2025 Volume 15 Issue 6
Article Contents

Xueqing Miao, Jiaye Gan, Tingfu Ma, Lili Wu. A LINEAR TIME-SPACE HIGH-ORDER COMPACT FINITE DIFFERENCE SCHEME FOR SOLVING THE ONE-DIMENSIONAL NONLINEAR BURGERS' EQUATION[J]. Journal of Applied Analysis & Computation, 2025, 15(6): 3226-3245. doi: 10.11948/20240527
Citation: Xueqing Miao, Jiaye Gan, Tingfu Ma, Lili Wu. A LINEAR TIME-SPACE HIGH-ORDER COMPACT FINITE DIFFERENCE SCHEME FOR SOLVING THE ONE-DIMENSIONAL NONLINEAR BURGERS' EQUATION[J]. Journal of Applied Analysis & Computation, 2025, 15(6): 3226-3245. doi: 10.11948/20240527

A LINEAR TIME-SPACE HIGH-ORDER COMPACT FINITE DIFFERENCE SCHEME FOR SOLVING THE ONE-DIMENSIONAL NONLINEAR BURGERS' EQUATION

  • Author Bio: Email: 3132616437@qq.com(X. Miao); Email: gjywhu@hotmail.com(J. Gan); Email: tingfma@nxnu.edu.cn(T. Ma)
  • Corresponding author: Email: wll82003019@nxnu.edu.cn(L. Wu)
  • Fund Project: This work is partially supported by National Natural Science Foundation of China (12261070), Foreign Expert Program (G2023045002L), Natural Science Foundation of Ningxia (2022AAC03314), the Key Research and Development Program of Ningxia (2021BEB04053), Research Startup Funding for Full-time High-level Talents Introduced by Ningxia Hui Autonomous Region (2024BEH04096)
  • This paper presents a novel finite difference scheme for solving the one-dimensional (1D) nonlinear Burgers' equation with high accuracy. A fourth-order backward difference formula is employed to discretize the time derivative, while the nonlinear residual terms are efficiently linearized via Taylor series expansion. Spatial discretization is achieved using a fourth-order compact difference scheme for second-order derivatives and a fourth-order Padé scheme for first-order derivatives. As a result, the proposed approach yields a linear compact finite difference scheme with fourth-order accuracy in both temporal and spatial dimensions. The accuracy and stability of this method are demonstrated through a series of numerical experiments, validating its effectiveness for solving nonlinear Burgers' equations. The high-order finite difference scheme for the nonlinear Burgers' equation can accurately simulate phenomena in fields such as physics, sound wave propagation, and aerodynamics.

    MSC: 65M12, 65M06, 35Q75
  • 加载中
  • [1] M. Abdullah, M. Yaseen and M. De la Sen, An efficient collocation method based on Hermite formula and cubic B-splines for numerical solution of the Burgers' equation, Math. Comput. Simul., 2022, 197, 166-184. doi: 10.1016/j.matcom.2022.02.013

    CrossRef Google Scholar

    [2] G. Arora and B. Singh, Numerical solution of Burgers' equation with modified cubic B-spline differential quadrature method, Appl. Math. Comput., 2013, 224, 166-177.

    Google Scholar

    [3] J. M. Burgers, A mathematical model illustrating the theory of turbulence, Adv. Appl. Mech., 1948, 1, 171-199.

    Google Scholar

    [4] S. A. Dahy and K. T. Elgindy, High-order numerical solution of viscous Burgers' equation using an extended Cole-Hopf barycentric Gegenbauer integral pseudospectral method, Int. J. Comput. Math., 2022, 99(3), 446-464. doi: 10.1080/00207160.2021.1919302

    CrossRef Google Scholar

    [5] K. T. Elgindy, High-order, stable, and efficient pseudospectral method using barycentric Gegenbauer quadratures, Appl. Numer. Math., 2017, 113, 1-25. doi: 10.1016/j.apnum.2016.10.014

    CrossRef Google Scholar

    [6] C. Fan and P. Li, Generalized finite difference method for solving two-dimensional Burgers' equations, Procedia Eng., 2014, 79, 55-60. doi: 10.1016/j.proeng.2014.06.310

    CrossRef Google Scholar

    [7] K. Fujisawa and A. Asada, Nonlinear parametric sound enhancement through different fluid layer and its application to noninvasive measurement, Meas., 2016, 94, 726-733. doi: 10.1016/j.measurement.2016.09.004

    CrossRef Google Scholar

    [8] I. A. Ganaie and V. K. Kukreja, Numerical solution of Burgers' equation by cubic Hermite collocation method, Appl. Math. Comput., 2014, 237, 571-581.

