation laws and solitary waves to a longitudinal wave motion equation, Appl. Math. Lett., 2019, 98, 199-205. doi: 10.1016/j.aml.2019.06.016
CrossRef Google Scholar
|