Citation: | Xueqing Miao, Jiaye Gan, Tingfu Ma, Lili Wu. A LINEAR TIME-SPACE HIGH-ORDER COMPACT FINITE DIFFERENCE SCHEME FOR SOLVING THE ONE-DIMENSIONAL NONLINEAR BURGERS' EQUATION[J]. Journal of Applied Analysis & Computation, 2025, 15(6): 3226-3245. doi: 10.11948/20240527 |
This paper presents a novel finite difference scheme for solving the one-dimensional (1D) nonlinear Burgers' equation with high accuracy. A fourth-order backward difference formula is employed to discretize the time derivative, while the nonlinear residual terms are efficiently linearized via Taylor series expansion. Spatial discretization is achieved using a fourth-order compact difference scheme for second-order derivatives and a fourth-order Padé scheme for first-order derivatives. As a result, the proposed approach yields a linear compact finite difference scheme with fourth-order accuracy in both temporal and spatial dimensions. The accuracy and stability of this method are demonstrated through a series of numerical experiments, validating its effectiveness for solving nonlinear Burgers' equations. The high-order finite difference scheme for the nonlinear Burgers' equation can accurately simulate phenomena in fields such as physics, sound wave propagation, and aerodynamics.
[1] | M. Abdullah, M. Yaseen and M. De la Sen, An efficient collocation method based on Hermite formula and cubic B-splines for numerical solution of the Burgers' equation, Math. Comput. Simul., 2022, 197, 166-184. doi: 10.1016/j.matcom.2022.02.013 |
[2] | G. Arora and B. Singh, Numerical solution of Burgers' equation with modified cubic B-spline differential quadrature method, Appl. Math. Comput., 2013, 224, 166-177. |
[3] | J. M. Burgers, A mathematical model illustrating the theory of turbulence, Adv. Appl. Mech., 1948, 1, 171-199. |
[4] | S. A. Dahy and K. T. Elgindy, High-order numerical solution of viscous Burgers' equation using an extended Cole-Hopf barycentric Gegenbauer integral pseudospectral method, Int. J. Comput. Math., 2022, 99(3), 446-464. doi: 10.1080/00207160.2021.1919302 |
[5] | K. T. Elgindy, High-order, stable, and efficient pseudospectral method using barycentric Gegenbauer quadratures, Appl. Numer. Math., 2017, 113, 1-25. doi: 10.1016/j.apnum.2016.10.014 |
[6] | C. Fan and P. Li, Generalized finite difference method for solving two-dimensional Burgers' equations, Procedia Eng., 2014, 79, 55-60. doi: 10.1016/j.proeng.2014.06.310 |
[7] | K. Fujisawa and A. Asada, Nonlinear parametric sound enhancement through different fluid layer and its application to noninvasive measurement, Meas., 2016, 94, 726-733. doi: 10.1016/j.measurement.2016.09.004 |
[8] | I. A. Ganaie and V. K. Kukreja, Numerical solution of Burgers' equation by cubic Hermite collocation method, Appl. Math. Comput., 2014, 237, 571-581. |
[9] | F. Gao and C. Chi, Numerical solution of nonlinear Burgers' equation using high accuracy multiquadric quasi-interpolation, Appl. Math. Comput., 2014, 229, 414-421. |
[10] | D. A. Hammada and M. S. El-Azab, 2N order compact finite difference scheme with collocation method for solving the generalized Burger's-Huxley and Burger's-Fisher equations, Appl. Math. Comput., 2015, 258, 296-311. |
[11] | M. Hussain, Hybrid radial basis function methods of lines for the numerical solution of viscous Burgers' equation, Comput. Appl. Math., 2021, 40(1), 1-49. doi: 10.1007/s40314-020-01383-5 |
[12] | S. R. Jena and G. S. Gebremedhin, Decatic b-spline collocation scheme for approximate solution of Burgers' equation, Numer. Methods Partial Differ. Equ., 2023, 39, 1851-1869. doi: 10.1002/num.22747 |
[13] | Y. D. Jin, J. Zhou, Z. K. Shi, H. L. Zhang and C. P. Wang, Lattice hydrodynamic model for traffic flow on curved road with passing, Nonlinear Dyn., 2017, 89, 107-124. doi: 10.1007/s11071-017-3439-8 |
[14] | M. Kapoor and V. Joshi, Numerical solution of coupled 1D Burgers' equation by non-uniform algebraic-hyperbolic B-spline differential quadrature method, Int. J. Comput. Methods Eng. Sci. Mech., 2022, 24(1), 18-39. |
[15] | A. Khoshfetrat and M. Abedini, A hybrid DQ/LMQRBF-DQ approach for numerical solution of Poisson-type and Burger's equations in irregular domain, Appl. Math. Model., 2012, 36, 1885-1901. doi: 10.1016/j.apm.2011.07.079 |
[16] | A. Korkmaz and I. Dag, Cubic B-spline differential quadrature methods and stability for Burgers' equation, Eng. Comput., 2013, 30, 320-344. doi: 10.1108/02644401311314312 |
[17] | S. Kutluay and Y. Ucar, Numerical solutions of the coupled Burgers equation by the Galerkin quadratic B-spline finite element method, Math. Methods Appl. Sci., 2013, 36, 2403-2415. doi: 10.1002/mma.2767 |
[18] | H. Lai and C. Ma, A new lattice Boltzmann model for solving the coupled viscous Burgers' equation, Phys. A., 2014, 395, 445-457. doi: 10.1016/j.physa.2013.10.030 |
[19] | S. Lele, Compact finite difference schemes with spectral-like resolution, J. Comput. Phys., 1992, 103, 16-42. doi: 10.1016/0021-9991(92)90324-R |
