[1]
|
B. P. Allahverdiev, A nonself-adjoint 1D singular Hamiltonian system with an eigenparameter in the boundary condition, Potential Anal., 2013, 38, 1031–1045. doi: 10.1007/s11118-012-9305-x
CrossRef Google Scholar
|
[2]
|
E. Bairamov and E. Uǧurlu, Spectral analysis of eigenparameter dependent boundary value transmission problems, J. Math.Anal.Appl. 2014, 413, 482–494. doi: 10.1016/j.jmaa.2013.11.022
CrossRef Google Scholar
|
[3]
|
Q. Bao, J. Sun, X. Hao and A. Zettl, New canonical forms of self-adjoint boundary conditions for regular differential operators of order four, Journal of Applied Analysis and Computation, 2019, 9(6), 2190–2211. doi: 10.11948/20180343
CrossRef Google Scholar
|
[4]
|
P. A. Binding, P. J. Browne, and B. A. Watson, Equivalence of inverse Sturm-Liouville problems with boundary conditions rationally dependent on the eigenparameter, J. Math. Anal. Appl., 2004, 291, 246–261. doi: 10.1016/j.jmaa.2003.11.025
CrossRef Google Scholar
|
[5]
|
P. Binding and B. Ćurgus, Riesz bases of root vectors of indefinite Sturm-Liouville problems with eigenparameter dependent boundary conditions Ⅱ, Integr. Equ. Oper. Theory, 2008, 99, 1–27.
Google Scholar
|
[6]
|
O. Boyko, O. Martynyuk and V. Pivovarchik, Ambarzumian theorem for non-selfadjoint boundary value problems, Journal of Operator Theory, 2018, 79, 1213–1223.
Google Scholar
|
[7]
|
Z. Cao, Ordinary Differential Operator, Science Press, Beijing, (in Chinese), 2016.
Google Scholar
|
[8]
|
L. Collatz, Eigenwertaufgaben Mit Technischen Anwendungen. Akad. Verlagsgesellschaft Geest and Portig. Leipzig, 1963.
Google Scholar
|
[9]
|
B. Friedman, Principles and Techniques of Applied Mathematics, New York, 1956.
Google Scholar
|
[10]
|
W. Feller, The parabolic differential equations and the associated semigroups of transforms, Ann. of Math., 1952, 55, 468–519. doi: 10.2307/1969644
CrossRef Google Scholar
|
[11]
|
C. T. Fulton, Two-point boundary value problems with eigenvalue parameter contained in the boundary conditions, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 1977, 77, 293–308. doi: 10.1017/S030821050002521X
CrossRef Google Scholar
|
[12]
|
C. Gao, X. Li and R. Ma, Eigenvalues of a linear fourth-order differential operator with squared spectral parameter in a boundary condition, Mediterranean Journal of Mathematics, 2018, 15(3), 107. doi: 10.1007/s00009-018-1148-2
CrossRef Google Scholar
|
[13]
|
M. Gregus, Third Order Linear Differential Equations (Mathematics and its Applications), Reidel, Dordrecht, 1987.
Google Scholar
|
[14]
|
D. B. Hinton, Deficiency indices of odd-order differential operators, Rocky Moun. J. Math. 1978, 8, 627–640. doi: 10.1216/RMJ-1978-8-4-627
CrossRef Google Scholar
|
[15]
|
X. Hao, M. Zhang, J. Sun and A. Zettl, Characterization of domains of self-adjoint ordinary differential operators of any order, even or odd, Electronic Journal of Qualitative Theory of Differential Equations, 2017, 2017, 1–19.
Google Scholar
|
[16]
|
J. Kim, Oscillatory Properties of Linear Third-Order Differential Equations, Proceedings of the American Mathematical Society, 1970, 26(2), 286–293.
Google Scholar
|
[17]
|
R. E. Kraft and W. R. Wells, Adjointness properties for differential systems with eigenvaluedependent boundary conditions, with application to flow-duct acoustics, J. Acoust. Soc. Am., 1977, 61, 913–22. doi: 10.1121/1.381383
CrossRef Google Scholar
|
[18]
|
K. Li, J. Sun, X. Hao and Q. Bao, Spectral analysis for discontinuous non-self-adjoint singular Dirac operators with eigenparameter dependent boundary condition, J. Math. Anal. Appl., 2017, 453, 304–316. doi: 10.1016/j.jmaa.2017.01.100
CrossRef Google Scholar
|
[19]
|
K. Li, M. Zhang, J. Cai and Z. Zheng, Completeness theorem for eigenparameter dependent dissipative Dirac operator with general transfer conditions, Journal of Function Spaces, 2020, 2020, 1–8.
Google Scholar
|
[20]
|
O. S. Mukhtarov and K. Aydemir, Minimization principle and generalized Fourier series for discontinuous Sturm-Liouville systems in direct sum spaces, Journal of Applied Analysis and Computation, 2018, 8(5), 1511–1523.
Google Scholar
|
[21]
|
O. S. Mukhtarov and K. Aydemir, Eigenfunction expansion for Sturm-Liouville problems with transmission conditions at one interior point, Acta Mathematica Scientia, 2015, 35(3), 639–649. doi: 10.1016/S0252-9602(15)30010-2
CrossRef Google Scholar
|
[22]
|
R. Ma and Y. Lu, Disconjugacy and extremal solutions of nonlinear third-order equations, Communications on Pure and Applied Analysis, 2014, 13, 1223–1236. doi: 10.3934/cpaa.2014.13.1223
CrossRef Google Scholar
|
[23]
|
T. Niu, X. L. Hao, J. Sun and K. Li, Canonical forms of self-adjoint boundary conditions for regular differential operators of order three, Operator and Matrices, 2020, 14, 207–220.
Google Scholar
|
[24]
|
M. A. Naimark, Linear Differential Operators, Ungar, New York, 1968.
Google Scholar
|
[25]
|
H. Olǧar and O. Sh. Mukhtarov, Weak eigenfunctions of two-interval Sturm-Liouville problems together with interaction conditions, Journal of Mathematical Physics, 2017, 58(4), 042201–1–042201–13.
Google Scholar
|
[26]
|
W. C. Troy, Solution of third order differential equations relevant to draining and coating ows, SIAM J. Math. Anal., 1993, 24, 155–171. doi: 10.1137/0524010
CrossRef Google Scholar
|
[27]
|
C. Tretter, Boundary eigenvalue problems for differential equations $ N\eta = \lambda P\eta $ with $\lambda$-polynomial boundary conditions, J. Differential Equations, 2001, 170, 408–471. doi: 10.1006/jdeq.2000.3829
CrossRef Google Scholar
|
[28]
|
E. Uǧurlu, Regular third-order boundary value problems, Applied Mathematics and Computation, 2019, 343, 247–257. doi: 10.1016/j.amc.2018.09.046
CrossRef Google Scholar
|
[29]
|
E. Uǧurlu, Third-order boundary value transmission problems, Turkish Journal of Mathematics, 2019, 43, 1518–1532. doi: 10.3906/mat-1812-36
CrossRef Google Scholar
|
[30]
|
A. P. Wang, J. Sun and A. Zettl, The classification of self-adjoint boundary conditions: separated, coupled, and mixed, Journal of Functional Analysis, 2008, 255, 1554–1573. doi: 10.1016/j.jfa.2008.05.003
CrossRef Google Scholar
|
[31]
|
A. P. Wang, J. Sun and A. Zettl, Characterization of domains of self-adjoint ordinary differential operators, Journal of Differential Equations, 2009, 246, 1600–1622. doi: 10.1016/j.jde.2008.11.001
CrossRef Google Scholar
|
[32]
|
J. Weidmann, Spectral Theory of Ordinary Differential Operators, Lecture Notes in Mathematics, Berlin: Springer, 1987.
Google Scholar
|
[33]
|
J. Walter, Regular eigenvalue problems with eigenvalue parameter in the boundary condition, Math. Z., 1973, 133, 301–312. doi: 10.1007/BF01177870
CrossRef Google Scholar
|
[34]
|
Q. Yao and Y. Feng, The existence of solutions for a third order two-point boundary value problem, Appl. Math. Lett., 2002, 15, 227–232. doi: 10.1016/S0893-9659(01)00122-7
CrossRef Google Scholar
|
[35]
|
M. Zhang, J. Sun and A. Zettl, The spectrum of singular Sturm-Liouville problems with eigenparameter dependent boundary conditions and its approximation, Results in Mathematics, 2013, 63, 1311–1330. doi: 10.1007/s00025-012-0270-x
CrossRef Google Scholar
|
[36]
|
X. Zhang and J. Sun, Green function of fourth-order differential operator with eigenparameter-dependent boundary and transmission conditions, Acta Mathematicae Applicatae Sinica, English Series, 2017, 33(2), 311–326. doi: 10.1007/s10255-017-0661-6
CrossRef Google Scholar
|