    Google Scholar

    [9] F. Gao and C. Chi, Numerical solution of nonlinear Burgers' equation using high accuracy multiquadric quasi-interpolation, Appl. Math. Comput., 2014, 229, 414-421.

    Google Scholar

    [10] D. A. Hammada and M. S. El-Azab, 2N order compact finite difference scheme with collocation method for solving the generalized Burger's-Huxley and Burger's-Fisher equations, Appl. Math. Comput., 2015, 258, 296-311.

    Google Scholar

    [11] M. Hussain, Hybrid radial basis function methods of lines for the numerical solution of viscous Burgers' equation, Comput. Appl. Math., 2021, 40(1), 1-49. doi: 10.1007/s40314-020-01383-5

    CrossRef Google Scholar

    [12] S. R. Jena and G. S. Gebremedhin, Decatic b-spline collocation scheme for approximate solution of Burgers' equation, Numer. Methods Partial Differ. Equ., 2023, 39, 1851-1869. doi: 10.1002/num.22747

    CrossRef Google Scholar

    [13] Y. D. Jin, J. Zhou, Z. K. Shi, H. L. Zhang and C. P. Wang, Lattice hydrodynamic model for traffic flow on curved road with passing, Nonlinear Dyn., 2017, 89, 107-124. doi: 10.1007/s11071-017-3439-8

    CrossRef Google Scholar

    [14] M. Kapoor and V. Joshi, Numerical solution of coupled 1D Burgers' equation by non-uniform algebraic-hyperbolic B-spline differential quadrature method, Int. J. Comput. Methods Eng. Sci. Mech., 2022, 24(1), 18-39.

    Google Scholar

    [15] A. Khoshfetrat and M. Abedini, A hybrid DQ/LMQRBF-DQ approach for numerical solution of Poisson-type and Burger's equations in irregular domain, Appl. Math. Model., 2012, 36, 1885-1901. doi: 10.1016/j.apm.2011.07.079

    CrossRef Google Scholar

    [16] A. Korkmaz and I. Dag, Cubic B-spline differential quadrature methods and stability for Burgers' equation, Eng. Comput., 2013, 30, 320-344. doi: 10.1108/02644401311314312

    CrossRef Google Scholar

    [17] S. Kutluay and Y. Ucar, Numerical solutions of the coupled Burgers equation by the Galerkin quadratic B-spline finite element method, Math. Methods Appl. Sci., 2013, 36, 2403-2415. doi: 10.1002/mma.2767

    CrossRef Google Scholar

    [18] H. Lai and C. Ma, A new lattice Boltzmann model for solving the coupled viscous Burgers' equation, Phys. A., 2014, 395, 445-457. doi: 10.1016/j.physa.2013.10.030

    CrossRef Google Scholar

    [19] S. Lele, Compact finite difference schemes with spectral-like resolution, J. Comput. Phys., 1992, 103, 16-42. doi: 10.1016/0021-9991(92)90324-R

    CrossRef Google Scholar

    [20] P. W. Li, Space-time generalized finite difference nonlinear model for solving unsteady Burgers' equations, Appl. Math. Lett., 2021, 114, 106896. doi: 10.1016/j.aml.2020.106896

    CrossRef Google Scholar

    [21] M. Maryam, S. Fahimeh, B. Esmail and J. Shahnam, A local reproducing kernel method accompanied by some different edge improvement techniques: Application to the Burgers' equation, Iran. J. Sci. Technol. Trans. A Sci., 2018, 42(2), 857-871. doi: 10.1007/s40995-016-0113-9

    CrossRef Google Scholar

    [22] A. K. Mittal, A space-time pseudospectral method for solving multi-dimensional quasi-linear parabolic partial differential (Burgers') equations, Appl. Numer. Math., 2024, 195, 39-53. doi: 10.1016/j.apnum.2023.09.005

    CrossRef Google Scholar

    [23] R. C. Mittal and R. K. Jain, Numerical solutions of nonlinear Burgers' equation with modified cubic b-splines collocation method, Appl. Math. Comput., 2012, 218, 7839-7855.

    Google Scholar

    [24] R. C. Mittal and R. Jiwari, Differential quadrature method for two-dimensional Burgers' equations, Int. J. Comput. Methods Eng. Sci. Mech., 2009, 10(6), 450-459. doi: 10.1080/15502280903111424

    CrossRef Google Scholar

    [25] R. C. Mittal and R. Rohila, A study of one dimensional nonlinear diffusion equations by Bernstein polynomial based differential quadrature method, J. Math. Chem., 2017, 55(2), 673-695. doi: 10.1007/s10910-016-0703-y

    CrossRef Google Scholar

    [26] R. C. Mittal and A. Tripathi, Numerical solutions of two-dimensional Burgers' equations using modified B-cubic B-spline finite elements, Eng. Comput., 2015, 32, 1275-1306. doi: 10.1108/EC-04-2014-0067

    CrossRef Google Scholar

    [27] V. Mukundan and A. Awasthi, Linearized implicit numerical method for Burgers' equation, Nonlinear Eng., 2016, 5, 219-234.

    Google Scholar

    [28] M. Palav and V. Pradhan, Efficient numerical solution of Burgers' equation using collocation method based on re-defined uniform hyperbolic polynomial B-splines, J. Appl. Math. Comput., 2025, 1865-2085.

    Google Scholar

    [29] K. Pandey, L. Verma and A. K. Verma, On a finite difference scheme for Burgers' equation, Appl. Math. Comput., 2009, 215(6), 2206-2214.

    Google Scholar

    [30] K. Shah, Solution of Burgers' equation in a one-dimensional groundwater recharge by spreading using q-Homotopy analysis method, Eur. J. Pure Appl. Math., 2016, 9, 114-124.

    Google Scholar

    [31] M. A. Shallal, A. H. Taqi, B. F. Jumaa, H. Rezazadeh and M. Inc, Numerical solutions to the 1-D Burgers' equation by a cubic Hermite finite element method, Indian J. Phys., 2022, 96, 3831-3836. doi: 10.1007/s12648-022-02304-4

    CrossRef Google Scholar

    [32] H. Shukla, M. Tamsir, V. Srivastava and J. Kumar, Numerical solution of two dimensional coupled viscous Burger equation using modified cubic B-spline differential quadrature method, AIP Adv., 2014, 117134, 1-10.

    Google Scholar

    [33] V. P. Shyaman, A. Sreelakshmi and A. Awasthi, A higher order implicit adaptive finite point method for the Burgers' equation, J. Diff. Eq. Appl., 2023, 29(3), 235-269.

    Google Scholar

    [34] V. Srivastava, S. Singh and M. Awasthi, Numerical solutions of coupled Burgers' equations by an implicit finite-difference scheme, AIP Adv., 2013, 082131, 1-7.

    Google Scholar

    [35] C. C. Tsai, Y. T. Shih, Y. T. Lin and H. C. Wang, Tailored finite point method for solving one-dimensional Burgers' equation, Int. J. Comput. Math., 2017, 94(4), 800-812.

    Google Scholar

    [36] Y. Uçar, N. M. Yaǧmurlu and M. K. Yiǧit, Numerical solution of the coupled Burgers equation by trigonometric B-spline collocation method, Math. Meth. Appl. Sci., 2023, 46(5), 6025-6041.

    Google Scholar

    [37] S. D. Wang, T. F. Ma, L. L. Wu and X. J. Yang, Two high-order compact finite difference schemes for solving the nonlinear generalized Benjamin-Bona-Mahony-Burgers equation, Appl. Math. Comput., 2025, 496, 129360.

    Google Scholar

    [38] L. Yang and X. Pu, Derivation of the Burgers' equation from the gas dynamics, Commun. Math. Sci., 2016, 14, 671-682.

    Google Scholar

    [39] X. J. Yang, Y. B. Ge and B. Lan, A class of compact finite difference schemes for solving the 2D and 3D Burgers' equations, Math. Comput. Simulat., 2021, 185, 510-534.

    Google Scholar

    [40] X. J. Yang, Y. B. Ge and L. Zhang, A class of high-order compact difference schemes for solving the Burgers' equations, Appl. Math. Comput., 2019, 358, 394-417.

    Google Scholar

    [41] T. Zhanlav, O. Chuluunbaatar and V. Ulziibayar, Higher-order accurate numerical solution of unsteady Burgers' equation, Appl. Math. Comput., 2015, 250, 701-707.

    Google Scholar

    [42] H. Zhu, H. Shu and M. Ding, Numerical solutions of two-dimensional Burgers' equations by discrete adomian decomposition method, Comput. Math. Appl., 2010, 60(3), 840-848.

    Google Scholar

Figures(8)  /  Tables(16)

Article Metrics

Article views(16) PDF downloads(25) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint