2021 Volume 11 Issue 1
Article Contents

Lin Hu, Lin-Fei Nie. THE EFFECTS OF DELAY AND IMPULSIVE DRUG THERAPY IN AN HIV MODEL WITH CTLS IMMUNE RESPONSE[J]. Journal of Applied Analysis & Computation, 2021, 11(1): 333-350. doi: 10.11948/20190418
Citation: Lin Hu, Lin-Fei Nie. THE EFFECTS OF DELAY AND IMPULSIVE DRUG THERAPY IN AN HIV MODEL WITH CTLS IMMUNE RESPONSE[J]. Journal of Applied Analysis & Computation, 2021, 11(1): 333-350. doi: 10.11948/20190418

THE EFFECTS OF DELAY AND IMPULSIVE DRUG THERAPY IN AN HIV MODEL WITH CTLS IMMUNE RESPONSE

  • Corresponding author: Email address: hhlinlin@163.com (L. Hu) 
  • Fund Project: This research is partially supported by the National Natural Science Foundation of China (No. 11961066), the Scientific Research Programmes of Colleges in Xinjiang (No. XJEDU2018I001)
  • Considering the effects of immune response and drug therapy on HIV treatment, an HIV mathematical control model with CTLs immune response is therefore proposed, where the delay of virus invasion and impulsive drug therapy are introduced. By utilizing the comparison theorem, differential inequality theories and analytic method, the threshold values for the existence and global stability of the virus-free periodic solution, and the uniform persistence of disease without CTLs immune response are studied. Numerical simulations are performed to illustrate the main theoretical results and the feasibility of drug therapy. Our theoretical results suggest that long-term and standardized medication can prolong the infection process and spread of the virus, or suppress the virus concentration below the detectable level.
    MSC: 34A37, 34K20, 92D30, 34C25, 37N35
  • 加载中
  • [1]  P. Aavani and L.J.S. Allen, The role of CD4 T cells in immune system activation and viral reproduction in a simple model for HIV infection,Appl. Math. Model., 2019, 75, 210-222. doi: 10.1016/j.apm.2019.05.028

    CrossRef Google Scholar

    [2] R. Arnaout, M. Nowak and D. Wodarz, HIV-1 dynamics revisited: biphasic decay by cytotoxic lymphocyte killing? Proc. R. Soc. Lond. B., 2000, 265, 1347-1354.

    Google Scholar

    [3] D. Burg, L. Rong, A. U. Neumann and H. Dahari, Mathematical modeling of viral kinetics under immune control during primary HIV-1 infection,J. Theor. Biol., 2009, 259, 751-759. doi: 10.1016/j.jtbi.2009.04.010

    CrossRef Google Scholar

    [4] M. S. Ciupe, B. L. Bivort, D. M. Bortz and P.W. Nelson, Estimating kinetic parameters from HIV primary infection data through the eyes of three different mathematical models,Math. Biosci., 2006, 200, 1-27. doi: 10.1016/j.mbs.2005.12.006

    CrossRef Google Scholar

    [5] J. M. Conway and A. S. Perelson, Residual viremia in treated HIV$.+$ individuals,PLoS Comput. Biol., 2016, 12(1), e1004677. doi: 10.1371/journal.pcbi.1004677

    CrossRef Google Scholar

    [6] A. M. Croicu, A. M. Jarrett, N. G. Cogan and M. Y. Hussaini, Short-term antiretroviral treatment recommendations based on sensitivity analysis of a mathematical model for HIV infection of CD4(+)T cells,Bull. Math. Biol., 2017, 79(11), 2649-2671. doi: 10.1007/s11538-017-0345-7

    CrossRef Google Scholar

    [7] R. V. Culshaw and S. Ruan, A delay-differential equation model of HIV infection of CD$4.+$ T-cells,Math. Biosci., 2000, 165, 27-39. doi: 10.1016/S0025-5564(00)00006-7

    CrossRef Google Scholar

    [8] J. Danane and K. Allali, Mathematical analysis and clinical implications of an HIV Model with adaptive immunity,Comput. Math. Method Med., 2019, 2019, Article ID 7673212.

    Google Scholar

    [9] M. Divya and M. Pitchaimani, An analysis of the delay-dependent HIV-1 protease inhibitor model,Int. J. Biomath., 2018, 11(3), Article ID 1850031.

    Google Scholar

    [10] A. M. Elaiw and A. D. Al Agha, Stability of a general HIV-1 reaction-diffusion model with multiple delays and immune response,Physica A, 2019, 536(15), Article ID 122593.

