[1]
|
H. Y. Alfifi, I. B. Saad, S. Turki and et al, Existence and asymptotic behavior of positive solutions for a coupled system of semilinear fractional differential equations, Results Math, 2017, 71(3-4), 705-730. doi: 10.1007/s00025-016-0528-9
CrossRef Google Scholar
|
[2]
|
C. Bai and J. Fang, The existence of a positive solution for a singular coupled system of nonlinear fractional differential equations, Appl. Math. Comput., 2004, 150(3), 611-621.
Google Scholar
|
[3]
|
F. Biagini, Y. Hu, B. Øksendal and T. Zhang, Stochastic calculus for fractional Brownian motion and applications, Springer, London, 2008.
Google Scholar
|
[4]
|
B. Boufoussi and S. Hajji, Functional differential equations driven by a fractional Brownian motion, Comput. Math. Appl., 2011, 62(2), 746-754. doi: 10.1016/j.camwa.2011.05.055
CrossRef Google Scholar
|
[5]
|
B. Boufoussi, S. Hajji and E. H. Lakhel, Functional differential equations in Hilbert spaces driven by a fractional Brownian motion, Afrika Mat., 2012, 23(2), 173-194.
Google Scholar
|
[6]
|
X. Fernique, Régularité des trajectoires des fonctions aléatoires Gaussiennes, In: Ecole d'été de Probabilités de Saint-Flour. Ⅳ-1974. Lecture Notes in Mathematics, 1974, 480, 1-96.
Google Scholar
|
[7]
|
M. Ferrante and C. Rovira, Stochastic delay differential equations driven by fractional Brownian motion with Hurst parameter H>1/2, Bernoulli, 2006, 12(1), 85-100.
Google Scholar
|
[8]
|
M. Ferrante and C. Rovira, Convergence of delay differential equations driven by fractional Brownian motion, J. Evol. Equ., 2010, 10(4), 761-783. doi: 10.1007/s00028-010-0069-8
CrossRef Google Scholar
|
[9]
|
Y. Hu, Integral transformations and anticipative calculus for fractional Brownian motions, Mem. Amer. Math. Soc., 2005, 175(825).
Google Scholar
|
[10]
|
A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, North-Holland, 2006.
Google Scholar
|
[11]
|
B. B. Mandelbrot and J. W. Van Ness, Fractional Brownian motion, fractional noises and applications, SIAM Rev., 1968, 10(4), 422-437. doi: 10.1137/1010093
CrossRef Google Scholar
|
[12]
|
Y. S. Mishura, Stochastic Calculus for fractional Brownian motion and Related Processes, Springer, Berlin, 2008.
Google Scholar
|
[13]
|
I. Nourdin, Selected aspects of fractional Brownian motion, Springer, Milan, 2012.
Google Scholar
|
[14]
|
D. Nualart and A. Rascanu, Differential equations driven by fractional Brownian motion, Collect. Math., 2002, 53(1), 55-82.
Google Scholar
|
[15]
|
D. Nualart, Malliavin Calculus and Related Topics, Springer, Berlin, 2006.
Google Scholar
|
[16]
|
S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Amsterdam, 1993.
Google Scholar
|
[17]
|
L. C. Young, An Inequality of Hölder Type Connected with Stieltjes Integration, Acta Math., 1936, 67(1), 251-282.
Google Scholar
|
[18]
|
M. Zähle, Integration with respect to fractal functions and stochastic calculus I, Probab. Theory Related Fields, 1998, 111(3), 333-374. doi: 10.1007/s004400050171
CrossRef Google Scholar
|
[19]
|
M. Zähle, Integration with respect to fractal functions and stochastic calculus Ⅱ, Math. Nachr., 2001, 225(1), 145-183.
Google Scholar
|