[20] | P. W. Li, Space-time generalized finite difference nonlinear model for solving unsteady Burgers' equations, Appl. Math. Lett., 2021, 114, 106896. doi: 10.1016/j.aml.2020.106896 |
[21] | M. Maryam, S. Fahimeh, B. Esmail and J. Shahnam, A local reproducing kernel method accompanied by some different edge improvement techniques: Application to the Burgers' equation, Iran. J. Sci. Technol. Trans. A Sci., 2018, 42(2), 857-871. doi: 10.1007/s40995-016-0113-9 |
[22] | A. K. Mittal, A space-time pseudospectral method for solving multi-dimensional quasi-linear parabolic partial differential (Burgers') equations, Appl. Numer. Math., 2024, 195, 39-53. doi: 10.1016/j.apnum.2023.09.005 |
[23] | R. C. Mittal and R. K. Jain, Numerical solutions of nonlinear Burgers' equation with modified cubic b-splines collocation method, Appl. Math. Comput., 2012, 218, 7839-7855. |
[24] | R. C. Mittal and R. Jiwari, Differential quadrature method for two-dimensional Burgers' equations, Int. J. Comput. Methods Eng. Sci. Mech., 2009, 10(6), 450-459. doi: 10.1080/15502280903111424 |
[25] | R. C. Mittal and R. Rohila, A study of one dimensional nonlinear diffusion equations by Bernstein polynomial based differential quadrature method, J. Math. Chem., 2017, 55(2), 673-695. doi: 10.1007/s10910-016-0703-y |
[26] | R. C. Mittal and A. Tripathi, Numerical solutions of two-dimensional Burgers' equations using modified B-cubic B-spline finite elements, Eng. Comput., 2015, 32, 1275-1306. doi: 10.1108/EC-04-2014-0067 |
[27] | V. Mukundan and A. Awasthi, Linearized implicit numerical method for Burgers' equation, Nonlinear Eng., 2016, 5, 219-234. |
[28] | M. Palav and V. Pradhan, Efficient numerical solution of Burgers' equation using collocation method based on re-defined uniform hyperbolic polynomial B-splines, J. Appl. Math. Comput., 2025, 1865-2085. |
[29] | K. Pandey, L. Verma and A. K. Verma, On a finite difference scheme for Burgers' equation, Appl. Math. Comput., 2009, 215(6), 2206-2214. |
[30] | K. Shah, Solution of Burgers' equation in a one-dimensional groundwater recharge by spreading using q-Homotopy analysis method, Eur. J. Pure Appl. Math., 2016, 9, 114-124. |
[31] | M. A. Shallal, A. H. Taqi, B. F. Jumaa, H. Rezazadeh and M. Inc, Numerical solutions to the 1-D Burgers' equation by a cubic Hermite finite element method, Indian J. Phys., 2022, 96, 3831-3836. doi: 10.1007/s12648-022-02304-4 |
[32] | H. Shukla, M. Tamsir, V. Srivastava and J. Kumar, Numerical solution of two dimensional coupled viscous Burger equation using modified cubic B-spline differential quadrature method, AIP Adv., 2014, 117134, 1-10. |
[33] | V. P. Shyaman, A. Sreelakshmi and A. Awasthi, A higher order implicit adaptive finite point method for the Burgers' equation, J. Diff. Eq. Appl., 2023, 29(3), 235-269. |
[34] | V. Srivastava, S. Singh and M. Awasthi, Numerical solutions of coupled Burgers' equations by an implicit finite-difference scheme, AIP Adv., 2013, 082131, 1-7. |
[35] | C. C. Tsai, Y. T. Shih, Y. T. Lin and H. C. Wang, Tailored finite point method for solving one-dimensional Burgers' equation, Int. J. Comput. Math., 2017, 94(4), 800-812. |
[36] | Y. Uçar, N. M. Yaǧmurlu and M. K. Yiǧit, Numerical solution of the coupled Burgers equation by trigonometric B-spline collocation method, Math. Meth. Appl. Sci., 2023, 46(5), 6025-6041. |
[37] | S. D. Wang, T. F. Ma, L. L. Wu and X. J. Yang, Two high-order compact finite difference schemes for solving the nonlinear generalized Benjamin-Bona-Mahony-Burgers equation, Appl. Math. Comput., 2025, 496, 129360. |
[38] | L. Yang and X. Pu, Derivation of the Burgers' equation from the gas dynamics, Commun. Math. Sci., 2016, 14, 671-682. |
[39] | X. J. Yang, Y. B. Ge and B. Lan, A class of compact finite difference schemes for solving the 2D and 3D Burgers' equations, Math. Comput. Simulat., 2021, 185, 510-534. |
[40] | X. J. Yang, Y. B. Ge and L. Zhang, A class of high-order compact difference schemes for solving the Burgers' equations, Appl. Math. Comput., 2019, 358, 394-417. |
[41] | T. Zhanlav, O. Chuluunbaatar and V. Ulziibayar, Higher-order accurate numerical solution of unsteady Burgers' equation, Appl. Math. Comput., 2015, 250, 701-707. |
[42] | H. Zhu, H. Shu and M. Ding, Numerical solutions of two-dimensional Burgers' equations by discrete adomian decomposition method, Comput. Math. Appl., 2010, 60(3), 840-848. |
The exact solution (red) and the numerical solution (black) of Example 4.1 obtained using the LHOC scheme for various values of kinematic viscosity (a)
Absolute errors of Example 4.1 at
(a) the numerical solution of the LHOC scheme when
The exact solution and the numerical solution of Example 4.2 obtained using the LHOC scheme with
Absolute errors of Example 4.2 with
Numerical solution of LHOC scheme of Example 4.3 for values of
Exact and numerical solutions of Example 4.4 for values of
Exact and numerical solutions of Example 4.4 for values of