    Google Scholar

    [11] K. Hattaf, N. Yousfi and A. Tridane, A delay virus dynamics model with general incidence rate,Differ. Equ. Dyn. Syst., 2014, 22, 181-190. doi: 10.1007/s12591-013-0167-5

    CrossRef Google Scholar

    [12] A. V. M. Herz, S. Bonhoeffer, R. M. Anderson, R. M. May and M. A. Nowak, Viral dynamics in vivo: Limitations on estimates of intracellular delay and virus decay,Proc. Natl. Acad. Sci. USA, 1996, 93, 7247-7251. doi: 10.1073/pnas.93.14.7247

    CrossRef Google Scholar

    [13] D. D. Ho, A. U. Neumann, A. S. Perelson, W. Chen, J. M. Leonard and M. Markowitz, Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection,Nature, 1995, 373, 123-126. doi: 10.1038/373123a0

    CrossRef Google Scholar

    [14] P. Jacqmin, L. McFadyen and J. R. Wade, Basic PK/PD principles of drug effects in circular/proliferative systems for disease modelling,J. Pharmacokinet. Pharmacodyn., 2010, 37, 157-177. doi: 10.1007/s10928-010-9151-7

    CrossRef Google Scholar

    [15] J. L. Katharine, P. G. Geoffrey and P. S. George, An estimate of the global prevalence and incidence of herpes simplex virus type 2 infection,Bull. World Health Organ., 2008, 86(10), 805-812. doi: 10.2471/BLT.07.046128

    CrossRef Google Scholar

    [16] D. E. Kirschner and G. G. Webb, Immunotherapy of HIV-1 infection,J. Biol. Syst., 1998, 6, 71-83. doi: 10.1142/S0218339098000091

    CrossRef Google Scholar

    [17] O. Krakovska and L. M. Wahl, Optimal drug treatment regimens for HIV depend on adherence,J. Theor. Biol., 2007, 246, 499-509. doi: 10.1016/j.jtbi.2006.12.038

    CrossRef Google Scholar

    [18] V. Lakshmikantham, D. D. Bainov and P. S. Simeonov, Theory of Impulsive Differential Equations,World Scientific, Singapore, 1989.

    Google Scholar

    [19] C. Monica and M. Pitchaimani, Geometric Stability switch criteria in HIV-1 infection delay, J. Nonlinear Sci., 2019, 29(1), 163-181. doi: 10.1007/s00332-018-9481-y

    CrossRef Google Scholar

    [20] L. F. Nie, Z. Teng and I. H. Jung, Complex dynamic behavior in a viral model with state feedback control strategies,Nonlinear Dyn., 2014, 77, 1223-1236. doi: 10.1007/s11071-014-1372-7

    CrossRef Google Scholar

    [21] M. A. Nowak and C. R. Bangham, Population dynamics of immune responses to persistent virues,Science, 1996, 272, 74-79. doi: 10.1126/science.272.5258.74

    CrossRef Google Scholar

    [22] E. Numfor, Optimal treatment in a multi-strain within-host model of HIV with age structure,J. Math. Anal. Appl., 2019, 48(2), Article ID 123410.

    Google Scholar

    [23] K. S. Pawelek, S. Liu, F. Pahlevani and L. Rong, A model of HIV-1 infection with two time delays: Mathematical analysis and comparison with patient data,Math. Biosci., 2012, 235, 98-109. doi: 10.1016/j.mbs.2011.11.002

    CrossRef Google Scholar

    [24] A. S. Perelson, Modeling viral and immune system dynamics,Nat. Rev. Immunol., 2002, 2, 28-36. doi: 10.1038/nri700

    CrossRef Google Scholar

    [25] A. S. Perelson, D. Kirschner and R. De Boer, Dynamics of HIV infection of CD4$.+$T cells,Math. Biosci., 1993, 114, 81-125. doi: 10.1016/0025-5564(93)90043-A

    CrossRef Google Scholar

    [26] A. S. Perelson and P. Nelson, Mathematical models of HIV dynamics in vivo,SIAM Review, 1999, 41, 3-44. doi: 10.1137/S0036144598335107

    CrossRef Google Scholar

    [27] A. S. Perelson, A. Neumann, M. Markowitz, J. Leonard and D. Ho, HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span and viral generation time,Science, 1996, 271, 1582-1586. doi: 10.1126/science.271.5255.1582

    CrossRef Google Scholar

    [28] A. N. Phillips, Reduction of HIV concentration during acute infection: independence from a specific immune response,Science, 1996, 271, 497-499. doi: 10.1126/science.271.5248.497

    CrossRef Google Scholar

    [29] L. Rong and A. S. Perelson, Asymmetric division of activated latently infected cells may explain the decay kinetics of the HIV-1 latent reservoir and intermittent viral blips,Math. Biosci., 2009, 217(1), 77-87. doi: 10.1016/j.mbs.2008.10.006

    CrossRef Google Scholar

    [30] N. Sachsenberg, A. S. Perelson, S. Yerly, G. A. Schockmel, D. Leduc, B. Hirschel and L. Perrin, Turnover of CD$4.+$ and CD$8.+$ T lymphocytes in HIV-1 infection as measured by ki-67 antigen,J. Exp. Med., 1998, 187, 1295-1303. doi: 10.1084/jem.187.8.1295

    CrossRef Google Scholar

    [31] S. Saha, P. K. Roy and R. Smith, Modeling monocyte-derived dendritic cells as a therapeutic vaccine against HIV, J. Biol. Syst., 2018, 26(4), 579-601. doi: 10.1142/S0218339018500262

    CrossRef Google Scholar

    [32] S. K. Sahani and Yashi, A delayed HIV infection model with apoptosis and viral loss,J. Biol. Dyn. 12(1), 2018, 1012-1034. doi: 10.1080/17513758.2018.1547427

    CrossRef Google Scholar

    [33] E. Shamsara, Z. Afsharnezhad and S. Effati, Optimal drug control in a four-dimensional HIV infection model,Optim. Control. Appl. Meth., 2020, 41, 469-486. doi: 10.1002/oca.2555

    CrossRef Google Scholar

    [34] R. J. Smith and L. M. Wahl, Distinct effects of protease and reverse transcriptase inhibition in an immunological model of HIV-1 infection with impulsive drug effects,Bull. Math. Biol., 2004, 66, 1259-1283. doi: 10.1016/j.bulm.2003.12.004

    CrossRef Google Scholar

    [35] R. J. Smith and L. M. Wahl, Drug resistance in an immunological model of HIV-1 infection with impulsive drug effects,Bull. Math. Biol., 2005, 67, 783–813. doi: 10.1016/j.bulm.2004.10.004

    CrossRef Google Scholar

    [36] Z. Teng and L. Chen, The positive periodic solutions of periodic Kolmogorov type systems with delays,Acta Math. Appl. Sci., 1999, 22, 456-464.

    Google Scholar

    [37] W. Wang and X. Zhao, Threshold dynamics for compartmental epidemic models in periodic environments,J. Dyn. Diff. Equat., 2008, 20, 699-717. doi: 10.1007/s10884-008-9111-8

    CrossRef Google Scholar

    [38] Y. Wang, Y. Zhou, F. Brauer and J. M. Heffernan, Viral dynamics model with CTL immune response incorporating antiretroviral therapy,J. Math. Biol., 2013, 67, 901-934. doi: 10.1007/s00285-012-0580-3

    CrossRef Google Scholar

    [39] D. Wodarz, Killer Cell Dynamics: Mathematical and Computational Approaches to Immunology,Springer, New York, 2007.

    Google Scholar

    [40] D. Wodarz and M. Nowak, Specific therapies could lead to long-term immunological control of HIV,Proc. Natl. Acad. Sci., 1999, 96, 464-469.

    Google Scholar

    [41] World health Organization, Global health sector strategy on HIV/AIDS 2011-2015,World Health Organization Press, Switzerland, 2011.

    Google Scholar

    [42] World health Organization main website, https://www.who.int/news-room/fact-sheets/detail/hiv-aids (accessed 15 November 2019)

    Google Scholar

    [43] Y. Yang and Y. Xiao, Threshold dynamics for an HIV model in periodic environments,J. Math. Anal. Appl., 2010, 361, 59-68. doi: 10.1016/j.jmaa.2009.09.012

    CrossRef Google Scholar

    [44] F. Zhang and X. Zhao, A periodic epidemic model in a patchy environmen,J. Math. Anal. Appl., 2007, 325, 496-516. doi: 10.1016/j.jmaa.2006.01.085

    CrossRef Google Scholar

    [45] X. Zhao, Dynamical Systems in Population Biology,Springer-Verlag, New York, 2003.

    Google Scholar

    [46] H. Zhu and X. Zou, Impact of delays in cell infection and virus production on HIV-1 dynamics,Maht. Med. Biol., 2008, 25, 99-112.

    Google Scholar

    [47] H. Zhu and X. Zou, Dynamics of an HIV-1 infection model with cell-mediated immune response and intracellular delay,Discrete Contin. Dyn. Syst. B, 2009, 12, 511-524. doi: 10.3934/dcdsb.2009.12.511

    CrossRef Google Scholar

Figures(4)  /  Tables(1)

Article Metrics

Article views(3468) PDF downloads(311) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint