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DOUBLE HOPF BIFURCATION

AND CHAOS IN LIU SYSTEM

WITH DELAYED FEEDBACK

Yuting Ding and Weihua Jiang

Abstract In this paper, we consider the stability of equilibria, Hopf and dou-
ble Hopf bifurcation in Liu system with delay feedback. Firstly, we identify
the critical values for stability switches and Hopf bifurcation using the method
of bifurcation analysis. When we choose appropriate feedback strength and
delay, two symmetrical nontrivial equilibria of Liu system can be controlled to
be stable at the same time, and the stable bifurcating periodic solutions occur
in the neighborhood of the two equilibria at the same time. Secondly, by ap-
plying the normal form method and center manifold theory, the normal form
near the double Hopf bifurcation, as well as classifications of local dynam-
ics are analyzed. Furthermore, we give the bifurcation diagram to illustrate
numerically that a family of stable periodic solutions bifurcated from Hopf
bifurcation occur in a large region of delay and the Liu system with delay can
appear the phenomenon of “chaos switchover”.
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1. Introduction

As one of the most fascinating nonlinear phenomena, in the last four decades chaos
has been extensively studied in the field of mathematics, physics, astronomy, etc.
The Lorenz chaotic attractor was discovered in a three-dimensional autonomous
system in 1963 [16]. Another famous three-dimensional chaotic system, Chen sys-
tem, which is not topologically equivalent to the Lorenz system, was constructed in
1999 [3]. In 2002, the Lü system [17] which represents the transition between the
Lorenz system and the Chen system was reported. Afterwards, the so-called unified
system [18] and the generalized Lorenz canonical form [2] were presented.

In 2004, Liu et al. [15] proposed the following three-dimensional quadratic
chaotic system called Liu system:











ẋ = a(y − x),

ẏ = bx− kxz,

ż = −cz + hx2,

(1.1)
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where a, b, c, h and k are parameters. They discussed some basic dynamical
properties of Liu system and numerically studied the continuous spectrum and
chaotic behaviors of this new butterfly attractor. From then on, a lot of researches
have been done on the Liu system. For example, Matouk [20] used linear feedback
control technique to stabilize and synchronize the chaotic Liu system. Zhu and
Chen [34] proposed three feedback control strategies of Liu system to its unstable
equilibria and compared the effectiveness of these strategies. Xu et al. [32] analyzed
the stability of impulsive control Liu system and gave some sufficient conditions
which guaranteed the global asymptotical stability for the controlled system.

Delayed feedback control (DFC) method has been receiving considerable atten-
tion recently since it was proposed by Pyragas [21, 22]. It provides an alternative
effective method for feedback control of chaos. The basic idea of DFC is to realize
a continuous control for a dynamical system by applying a feedback signal which is
proportional to the difference between the dynamical variable X(t) and its delayed
value. In other words, we use a perturbation of the form F (t) = K[X(t)−X(t−τ)],
whereK is feedback strength and τ is time delay. DFC method has been successfully
applied to many practical chaotic systems [12–17].

Recently, much attention has been focused on high-codimensional bifurcations,
since they may reveal some complex dynamical behaviors, such as quasi-periodic
solutions and chaos [18–20]. The normal form method can be used to analyze the
dynamical behaviors of systems, therefore, it has been applied effectively in the
study of singularities of vector fields [21–29].

In this paper, we consider Liu system with delay as follows using the DFC
method:











ẋ = a(y − x) +K[x(t− τ) − x(t)],

ẏ = bx− kxz,

ż = −cz + hx2.

(1.2)

There exist Hopf bifurcations and double Hopf bifurcations in system (1.2).
Using the normal form theory and center manifold theorem, we obtain the stability
of bifurcating periodic solutions and the direction of Hopf bifurcation, and derive
the normal forms of double Hopf bifurcation and their unfolding with perturbation
parameters. There are the same characteristic equation of linearized system for
two nontrivial symmetrical equilibria, therefore, for fixed feedback strength, we
obtain the region of delay in which the two unstable equilibria can be controlled
to be stable at the same time, and we also obtain the critical values of delay near
which stable bifurcation periodic solutions occur at the two equilibria at the same
time. Furthermore, we analyze the dynamical behaviors in Liu system (1.2) near
the double Hopf bifurcation point. We show the coexistence of a pair of stable
periodic solutions, a pair of unstable periodic solutions, a pair of stable quasi-
periodic solutions, or a pair of unstable quasi-periodic solutions.

Moreover, our concern is that if the family of stable bifurcating periodic solutions
bifurcated from Hopf bifurcation occur in a large region of delay and the controlled
system can appear chaos again. By numerical simulation, we show the specific
regions in which a family of stable bifurcating periodic solutions occur, and the
phenomenon of “chaos switchover” existed in Liu system (1.2).

The rest of the paper is organized as follows. In section 2, we consider the
stability of equilibria and bifurcating periodic solutions, and the direction of Hopf
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bifurcation in Liu system (1.2). In section 3, we derive the normal forms of double
Hopf bifurcation and their unfolding with perturbation parameters near the double
Hopf bifurcation point.

2. Hopf bifurcation

2.1. Stability of equilibria

In this section, system (1.2) is considered. First of all, we determine the equilibria
of this system. System (1.2) has three equilibria:

E1 = (x1, y1, z1) = (0, 0, 0), E2,3 = (x2,3, y2,3, z2,3) = (±
√

bc

hk
,±

√

bc

hk
,
b

k
).

We obtain the characteristic equation of linearized system for E1 as follows:

λ3 + (a+K + c)λ2 + (ac+Kc− ab)λ− abc−K(λ2 + cλ)e−λτ = 0. (2.1)

When τ = 0, (2.1) becomes

λ3 + (a+ c)λ2 + (ac− ab)λ− abc = 0. (2.2)

When a, b, c > 0, λ = 0 is not the root of (2.1), and (2.2) have two roots with
negative real parts and one root with positive real part, and the equilibrium E1 is
unstable for all τ ≥ 0.

We obtain the same characteristic equation of linearized system for E2 and E3

as follows:
λ3 + a2λ

2 + a1λ+ a0 −K(λ2 + cλ)e−λτ = 0, (2.3)

where a2 = c+ a+K, a1 = ac+ cK, a0 = 2abc. When τ = 0, (2.3) becomes

λ3 + (a+ c)λ2 + acλ+ 2abc = 0. (2.4)

By Routh–Hurwitz criterion, if
{

a+ c > 0,
(a+ c)ac− 2abc > 0,

all the roots of equation (2.4) have negative real parts, and the equilibria E2 and
E3 are stable.

Let λ = iω (ω > 0) be a root of (2.3). Applying the analysis results of [4], we
give the following assumptions:

(H1) a+ c ≤ 0 or a2c+ ac2 − 2abc ≤ 0; abc 6= 0; a+ c− 2b 6= 0.
(H2) Z∗ > 0; h(Z∗) < 0.

where c2 = a2
2 − 2a1 −K2, c1 = a2

1 − 2a0a2 −K2c2, c0 = a2
0, h(Z) = Z3 + c2Z

2 +

c1Z + c0, Z
∗ =

−c2 +
√

c22 − 3c1
3

.

Under (H1), the equilibria E2 and E3 of system (1.2) with τ = 0 are unstable.
Under (H2), h(Z) = 0 has two positive roots Z1 and Z2. Suppose Z1 < Z2, then
h′(Z1) < 0, h′(Z2) > 0. Therefore, similar to [4], note that ωl =

√
Zl, (l = 1, 2), we

get

τ
(j)
l =

{

1
ωl

[arccos(P ) + 2jπ], Q ≥ 0,
1
ωl

[2π − arccos(P ) + 2jπ], Q < 0,
(2.5)
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where

Q = sin(ωlτl) =
−ω4

l + (a1 − a2c)ω
2
l + a0c

Kω3
l + c2Kωl

, P = cos(ωlτl) =
(a2 − c)ω2

l + a1c− a0

Kω2
l + c2K

.

Lemma 2.1. If (H1) and (H2) hold, when τ = τ
(j)
l (l = 1, 2; j = 0, 1, 2 · · · ), then

(2.3) has a pair of pure imaginary roots ±iωl, and all the other roots of (2.3) have
nonzero real parts.

Furthermore, let λ(τ) = α(τ) + iω(τ) be the root of (2.3) satisfying α(τ
(j)
l ) = 0,

ω(τ
(j)
l ) = ωl (l = 1, 2; j = 0, 1, 2 · · · ).

Lemma 2.2. If (H2) holds, then we have the following transversality conditions:

α′(τ
(j)
1 ) < 0, α′(τ

(j)
2 ) > 0, where j = 0, 1, 2 · · · .

Proof. Substituting λ(τ) into (2.3) and taking the derivative with respect to τ ,
we get

(α′(τ))−1

τ=τ
(j)
l

=
Zl

Λ
(3Z2

l + 2c2Zl + c1) =
Zl

Λ
h

′

(Zl),

where Λ = c2K2ω4
l +K2ω6

l > 0 (l = 1, 2). For Zl > 0, α′(τ
(j)
l ) and h

′

(Zl) have the
same signs. Note that h′(Z1) < 0 and h′(Z2) > 0, then the proof is complete.

Theorem 2.1. For system (1.2),

(1) Equilibrium E1 is unstable for all τ ≥ 0 when a, b, c > 0.

(2) If (H1) and (H2) hold, then system (1.2) undergoes Hopf bifurcations at the

equilibria E2 and E3 at the same time when τ = τ
(j)
l (l = 1, 2; j = 0, 1, 2 · · · ).

(a) If τ
(0)
2 < τ

(0)
1 , then equilibria E2 and E3 of system (2) are unstable for

τ ≥ 0.

(b) If τ
(0)
1 < τ

(0)
2 , then there exists m ∈ N such that τ

(0)
1 < τ

(0)
2 < τ

(1)
1 <

τ
(1)
2 < · · · < τ

(m)
1 < τ

(m)
2 < τ

(m+1)
2 < τ

(m+1)
1 , and equilibria E2 and E3

of system (2) are unstable for τ ∈ [0, τ
(0)
1 )∪⋃m

l=1(τ
(l−1)
2 , τ

(l)
1 )∪(τ

(m)
2 ,+∞)

and asymptotically stable for τ ∈ ⋃m

l=0(τ
(l)
1 , τ

(l)
2 ).

Let a = 10, b = 40, c = 2.5, h = 4, k = 1, which satisfy the assumptions (H1)
and (H2), and system (1.1) has a butterfly-shaped attractor [15] (see Figure 1).
Under these parameters, E2 = (5, 5, 40) and E3 = (−5,−5, 40).

When K ∈ (−∞,−38.9549)∪ (5.9825,+∞), (H2) holds, and h(Z) = 0 has two
positive real roots. We plot the bifurcation diagram for the feedback strength and
the time delay (see Figure 2).

Let K = 15 ∈ (−∞,−38.9549)∪ (5.9825,+∞). By (2.5) and Lemma 2.2, we get

w1 = 6.7962, τ
(j)
1 = 0.3882 + 0.9245j, j = 0, 1, 2 · · · , α′(τ

(j)
1 ) < 0,

w2 = 12.0402, τ
(j)
2 = 0.4664 + 0.5219j, j = 0, 1, 2 · · · , α′(τ

(j)
2 ) > 0.

Especially, τ
(0)
1 = 0.3882 < τ

(0)
2 = 0.4664 < τ

(1)
2 = 0.9883 < τ

(1)
1 = 1.3127.

By Theorem 2.3, we know that the equilibria E2 and E3 are unstable for τ ∈
[0, τ

(0)
1 )∪(τ

(0)
2 ,+∞) and stable for τ ∈ (τ

(0)
1 , τ

(0)
2 ). We give the numerical simulation

for E2 and E3 when τ = 0.42 ∈ (τ
(0)
1 = 0.3882, τ

(0)
2 = 0.4664), and the equilibria

E2 and E3 are both asymptotically stable (see Figure 3), and the waveform plot for
E2 and E3 overlap in z−axis.
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Figure 1. Waveform plot and phase for Liu system (1.2) with τ = 0: there is a
chaotic attractor.
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Figure 2. (Color online) Bifurcation diagram for the feedback strength K and the

time delay τ , where τ
(j)
1 (j = 0, 1, 2) (blue lines) and τ

(j)
2 (j = 0, 1, 2, 3) (red dashed

lines) are Hopf bifurcation critical curves in respect to K.
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Figure 3. Waveform plots and phases for Liu system (1.2) with τ = 0.42 for E2

and E3 respectively: two asymptotically stable equilibria are coexisted.

2.2. Stability and direction of Hopf bifurcation

In this section, according to the theories of [11, 10], we obtain the direction of
Hopf bifurcation and the stability of bifurcating periodic solutions on the center
manifold. Without loss of generality, we denote the critical value τ = τ∗, at which
system (1.2) undergoes a Hopf bifurcation at equilibrium (x∗, y∗, z∗).

We first let µ = τ − τ∗, then rescale the time by t 7→ (t/τ) to normalize the
delay so that system (1.2) can be written as

Ẋ(t) = Lµ(Xt) + f(µ,Xt), (2.6)

where X(t) = (x(t), y(t), z(t))T ∈ R3, Lµ : C 7→ R, f : R × C 7→ R, for ϕ =
(ϕ1, ϕ2, ϕ3)

T ∈ C([−1, 0],R3),

Lµϕ = (τ∗+µ)N1ϕ(0)+(τ∗+µ)N2ϕ(−1), f(µ, ϕ) = (τ∗+µ)





0
−kϕ1(0)ϕ3(0)

hϕ2
1(0)



 ,

where

N1 =





−K − a a 0
b− kz∗ 0 −kx∗
2hx∗ 0 −c



 , N2 =





K 0 0
0 0 0
0 0 0



 .

By the Riesz representation theorem, there exists a function η(θ, µ) of bounded
variation for (−1 ≤ θ ≤ 0) such that

Lµ(ϕ) =

∫ 0

−1

dη(θ, µ)ϕ(θ) for ϕ ∈ C([−1, 0], R3).
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In fact, we can choose

η(θ, µ) = (τ∗ + µ)N1δ(θ) − (τ∗ + µ)N2δ(θ + 1),

where δ(θ) =

{

0, θ 6= 0,

1, θ = 0.

For ϕ ∈ C([−1, 0],R3), define

A(µ)ϕ =

{

dϕ(θ)/dθ, θ ∈ [−1, 0),
∫ 0

−1
dη(t, µ)ϕ(t), θ = 0.

R(µ)ϕ =

{

0, θ ∈ [−1, 0),

f(µ, ϕ), θ = 0.

Then (2.6) can be rewritten as

u̇t = A(µ)ut +R(µ)ut, (2.7)

where u = (x, y, z)T and ut = u(t+ θ) for θ ∈ [−1, 0].

For ψ ∈ C([0, 1], (R3)∗), define

A∗ψ(s) =

{

−dψ(s)/ds, s ∈ (0, 1],
∫ 0

−1 ψ(−s)dη(s, 0), s = 0,

and in a bilinear form

〈ψ(s) , ϕ(θ)〉 = ψ̄(0)ϕ(0) −
∫ 0

−1

∫ θ

ξ=0

ψ̄(ξ − θ)dη(θ)ϕ(ξ)dξ,

where η(θ) = η(θ, 0). Then A(0) and A∗ are adjoint operators. We know that
±iω∗τ∗ are eigenvalues of A(0), and they are also eigenvalues of A∗.

We can obtain that q(θ) = (1, α, β)
T
eiω

∗τ∗θ (θ ∈ [−1, 0]) and q∗(s) = D(1, α∗, β∗)eiω
∗τ∗s

(s ∈ [0, 1]) are the eigenvectors of A(0) and A∗ corresponding to the eigenvalues
iω∗τ∗ and −iω∗τ∗, where

α =
iω∗ + a+K −Ke−iτ∗ω∗

a
, β =

2hx∗

iω∗ + c
, α∗ = − a

iω∗
, β∗ =

akx∗

cω∗i + ω∗2 ,

D = (1 + ᾱα∗ + β̄β∗ +Kτ∗eiω
∗τ∗

)−1,

(2.8)

such that 〈q∗(s), q(θ)〉 = 1, 〈q∗(s), q̄(θ)〉 = 0.

Let ut be the solution of (2.6) when µ = 0. Define

z(t) = 〈q∗, ut〉,
w(z(t), z̄(t), θ) = ut(θ) − 2Re{z(t)q(θ)}.

For solution ut ∈ C0 (C0 denotes the center manifold), we have

ż(t) = iτ∗ω∗z + q̄∗(0)f(0, w(z, z̄, 0) + 2Re{z(t)q(0)})
△
= iτ∗ω∗z + g20

z2

2 + g11zz̄ + g02
z̄2

2 + g21
z2z̄
2 + · · · ,
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then we can get

g20 = 2D̄τ∗(hβ̄∗ − kβᾱ∗),

g11 = D̄τ∗(2hβ̄∗ − kᾱ∗β − kᾱ∗β̄),

g02 = 2D̄τ∗(hβ̄∗ − kβ̄ᾱ∗),

g21 =
4D̄τ∗β̄∗hak[c(β + β̄) + 2hx∗]

abc− ackz∗ − 2ahkx∗2z∗

− 2D̄τ∗ᾱ∗ak[2hkx∗(2β + β̄) − 2h(kz∗ − b) + ckβ(β + β̄)]

abc− ackz∗ − 2ahkx∗2z∗

− 4D̄τ∗akhβ̄∗(2βω∗i + βc+ hx∗) − 2D̄τ∗ᾱ∗β̄ak2(2βω∗i + βc− hx∗)

(2ω∗i + c)[2ω∗i(2ω∗i +K + a−Ke−2ω∗τ∗i) + a(kz∗ − b)] + 2akhx∗2z∗

− 2D̄τ∗kᾱ∗[2iω∗h(2iω∗ +K + a−Ke−2ω∗τ∗i) + ah(kz∗ − b)]

(2ω∗i + c)[2ω∗i(2ω∗i +K + a−Ke−2ω∗τ∗i) + a(kz∗ − b)] + 2akhx∗2z∗

+
6D̄2τ∗2(hβ̄∗ − kβᾱ∗)[2hβ̄∗ − kᾱ∗(β + β̄)]i

3ω∗τ∗

+
2DD̄τ∗2hβ̄∗(hβ∗ − kβα∗)(3 + β̄)i

3ω∗τ∗
.

(2.9)

By the normal form method and the center manifold theory introduced by Has-
sard et al. [11], define

C1(0) =
i

2ω∗τ∗

(

g11g20 − 2|g11|2 −
|g02|2

3

)

+
g21
2
,

µ2 = − Re(C1(0))

Re(λ′(τ∗))
,

(2.10)

then they can determine the properties of bifurcating periodic solutions at the
critical value τ∗. In fact, µ2 determines the direction of the Hopf bifurcation: if
µ2 > 0 (µ2 < 0), the bifurcating periodic solutions are forward (backward) when
τ = τ∗. Re(C1(0)) determines the stability of bifurcating periodic solutions: if
Re(C1(0)) < 0 (Re(C1(0)) > 0), the bifurcating periodic solutions on the center
manifold are stable (unstable). Therefore, we have the following theorem.

Theorem 2.2. If (H2) holds, then system (1.2) undergoes Hopf bifurcations at the

equilibria E2 and E3 at the same time when τ = τ
(j)
l , where l = 1, 2; j = 0, 1, 2 · · · .

(1) If Re(C1(0)) > 0 (< 0) when τ = τ
(j)
1 , the bifurcating periodic solutions are

forward (backward), and they are unstable (stable) on the center manifold.

(2) If Re(C1(0)) > 0 (< 0) when τ = τ
(j)
2 , the bifurcating periodic solutions are

backward (forward), and they are unstable (stable) on the center manifold.

Remark: For specific parameters values satisfying (H1) and (H2), we can obtain

ωl (ωl =
√
zl) and τ

(j)
l (l = 1, 2; j = 0, 1, 2 · · · ) respectively, and get Re(C1(0)) from

(10–12), therefore, by Theorems 2.3 and 2.4, we can obtain the region of delay in
which the two equilibria E2 and E3 are stable, the stability and the direction of
bifurcating periodic solutions.

For the typical parameter set: a = 10, b = 40, c = 2.5, h = 4, k = 1. When

K = 15, we can work out Re(C1(0)) < 0 at τ = τ
(0)
l , where l = 1, 2. Therefore, by
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Figure 4. Waveform plots and phases for Liu system (1.2) with τ = 0.38 for E2

and E3 respectively: two stable periodic solutions are coexisted.

Theorems 2.3 and 2.4, we have that Hopf bifurcations occur at equilibria E2 and E3

when τ = τ
(j)
l (l = 1, 2; j = 0, 1, 2 · · · ). When τ = τ

(0)
1 (τ = τ

(0)
2 ) the bifurcating

periodic solutions are backward (forward), and they are stable. Therefore, when
we choose appropriate regions of delay, a pair of asymptotically stable equilibria
or a pair of stable periodic solutions are coexisted in system (1.2). We give the

numerical simulation when τ = 0.38 < τ
(0)
1 = 0.3882 and τ = 0.32 < τ

(0)
1 = 0.3882

for E2 and E3 (see Figures. 4 and 5), and the waveform plot for E2 and E3 overlap
in z−axis.

When τ = 0.38, a periodic solution with small amplitude is bifurcated from
E2 and E3 respectively. The amplitudes of periodic solutions increase with the

delay far away from the critical point τ
(0)
1 in the region which the equilibria E2

and E3 are unstable. A pair of stable periodic solutions with large amplitudes are
coexisted when τ = 0.32 (see Figure 5), and the pair of periodic solutions is reversed
phase. We concern the large region of delay in which the family of stable periodic
solutions occur. Therefore, we give the bifurcation diagram for equilibrium E2 when
τ ∈ [0, 0.55] and K = 15 (see Figure 6). It is plotted by Matlab software, which
depicts the maximum value of periodic solutions in z-axis following the change of
time delay. From this figure, we have that stable bifurcating periodic solutions
occur at E2 when τ ∈ (0.22, 0.3882) and τ ∈ (0.4664, 0.47), and the equilibrium E2

is stable when τ ∈ (0.3882, 0.4664). These numerical results are in accordance with
the above theoretical analysis given by Theorem 2.3 and 2.4, and there exists the
phenomenon of “chaos switchover” in system (1.2) when τ ∈ [0, 0.55]. Because there
are the same characteristic equation of linearized system for E2 and E3, equilibrium
E3 has the same behaviors as E2.
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Figure 5. (Color online) Waveform plots and phases for Liu system (1.2) with
τ = 0.32 for E2 (blue lines) and E3 (red lines) respectively: there is a pair of
reversed phase stable periodic solutions.
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Figure 6. Bifurcation diagram for equilibrium E2 when K = 15 and τ ∈ [0, 0.55],
where the ordinate depicts the maximum value of periodic solutions in z-axis.
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3. Double Hopf bifurcation

From the bifurcation diagram for the feedback strength K and the time delay τ (see
Figure 2), we know that there are some points at which two Hopf bifurcation critical
curves intersect. For example, (Kc, τc) = (41.7843, 0.46337) (see point R in Figure
2). From the discussion given in Section 2, when K = Kc, τ = τc, the characteristic
equation (2.3) has two pairs of pure imaginary eigenvalues Λ = {±iω1,±iω2}, and
all the other eigenvalues have negative real parts. We denote that system (1.2)
undergoes a double Hopf bifurcation at equilibrium (x∗, y∗, z∗) when K = Kc,
τ = τc. There is only a implicit expression of frequencies h(ω2) = 0 for the Liu
system with parameters. Aiming to a group of determinate parameters, we can solve
the values of frequencies, here, we only consider the normal form of non-resonant
case.

In this section, in order to determine the bifurcation direction and the stability
of bifurcating periodic solutions near the double Hopf bifurcation critical point
(Kc, τc), we have to compute the normal forms on the center manifold. The method
we use is based on the center manifold reduction and normal form theory due to
Faria and Magalhaes [5, 6](see Appendix).

In polar coordinates η1 = r1e
iθ1, η2 = r2e

iθ2, the amplitude and phase equations
on the center manifold can be derived from (A.8) as























ṙ1 = r1(µ1 + Re(P11)r
2
1 + Re(P12)r

2
2),

ṙ2 = r2(µ2 + Re(P21)r
2
1 + Re(P22)r

2
2),

θ̇1 = ω1 + ν1 + Im(P11)r
2
1 + Im(P12)r

2
2 ,

θ̇2 = ω2 + ν2 + Im(P21)r
2
1 + Im(P22)r

2
2 ,

(3.1)

where Pij are given by (A.8); µj = Re(dj
1)Kε+Re(dj

2)τε, νj = Im(dj
1)Kε+Im(dj

2)τε,

where Kε, τε are perturbation parameters and dj
i (i = 1, 2; j = 1, 2) are given by

(A.6).

For (3.1), let ξj =
√

|Re(Pjj)|rj , (j = 1, 2), we have the following planar system:

{

ξ̇1 = ξ1(µ1 + ξ1 + ϑξ2),

ξ̇2 = ξ2(µ2 + δξ1 + ξ2),
(3.2)

where ϑ = Re(P12)
Re(P22) , δ = Re(P21)

Re(P11) .

When a = 10, b = 40, c = 2.5, h = 4, k = 1, K = Kc = 41.7843, τ = τc =
0.46337, After calculations we have Re(d1

1) = 0.0002, Re(d2
1) = 0.0037, Re(d1

2) =
−0.1636, Re(d2

2) = 2.5005, Re(P11) = −0.0329, Re(P12) = −0.0700, Re(P21) =
0.0670, Re(P22) = 0.0588, ϑδ = 2.4276.

We note that M0 = (0, 0) is always an equilibrium of (3.2). The two semi-trivial
equilibria given by perturbation parameters are

M1 = (0,
√

−Re(d2
1)Kε − Re(d2

2)τε), M2 = (
√

Re(d1
1)Kε + Re(d1

2)τε, 0),

which bifurcate from the origin at the bifurcation lines

L1 = {(Kε, τε) : Re(d2
1)Kε+Re(d2

2)τε = 0}, L2 = {(Kε, τε) : Re(d1
1)Kε+Re(d1

2)τε = 0},
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respectively. There may also exist a nontrivial equilibrium

M3 = (

√

(Re(d1
1) − ϑRe(d2

1))Kε + (Re(d1
2) − ϑRe(d2

2))τε
1 − ϑδ

,

√

(δRe(d1
1) − Re(d2

1))Kε + (δRe(d1
2) − Re(d2

2))τε
1 − ϑδ

).

For this expression to be valid, we need to assure that ϑδ − 1 6= 0. The nontrivial
equilibrium M3 collides with a semi-trivial one and from the positive quadrant on
the bifurcation curves

T1 = {(Kε, τε) :(Re(d1
1) − ϑRe(d2

1))Kε + (Re(d1
2) − ϑRe(d2

2))τε = 0,

Re(d2
1)Kε + Re(d2

2)τε < 0},

T2 = {(Kε, τε) :(Re(d2
1) − δRe(d1

1))Kε + (Re(d2
2) − δRe(d1

2))τε = 0,

Re(d1
1)Kε + Re(d1

2)τε > 0}.
If ((ϑ−1)Re(d2

1)+(δ−1)Re(d1
1))Kε +((ϑ−1)Re(d2

2)+(δ−1)Re(d1
2))τε > 0, the

fixed point M3 is sink, else M3 is source. Therefore, we need consider the following
bifurcation curve.

T3 = {(Kε, τε) :((ϑ− 1)Re(d2
1) + (δ − 1)Re(d1

1))Kε+

((ϑ− 1)Re(d2
2) + (δ − 1)Re(d1

2))τε = 0}.

Therefore, L1 : Kε = −672.0840τε, L2 : Kε = 875.9254τε, T1 : Kε =
−609.5047τε, T2 : Kε = −528.4533τε, T3 : Kε = −571.3934τε.

According to the conclusion of [9], we give the bifurcation diagram (see Figure
7).

Since there exists no unstable manifold containing equilibrium, according to the
center manifold theory, (3.1) on the center manifold determine the asymptotic be-
havior of solutions of the full equations (1.2). Therefore, if (3.2) has one or two
asymptotically stable (unstable) semi-trivial equilibria M1 and M2, then (1.2) has
one or two asymptotically stable (unstable) periodic solutions in the neighborhood
of (x∗, y∗, z∗). If (3.2) has an asymptotically stable (unstable) equilibrium M3,
then (1.2) has an asymptotically stable (unstable) quasi-periodic solution in the
neighborhood of (x∗, y∗, z∗). So, we shall call the periodic solution the source (re-
spectively, saddle, sink) periodic solution of (1.2) when the semi-trivial equilibrium
of (3.2) is a source (respectively, saddle, sink), and call the quasi-periodic solu-
tion the source (respectively, saddle, sink) quasi-periodic solution of (1.2) when the
nontrivial equilibrium of (3.2) is a source (respectively, saddle, sink).

For the original system (1.2) in the neighborhood of (x∗, y∗, z∗), the above bifur-
cation criteria divide the parameters plane (Kε, τε) into seven regions (see Figure
7). In region D1, there is only one trivial equilibrium which is saddle; when the
parameters vary across the line L1 from region D1 to D2, the trivial equilibrium
becomes a sink point, and an unstable periodic solution O1 (saddle) appears by
Hopf bifurcation from the trivial solution; with the variation of the parameters
from region D2 to D3, another sink periodic solution O2 appears by Hopf bifurca-
tion from the trivial solution; in region D4, a sink quasi-periodic solution appears
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Figure 7. The bifurcation diagram with parameters Kε and τε near (Kc, τc).

by Neimark-Sacker bifurcation from the periodic solution O2, and O2 becomes a
saddle from a sink; when the parameters vary across line T3 from region D4 to
D5, the sink quasi-periodic become a source one; in region D6; quasi-periodic solu-
tion collides with the periodic solution O1 and then disappears, and O1 becomes a
source solution; when the parameters vary across line L1 from region D6 to D7, the
periodic solution O1 collides with the trivial solution and then disappears, and the
trivial solution become a source from a saddle; when the parameters vary across
line L2 from region D7 to D1, the saddle periodic solution O2 collides with the
trivial solution and then disappears, and the trivial solution become a saddle from
a source.

Because system (1.2) has the same characteristic equation of linearized system
for equilibria E2 and E3, there are the same dynamical behaviors in the neighbor-
hood of E2 and E3. Therefore, for system (1.2), there are the coexistence of a pair
of unstable periodic solutions in region D2 and D7, the coexistence of a pair of
stable periodic solutions and a pair of unstable periodic solutions in region D3, the
coexistence of two pairs of unstable periodic solutions in region D6, the coexistence
of a pair of unstable periodic solutions and a pair of stable quasi-periodic solutions
in region D4, and the coexistence of a pair of unstable periodic solutions and a pair
of unstable quasi-periodic solutions in region D5.

We give the numerical simulation for E2 and E3 when τε = −0.0001, Kε =
−0.9, τε = −0.00337, Kε = 0 and τε = −0.001,Kε = 0.52 respectively. The two
parameters belong to regions D2, D3 and D4 respectively (see Figures 8-10), and
there exists a pair of stable fixed points, a pair of stable periodic solutions and a
pair of stable quasi-periodic solutions respectively.

Figure 11 is the bifurcation diagram for equilibrium E2 when τ ∈ [0, 0.48] and
K = Kc. From this figure, we know that a family of stable bifurcating periodic
solutions occur when τ ∈ (0.1, 0.42), and the inverse period doubling bifurcation
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Figure 8. Waveform plots for Liu system (1.2) with τε = −0.0001 and Kε = −0.9
for E2 and E3 respectively: two stable fixed points are coexisted.
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Figure 9. Waveform plots and phases for Liu system (1.2) with τε = −0.00337
and Kε = 0 for E2 and E3 respectively: a pair of reversed phase stable periodic
solutions are coexisted.
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Figure 10. Waveform plots and phases for Liu system (1.2) with τε = −0.001 and
Kε = 0.52, for E2 and E3 respectively: a pair of reversed phase stable quasi-periodic
solutions are coexisted.

approaches to chaos is found in (1.2). When τ approaches to τc = 0.46337, the
stable Hopf bifurcating periodic solutions disappear, and chaos occurs again with
the increase of delay. There does not exist the region in which the equilibrium
E2 is stable, which is different from Figure 6 and is in accordance with Figure 2.
Similarly, equilibrium E3 has the same dynamical behaviors as equilibrium E2.

4. Conclusion

In this paper, we discuss the stability of equilibria and bifurcating periodic solutions,
the direction of Hopf bifurcation and dynamical behaviors near the double Hopf
bifurcation critical point in Liu system with delay feedback.

We propose a realizable technique to control chaotic Liu system (1.1) to be
stable using delayed feedback control method. Namely, if delay τ and feedback
strength K satisfy the conditions of Theorems 2.3 and 2.4, then the system (1.1)
can be controlled in new states, which have a pair of stable equilibria or a pair
of stable bifurcating periodic solutions, and the chaos disappears. Furthermore,
we derive the normal forms of double Hopf bifurcation and their unfolding with
perturbation parameters, and then give the bifurcation diagram for the perturbation
parameters and analyze the dynamical behaviors near the double Hopf bifurcation
point. Therefore, with the change of delay and feedback strength, we can obtain
the coexistence of a pair of stable periodic solutions, a pair of unstable periodic
solutions, two pairs of unstable periodic solutions, a pair of stable quasi-periodic
solutions, or a pair of unstable quasi-periodic solutions.

We give the bifurcation diagrams (Figures 6 and 11) to illustrate numerically
that a family of stable bifurcating periodic solutions occur in a large region of delay
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Figure 11. Bifurcation diagram for equilibrium E2 when τ ∈ [0, 0.48] and K = Kc.

and the Liu system can appear the phenomenon of “chaos switchover”. It is a
helpful trying for studying the complex phenomena of delay differential equation.

Since the time delay is easy to be controlled and realized in real applications,
our paper proves once again that DFC method is an effective method to control or
generate chaos.
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Appendix

Rescaling the time by t 7→ (t/τ) to normalize the delay so that system (1.2) can be
written as











ẋ =aτ(y − x) +Kτ [x(t − 1) − x(t)],

ẏ =bτx− kτxz,

ż = − cτz + hτx2.

(A.1)

We let K = Kc and τ = τc, and choose

η(θ) =











τcA, θ = 0,

0, θ ∈ (−1, 0),

−τcB, θ = −1,
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with

A =





−a−Kc a 0
b− kz∗ 0 −kx∗
2hx∗ 0 −c



 , B =





Kc 0 0
0 0 0
0 0 0



 .

Then the linearization equation at the equilibrium of (A.1) is

Ẋ(t) = L0Xt,

where L0φ =
∫ 0

−1 dη(θ)φ(θ), ϕ ∈ C = C([−1, 0], R3), and the bilinear form on
C∗ × C is

〈ψ(s) , φ(θ)〉 = ψ(0)φ(0) −
∫ 0

−1

∫ θ

ξ=0

ψ(ξ − θ)dη(θ)φ(ξ)dξ,

where φ ∈ C, ψ ∈ C∗. Then the phase space C is decomposed by Λ = {±iω1,±iω2}
as C = P ⊕Q, where Q = {ϕ ∈ C : (ψ, ϕ) = 0, forall ψ ∈ P ∗, and the bases for P
and its adjoint P ∗ are

Φ(θ) = (q1(θ), q̄1(θ), q2(θ), q̄2(θ)), Ψ(s) = (q∗1(s), q̄∗1(s), q2(s), q̄
∗

2(s))T,

with
〈q∗1 , q1〉 = 1, 〈q∗1 , q̄1〉 = 0, 〈q∗1 , q2〉 = 0, 〈q∗1 , q̄2〉 = 0,

〈q∗2 , q1〉 = 0, 〈q∗2 , q̄1〉 = 0, 〈q∗2 , q2〉 = 1, 〈q∗2 , q̄2〉 = 0.

It can be computed directly that

qj = (1,
b− kz∗

iωj

− 2hkx∗2

(iωj + c)iωj

,
2hx∗

iωj + c
)Teiωjτcθ

△
= (pj1, pj2, pj3)

Teiωjτcθ, − 1 ≤ θ ≤ 0,

q∗j = Dj(1,
a

iωj

,− akx∗

iωj(iωj + c)
)e−iωjτcs △

= (qj1, qj2, qj3)
Te−iωjτcs, 0 ≤ s ≤ 1,

(A.2)

where

Dj = (1 − ab− akz∗

ω2
j

+
2ahkx∗2

(iωj + c)ω2
j

− 2akhx∗2

(iωj + c)2iωj

+Kcτce
−iωjτc)−1, (j = 1, 2).

We now introduction two bifurcation parameters byK = Kc+Kε and τ = τc+τε
in (A.1), and denote ε = (Kε, τε). Then (A.1) can be written as

Ẋ(t) = L(ε)Xt + F (Xt, ε), (A.3)

where

L(ε)Xt =





a(τc + τε)[yt(0) − xt(0)] + (τc + τε)(Kc +Kε)[xt(−1) − xt(0)]
b(τc + τε)xt(0)
−c(τc + τε)zt(0)



 ,

and

F (Xt, ε) =





0
−k(τc + τε)xt(0)zt(0)

h(τc + τε)x
2
t (0)



 ,
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As in Faria and Magalhães [5, 6], we consider the enlarged phase space BC of
function from [−1, 0] to R3, which are continuous on [−1, 0) and with a possible
jump discontinuity at zero. This space can be identified with C × R3. Thus its
elements can be written in the form φ = ϕ +X0c, where φ ∈ C, c ∈ R3 and X0 is
the 3×3 matrix-valued function defined by X0(θ) = 0 for θ ∈ [−1, 0) and X0(0) = I.
In BC, (A.3) becomes an abstract ODE,

d

dt
u = Au+X0F̃ (u, ε), (A.4)

where u ∈ C, and A is defined by

A : C1 → BC, Au = u̇+X0[L0u− u̇(0)], and F̃ (u, ε) = [L(ε) − L0]u+ F (u, ε).

By the continuous projection π : BC 7→ P , π(ϕ + X0c) = Φ[(Ψ, ϕ) + Ψ(0)c],
we can decompose the enlarged phase space by Λ = {±iω1τc,±iω2τc} as BC =
P ⊕ Kerπ. Let η = (η1, η̄1, η2, η̄2)

T and vt ∈ Q1 := Q ∩ C1 ⊂ Kerπ, AQ1 is
the restriction of A as an operator from Q1 to the Banach space Kerπ. Denote
ut = Φη + vt. Equation (A.5) is therefore decomposed as the system

{

η̇ = Bη + Ψ(0)F̃ (Φη + vt, ε),

v̇t = AQ1vt + (I − π)X0F̃ (Φη + vt, ε),
(A.5)

where B = diag{iω1,−iω1, iω2,−iω2}.
Denote ε = (Kε, τε), and let M2 denote the operator defined in V 6

2 (C4 ×Kerπ),
with

M1
2 : V 6

2 (C4) 7→ V 6
2 (C4), (M1

2 p)(η, ε) = Dηp(η, ε)Bη −Bp(η, ε),

where V 6
2 (C4) denotes the linear space of the second order homogeneous polynomials

in six variables (η1, η̄1, η2, η̄2, ε) and with coefficients in C4. Then it is easy to
check that one may choose the decomposition V 6

2 (C4) = Im(M1
2 ) ⊕ Im(M1

2 )c with
complementary space Im(M1

2 )c spanned by the elements Kεη1e1, τεη1e1, Kεη̄1e2,
τεη̄1e2, Kεη2e3, τεη2e3, Kεη̄2e4, τεη̄2e4, where ei (i = 1, 2, 3, 4) are unit vectors.

Then the normal form of (A.3) on the center manifold of the equilibrium
(x∗, y∗, z∗) near Kε = 0, τε = 0 has the form

η̇ = Bη +
1

2
g1
2(η, 0, ε) + h.o.t.,

where g1
2 is the function giving the quadratic terms in (η, ε) for vt = 0, and is deter-

mined by g1
2(η, 0, ε) = Proj(Im(M1

2 ))c × f1
2 (η, 0, ε), where f1

2 (η, 0, ε) is the function
giving the quadratic terms in (η, ε) for vt = 0 defined by the first equation of (A.5).
Then the normal form, which is truncated to the quadratic order, is

{

η̇1 = iω1η1 + d1
1Kεη1 + d1

2τεη1,

η̇2 = iω2η1 + d2
1Kεη2 + d2

2τεη2,
(A.6)

where dj
1 = qj1pj1τc(e

−iωjτc − 1), dj
2 = qj1a(pj2 − pj1) + qj1Kcpj1(e

−iωjτc − 1) +
bqj2pj2 − cqj3pj3, and pjl and qjl (j = 1, 2; l = 1, 2, 3.) are given by (A.2).

To find the third-order normal form, let M3 denote the operator defined in
V 4

3 (C4 ×Kerπ), with

M1
3 : V 4

3 (C4) 7→ V 4
3 (C4), (M1

3 p)(η, ε) = Dηp(η, ε)Bη −Bp(η, ε),
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where V 4
3 (C4) denotes the linear space of the third order homogeneous polynomi-

als in four variables (η1, η̄1, η2, η̄2) and with coefficients in C4. Then it is easy to
check that one may choose the decomposition V 4

3 (C4) = Im(M1
3 ) ⊕ Im(M1

3 )c with
complementary space Im(M1

3 )c spanned by the elements η2
1 η̄1e1, η1η2η̄2e1, η1η̄

2
1e2,

η̄1η2η̄2e2, η
2
2 η̄2e3, η1η̄1η2e3, η2η̄

2
2e4, η1η̄1η̄2e4, where ei (i = 1, 2, 3, 4) are unit vec-

tors.

Then we can derive the normal form up to the third order

η̇ = Bη +
1

2!
g1
2(η, 0, ε) +

1

3!
g1
3(η, 0, ε) + h.o.t., (A.7)

where
1

3!
g1
3(η, 0, 0) =

1

3!
(I − P 1

I,3)f
1
3 (η, 0, 0),

and f1
3 (η, 0, 0) is the function giving the cubic terms in (η, ε, vt) for ε = 0, vt = 0

defined by the first equation of (A.5), therefore, the normal on the manifold form
arising from (A.5) becomes the following form

{

η̇1 = iω1η1 + d1
1Kεη1 + d1

2τεη1 + P11η1|η1|2 + P12η1|η2|2,
η̇2 = iω2η2 + d2

1Kεη2 + d2
2τεη2 + P21η2|η1|2 + P22η2|η2|2,

(A.8)

where dj
i (i, j = 1, 2) are given by (A.6),

P11 =
2τc(hq̄13p

2

11 − kq̄12p11p13)(hq13p̄
2

11 − kq12p̄11p̄13)

3iω1

−

τc(hq13p
2

11 − kq12p11p13)[2hq13p11p̄11 − kq12(p̄11p13 + p11p̄13)]

iω1

+
τc[2hq̄13p11p̄11 − kq̄12(p̄11p13 + p11p̄13)][2hq13p11p̄11 − kq12(p̄11p13 + p11p̄13)]

iω1

+
τc(hq23p

2

11 − kq22p11p13)[2hq13p̄11p21 − kq12(p21p̄13 + p̄11p23)]

2iω1 − iω2

−

τc[2hq23p11p̄11 − kq22(p̄11p13 + p̄11p13)][2hq13p11p21 − kq12(p21p13 + p11p23)]

iω2

+
τc(hq̄23p

2

11 − kq̄22p11p13)[2hq13p̄11p̄21 − kq12(p̄21p̄13 + p̄11p̄23)]

2iω1 + iω2

+
τc[2hq̄23p11p̄11 − kq̄22(p̄11p13 + p11p̄13)][2hq13p11p̄21 − kq12(p̄21p13 + p11p̄23)]

iω2

+ τc(2hq13p11 − q12kp13)h
1

1100 + τc(2hq13p̄11 − q12kp̄13)h
1

2000

− τcq12k(p11h
3

1100 + p̄11h
3

2000),

P22 =
τc(hq13p

2

21 − kq12p21p23)[2hq23p11p̄21 − kq22(p̄21p13 + p11p̄23)]

2iω2 − iω1

−

τc[2hq13p21p̄21 − kq12(p̄21p23 + p21p̄23)][2hq23p11p21 − kq22(p21p13 + p11p23)]

iω1

+
τc(hq̄13p

2

21 − kq̄12p21p23)[2hq23p̄11p̄21 − kq22(p̄21p̄13 + p̄11p̄23)]

2iω2 + iω1

+
τc[2hq̄13p21p̄21 − kq̄12(p̄21p23 + p21p̄23)][2hq23p̄11p21 − kq22(p21p̄13 + p̄11p23)]

iω1
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−

τc(hq23p
2

21 − kq22p21p23)[2hq23p21p̄21 − kq22(p23p̄21 + p21p̄23)]

iω2

+
2τc(hq̄23p

2

21 − kq̄22p21p23)(hq23p̄
2

21 − kq22p̄21p̄23)

3iω2

+
τc[2hq̄23p21p̄21 − kq̄22(p̄21p23 + p21p̄23)][2hq23p21p̄21 − kq22(p̄21p23 + p21p̄23)]

iω2

+ τc(2hq23p21 − q22kp23)h
1

0011 + τc(2hq23p̄21 − q22kp̄23)h
1

0020

− τcq22k(p21h
3

0011 + p̄21h
3

0020),

P12 =
τc[2hq̄13p11p21 − kq̄12(p21p13 + p11p23)][2hq13p̄11p̄21 − kq12(p̄21p̄13 + p̄11p̄23)]

2iω1 + iω2

−

2τc[2hq13p21p̄21 − kq12(p̄21p23 + p21p̄23)](hq13p
2

11 − kq12p11p13)

iω1

+
τc[2hq̄13p11p̄21 − kq̄12(p̄21p13 + p11p̄23)][2hq13p̄11p21 − kq12(p21p̄13 + p̄11p23)]

2iω1 − iω2

+
τc[2hq̄13p21p̄21 − kq̄12(p̄21p23 + p21p̄23)][2hq13p̄11p11 − kq12(p̄11p13 + p11p̄13)]

iω1

+
τc[2hq23p11p21 − kq22(p21p13 + p11p23)][2hq13p21p̄21 − kq12(p̄21p23 + p21p̄23)]

iω1

+
2τc[2hq23p11p̄21 − kq22(p̄21p13 + p11p̄23)](hq13p

2

21 − kq12p21p23)

iω1 − 2iω2

−

τc[2hq23p21p̄21 − kq22(p̄21p23 + p21p̄23)][2hq13p11p21 − kq12(p21p13 + p11p23)]

iω2

+
2τc[2hq̄23p11p21 − kq̄22(p21p13 + p11p23)](hq13p̄

2

21 − kq12p̄21p̄23)

iω1 + 2iω2

+
τc[2hq̄23p11p̄21 − kq̄22(p̄21p13 + p11p̄23)][2hq13p21p̄21 − kq12(p̄21p23 + p21p̄23)]

iω1

+
τc[2hq̄23p21p̄21 − kq̄22(p̄21p23 + p21p̄23)][2hq13p11p̄21 − kq12(p̄21p13 + p11p̄23)]

iω2

+ τc(2hq13p11 − q12kp13)h
1

0011 − τcq12k(p11h
3

0011 + p21h
3

1001 + p̄21h
3

1010)

+ τc(2hq13p21 − q12kp23)h
1

1001 + τc(2hq13p̄21 − q12kp̄23)h
1

1010,

P21 =
τc[2hq13p11p21 − kq12(p21p13 + p11p23)][2hq23p11p̄11 − kq22(p̄11p13 + p11p̄13)]

iω2

−

τc[2hq13p11p̄11 − kq12(p̄11p13 + p11p̄13)][2hq23p11p21 − kq22(p21p13 + p11p23)]

iω1

+
2τc[2hq13p̄11p21 − kq12(p21p̄13 + p̄11p23)](hq23p

2

11 − kq22p11p13)

iω2 − 2iω1

+
τc[2hq̄13p11p̄11 − kq̄12(p̄11p13 + p11p̄13)][2hq23p̄11p21 − kq22(p21p̄13 + p̄11p23)]

iω1

+
2τc[2hq̄13p11p21 − kq̄12(p21p13 + p11p23)](hq23p̄

2

11 − kq22p̄11p̄13)

2iω1 + iω2

+
τc[2hq̄13p̄11p21 − kq̄12(p21p̄13 + p̄11p23)][2hq23p11p̄11 − kq22(p̄11p13 + p11p̄13)]

iω2

−

2τc[2hq23p11p̄11 − kq22(p̄11p13 + p11p̄13)](hq23p
2

21 − kq22p21p23)

iω2
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+
τc[2hq23p11p21 − kq22(p21p13 + p11p23)][2hq23p̄11p21 − kq22(p21p̄13 + p̄11p23)]

iω1

−

τc[2hq23p̄11p21 − kq22(p21p̄13 + p̄11p23)][2hq23p11p21 − kq22(p21p13 + p11p23)]

iω1

+
τc[2hq̄23p11p̄11 − kq̄22(p̄11p13 + p11p̄13)][2hq23p21p̄21 − kq22(p̄21p23 + p21p̄23)]

iω2

+
τc[2hq̄23p11p21 − kq̄22(p21p13 + p11p23)][2hq23p̄11p̄21 − kq22(p̄21p̄13 + p̄11p̄23)]

iω1 + 2iω2

+
τc[2hq̄23p̄11p21 − kq̄22(p21p̄13 + p̄11p23)][2hq23p11p̄21 − kq22(p̄21p13 + p11p̄23)]

2iω2 − iω1

+ τc(2hq23p11 − q22kp13)h
1

0110 + τc(2hq23p̄11 − q22kp̄13)h
1

1010

+ τc(2hq23p21 − q22kp23)h
1

1100 − τcq22k(p11h
3

0110 + p̄11h
3

1010 + p21h
3

1100),

where pij , qij (i = 1, 2; j = 1, 2, 3) are given by (A.2),

h
1

2000 =
(c + 2ω1i)[a(a23hp2

11 − ka22p11p13) − 2ω1i(ka12p11p13 − a13hp2

11)]

(c + 2ω1i)[2ω1i(2ω1i + Kc + a) + a(kz∗
− b) − 2iω1Kce−2iω1τc ] + 2ahkx∗2

+
akx∗p11(ka32p13 − ha33p11) + 2iω1(2iω1 + c)Kce

−2iω1τcm2000

(c + 2ω1i)[2ω1i(2ω1i + Kc + a) + a(kz∗
− b) − 2iω1Kce−2iω1τc ] + 2ahkx∗2

,

h3
2000 =

2hx∗h1
2000 − ka32p11p13 + ha33p

2
11

c+ 2ω1i
,

h1
1100 =

2hp11p̄11(kx
∗a33 − ca23) + k(ca22 − kx∗a32)(p̄11p13 + p11p̄13)

c(b − kz∗) − 2hkx∗2 ,

h3
1100 =

2ha23p11p̄11 − a22k(p̄11p13 + p11p̄13) − (kz∗ − b)h1
1100

kx∗
,

h1
0110 =

2h[a13(ω2i − ω1i) + aa23]p̄11p21(c+ ω2i − ω1i) − 2ahkx∗a33p̄11p21

R1

− k[(aa22 + a12ω2i − a12ω1i)(c+ ω2i − ω1i) − akx∗a32](p21p̄13 + p̄11p23)

R1

+
Kce

iω1τc−iω2τc(iω2 − iω1)(iω2 − iω1)m0110

R1
,

h3
0110 =

2ha33p̄11p21 − ka32(p21p̄13 + p̄11p23) + 2hx∗h1
0110

iω2 − iω1 + c
,

h1
1010 =

2hp11p21[aa23(c+ ω2i + ω1i) − akx∗a33 + a13(ω2i + ω1i)(c+ ω2i + ω1i)]

R2

+
k(p21p13 + p11p23)[akx

∗a32 − (aa22 + a12ω2i + a12ω1i)(ω2i + ω1i + c)]

R2

+
Kce

−iω1τc−iω2τc(iω1 + iω2)(iω1 + iω2 + c)m1010

R2
,

h3
1010 =

2ha33p11p21 − ka32(p21p13 + p23p11) + 2hx∗h1
1010

ω2i + ω1i + c
,

h1
0020 =

(2ω2i + c)[aha23p
2
21 − aka22p21p23 − 2ω2i(ka12p21p23 − ha13p

2
21)]

(c+ 2ω2i)[2ω2i(2ω2i +Kc + a−Kce−2iω2τc) + a(kz∗ − b)] + 2ahkx∗2

− akx∗(ha33p
2
21 − ka32p21p23) + 2Kce

−2iω2τc iω2(2iω2 + c)m0020

(c+ 2ω2i)[2ω2i(2ω2i +Kc + a−Kce−2iω2τc) + a(kz∗ − b)] + 2ahkx∗2 ,

h3
0020 =

a33hp
2
21 − ka32p21p23 + 2hx∗h1

0020

c+ 2iω2
,
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h1
0011 =

k(kx∗a32 − ca22)(p̄21p23 + p21p̄23) + 2hp21p̄21(ca23 − kx∗a33)

c(kz∗ − b) + 2hkx∗2 ,

h3
0011 =

2ha23p21p̄21 − ka22(p̄21p23 + p21p̄23) − (kz∗ − b)h1
0011

kx∗
,

h1
1001 =

2hp11p̄21[aa23(ω1i − ω2i + c) − akx∗a33 + a13(ω1i − ω2i)(ω1i − ω2i + c)]

R3

+
k(p̄21p13 + p11p̄23)[akx

∗a32 − (aa22 + a12ω1i − a12ω2i)(ω1i − ω2i + c)]

R3

+
Kce

iω2τc−iω1τc(iω1 − iω2)(iω1 − iω2 + c)m1001

R3
,

h3
1001 =

2ha33p11p̄21 − ka32(p̄21p13 + p11p̄23) + 2hx∗h1
1001

ω1i − ω2i + c
,

where aij =

{

1 − p1iq1j − p̄1iq̄1j − p2iq2j − p̄2iq̄2j , i = j,

p1iq1j + p̄1iq̄1j + p2iq2j + p̄2iq̄2j , i 6= j,
(i = 1, 2, 3; j = 1, 2, 3).

m0110 =
[2hp̄11p21p11q13 − kp11q12(p21p̄13 + p̄11p23)](e

iω2τc−2iω1τc − 1)

2iω1 − iω2

− [2hp̄2
11p21q̄13 − kp̄11q̄12(p21p̄13 + p̄11p23)](e

iω2τc − 1)

iω2

+
[2hp̄11p

2
21q23 − kp21q22(p21p̄13 + p̄11p23)](e

−iω1τc − 1)

iω1

+
[2hp̄11p21p̄21q̄23 − kp̄21q̄22(p21p̄13 + p̄11p23)](e

2iω2τc−iω1τc − 1)

iω1 − 2iω2
,

m2000 =
(hp3

11q13 − kp2
11p13q12)(e

iω1τc − 1)

−iω1

− (hp2
11p̄11q̄13 − kp11p13p̄11q̄12)(e

3iω1τc − 1)

3iω1

+
(hp2

11p21q23 − kp11p13p21q22)(e
2iω1τc−iω2τc − 1)

iω2 − 2iω1

− (hp2
11p̄21q̄23 − kp11p13p̄21q̄22)(e

2iω1τc+iω2τc − 1)

iω2 + 2iω1
,

m1010 =
[2hp2

11p21q13 − kp11q12(p21p13 + p11p23)](1 − eiω2τc)

iω2

− [2hp11p21p̄11q̄13 − kp̄11q̄12(p21p13 + p11p23)](e
2iω1τc+iω2τc − 1)

2iω1 + iω2

− [2hp11p
2
21q23 − kp21q22(p21p13 + p11p23)](e

iω1τc − 1)

iω1

− [2hp11p21p̄21q̄23 − kp̄21q̄22(p21p13 + p11p23)](e
iω1τc+2iω2τc − 1)

iω1 + 2iω2
,

m0020 =
(hp2

21p11q13 − kp21p23p11q12)(e
2iω2τc−iω1τc − 1)

iω1 − 2iω2

− (hp3
21q23 − kp2

21p23q22)(e
iω2τc − 1)

iω2
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− (hp2
21p̄11q̄13 − kp21p23p̄11q̄12)(e

2iω2τc+iω1τc − 1)

iω1 + 2iω2

− (hp2
21p̄21q̄23 − kp21p23p̄21q̄22)(e

3iω2τc − 1)

3iω2
,

m1001 =
[2hp2

11p̄21q13 − kp11q12(p̄21p13 + p11p̄23)](e
−iω2τc − 1)

iω2

+
[2hp11p̄21p̄11q̄13 − kp̄11q̄12(p̄21p13 + p11p̄23)](e

2iω1τc−iω2τc − 1)

iω2 − 2iω1

+
[2hp11p̄21p21q23 − kp21q22(p̄21p13 + p11p̄23)](e

iω1τc−2iω2τc − 1)

2iω2 − ω1

− [2hp11p̄
2
21q̄23 − kp̄21q̄22(p̄21p13 + p11p̄23)](e

iω1τc − 1)

iω1
.

R1 =(c+ ω2i − ω1i)[i(ω2 − ω1)(ω2i − ω1i +Kc + a−Kce
(ω1−ω2)iτc) + a(kz∗ − b)]

+ 2ahkx∗2,

R2 =(c+ ω2i + ω1i)[i(ω2 + ω1)(Kc + a+ ω2i + ω1i −Kce
−(ω1+ω2)iτc) + a(kz∗ − b)]

+ 2ahkx∗2,

R3 =(c+ ω1i − ω2i)[i(ω1 − ω2)(Kc + a+ ω1i − ω2i −Kce
(ω2−ω1)iτc) + a(kz∗ − b)]

+ 2ahkx∗2.
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