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ROBUST SYNCHRONIZATION OF
PARAMETRIZED NONAUTONOMOUS
DISCRETE SYSTEMS WITH APPLICATIONS
TO COMMUNICATION SYSTEMS

Hildebrando M. Rodrigues?, Jianhong Wu® and Marcio Gameiro®

Abstract We study synchronization of a coupled discrete system consisting
of a Master System and a Slave System. The Master System usually exhibits
chaotic or complicated behavior and transmits a signal with a chaotic compo-
nent to the Slave System. The Slave System then recovers the original signal
and removes the chaotic component. To ensure secured communication, the
Master and the Slave systems must synchronize independent of the variation
of the systems parameters and initial conditions. Here we develop a general
approach and obtain some general results for synchronization of such coupled
systems naturally arising from discretization of well-know continuous systems,
and we illustrate general results with two specific examples: the discretized
Lorenz system and a discretized nonlinear oscillator. We also present some
simulations using MatLab to illustrate our discussions.
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1. Introduction

Synchronization of two coupled continuous nonlinear systems has been studied by
many authors, including Rodrigues [12], Affraimovich & Rodrigues [2], Carvalho,
Dlotko & Rodrigues [3], Rodrigues, Alberto & Bretas [13, 14], to name a few.
Synchronization has also been used by Labouriau & Rodrigues to study the coupled
system of Hodgkin-Huxley equations [7].

For continuous systems, Gameiro & Rodrigues [5] studied the uniform dissipa-
tiveness and synchronization for a coupled system arising from the application of
secured communication.

In a series of papers, initiating with Rodrigues, Wu & Gabriel [15], we address
issues related to the synchronization of two coupled chaotic discrete systems arising
from secured communication. In the first paper of this series, Rodrigues, Wu &
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Gabriel [15] studied uniform dissipativeness with respect to parameter variation via
the Liapunov direct method. We obtained uniform estimates of the global attractor
for a general discrete non-autonomous system and established a uniform invariance
principle in the autonomous case. The Liapunov function used there was allowed to
have positive derivative along solutions of the system inside a bounded set, and this
reduces substantially the difficulty of constructing a Liapunov function for a given
system. In particular, we developed an approach that incorporates the classical
Lagrange multiplier into the Liapunov function method to naturally extend those
Liapunov functions from continuous dynamical systems to their discretizations, so
that the corresponding uniform dissipativeness results are valid when the step size
of the discretization is small. Applications to the discretized Lorenz system and the
discretization of a time-periodic chaotic system were given to illustrate the general
results.

In the present paper, we study some specific discrete systems obtained by dis-
cretizing corresponding continuous systems via the Euler method.

The coupled discrete system we consider is composed of a usually chaotic or
complicated system (master system) to be used to codify a signal (a sequence of
real numbers) by the addition of a component of a solution of the master system,
and a slave system that will be used to de-codify and to recover the original signal.
The central issue for such a procedure to be effective is the synchronization of
the master and the slave systems. The main and general result (Theorem 2.1) is
obtained by using a Liapunov function associated to both systems with identical
fixed value of the parameters, and then by some perturbation argument. We should
mention here that the Liapunov functions used are similar to those used previously
for continuous systems in Gameiro & Rodrigues [5]. This result is then applied first
to coupled discretized Lorenz systems and to coupled forced nonlinear oscillators.
Some simulations using Matlab are also presented to give more evidences to support
our theoretical results. In Section 2 we present our main results. In Section 3.1 and
in Section 3.2, respectively, we discuss the discretized coupled Lorenz systems and
the discretized coupled oscillators.

2. Main Results

Let f: (X,0,\,n) € R"XRxRPXZ +— f(X,l, \,n) € R"beaC!-function. Consider
the following discrete system

{ X(n+1) = X(n) +h[f(X(n),21(n) + ln, Ao, n)] (1)
Un+1)=U(n)+ h[f(U(n),xl(n) + ln, /\,n)],

where h is a small step-size, {£,, },en plays the role of a secret message to be trans-
mitted by the master system (first equation) to the slave system (second equation)
and ) is close to .

We make the following hypotheses:

(H1) System (1) is globally dissipative, that is, there exists a bounded convex set
B C R”, such that for any initial condition (Xy,Up) there exists a ng € N
such that the solution (X (n),U(n)) belongs to B x B for n > ny.

(H2) There exists ko = ko(B) and ¢y > 0 such that
|fU 6, X,n) = f(U, £, 20, n)| < kol — Ao (2)
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for every n € N, every U € B and every £ € [0, {o].

(H3) There exists F': R™ x R — R" linear in the first variable, such that, for fixed
)\07
f(Xufu AQ,’I’L) - f(U,é,)\O,TL) = F(X - U7€)7

for every (¢,n) € R x N and every X,U € R".

Consider now the discrete system
Z(n+1)=Z(n)+ h[F(Z(n),£)]. (3)

We associate to this system a C!' Lyapunov Function V: R® — R. We define the
derivative of this function along the solutions of (3) by

V(Z):=V(Z+hF(Z,0) -V (Z).

We assume the following additional hypothesis:
(H4) There exists a constant ¢; > 0 such that
allZ|* <V(Z),

for every Z € R™.

(H5) Let By:=B—-B:={z€R"|z=z—y, x,y € B} and ¢y, > 0. There exists
ho >0, p > 0 and k; > 0 such that

—V(Z,0) — phV (Z,£) > —k1h?,

for every (Z,¢) € By x [0,£p] and 0 < h < hy.

We now present our main result:

Theorem 2.1. Under the above assumptions, system (1) synchronizes. That is,
giwen € > 0 there exist hy > 0 and § > 0 such that for any initial condition
(Xo,Up) € R" x R"™ we have

limsup | X(n) —U)|| <&, if 0<h<hy and |A— Xo| < 9.

n—oo
Proof. We start with

f(Xvév)‘Ovn) - f(U,é,)\,n) = f(X,é,)\o,n) - f(Uvév)‘Oan)
+f(Ua€a AOvn) - f(U7 év)‘an)
— F(X-U0+G,

where G := f(U, ¢, \o,n) — f(U, £, \,n). Back to system (1), we have

f(X(n),z1(n) +£5), Mo, n) — f(U(n),z1(n) + £,),\, n)
= F(X(n)-Un),z1(n) +£n) + Gn,

where
G = f(U(n),z1(n) + €n, Ao,n) — f(U(n),z1(n) + €y A, ).
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From system (1) we obtain
Xn+1)—=Unm+1)=X(n)—-U(n)+h[F(X(n)—-Un),z1(n)+ ) + Gp].

Now if we introduce a new variable Z := X — U, we see that Z(n) = X(n) — U(n)
is a solution of the system

Z(n+1) = Z(n) + h[F(Z(n),x1(n) + ) + Gyl. (4)
Now we consider the Lyapunov Function associated to (H5)

= [V(Z(n +1) = V(Z(n)]

= [V [F(Z(n), 21(n) + £,) + Gy]) — V(Z(n))}
= —[V(Z0) + RIF(Z(n),21(n) + £)]) = V(Z(n))]
—V(Z(n) + h[F(Z(n),z1(n) + £n) + G))
+V(Z(n) + h[F(Z(n),z1(n) + £,))).

Since V is of class C!, if B3 C R™ is bounded, closed and convex then there
exists a constant ks such that

[V(X1) — V(X2)| < ko] X1 — X
for every X1, Xo € Bs. Therefore, if we let
Dy, =V (Z(n)+h[F(Z(n),x1(n) +£) + Gnl) =V (Z(n) + h[F(Z(n), z1(n) + £n))),

then we have |D,| < kah|G,| = hO(JA — Xg|) for sufficiently large n. Then
- [V(Z(n+1)) = V(2(m)| = =V (Z(n),0) - D,
and so,

- [v(Z(nH))_v(Z(n))] —phV(Z(n))+Dy = —V(Z(n), 0)—phV (Z(n)) > —k1h2.
This gives

V(Z(n+1)) < (1= ph)V(Z(n)) + Dy, + k1 h*.
Then for sufficiently large n, since |D,,| < hRO(JA — Xg|), it follows that

V(Z(n)) (1—ph)"V(Z(0)) + [(1 = ph)" "t + -+ (1 — ph) + 1] kdh

<
< (1 ph)"V(2(0) + 2,

for some constant £ > 0. Finally, choosing h sufficiently small so that 0 < 1—ph < 1
and using (H4), we have

limsup || Z(n)|? < hmsup V(Z( ) < — <e,

n—oo Tn— 00 pPC1

for ¢ sufficiently small. O
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3. Applications

Example 3.1. The discretized Lorenz System This application to communi-
cation systems is motivated by the synchronization of the coupled continuos Lorenz
system

z(t) = —apx(t) + apy(t)

y(t) = —y(t) —ro(z(t) + a(t)) — (z(t) +alt)z

(t) = =boz(t) + (x(t) + a(t))y(t)

and a Slave-System

a(t) = —au(t) + av(?)
8(t) = —v(t) — r(a(t) + a(t) — (@(t) + a(t)w(t)
W(t) = —bu(t) + (@(t) + a()o(t),

where «(t) plays the role of the signal to be transmitted. An equivalent system was
studied in [5].

We define
—0x1 + ox2 1
f(X, L, )\) = —xo+rl—Vlxs ]|, X:=|x2
—b:Cg + €$2 T3

and A := (o,7,b), and consider the following discrete system:

{X(n+ 1) = X(n) + h[f (X(n),z1(n) + n, Xo)] (5)
Un+1) = U(n) + hlf(U(n), z1(n) + £n, N)],

where A\ := (00, 70,b0) = (10,28,8/3) and (¢,,), n € N is a sequence of real numbers.
Let us first verify hypothesis (H2):

—ou| + ous —0ooU1 + opu2
fO,e,N) = f(U L, ) = —Ug + 1l —lus | — | —ug + 1ol — lus
—bus + lus —bous + lus
—(o0 —o0)ur + (0 — og)uz
= (r—ro)t
—(b—bo)us

From the last expression it follows that (H2) is satisfied.
Let us consider now hypothesis (H3):

—0ox1 + 0px2 —ooU1 + opu2
f(X,E, /\0)—f(U,£, /\0) = —xo + 1ol —lxs | — | —us + rol — lus
—boxs + Lo —bous + lus
—0’0(.%1 — ul) + Uo(ZEQ — UQ)
= —(z2 —u2) —l(xs —uz) | =F(X -U,0),

—bo(,@g — U3) + é(,@g - u2)

where
—0021 + 0022
F(Z, f) = —Z9 — 62’3
—boZg + 622
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Defining V(Z) := 27 + 0923 + 0023, we see that (H4) is easy to verify. As for
(H5), we have

—V(Z,0) =V (Z) -V (Z + hF(Z,1))

= 2’12 + O'QZ% + O'QZ?% — (21 + h(—O’oZl + 0'02’2))2
—[0'0(2’2 + h(—ZQ — 62’3))2 + 0'0(2’3 + h(—boZg + 622))2]

= 224+ 0025 + 0025 — (22 + 221h(—0021 + 0022)) — h?(—0021 + 0022)?
—[o0(23 + 2hzo(—22 — €23) + h*(—22 — L23)*)+
Uo(Z§ + 22’3]7,(—()023 +0z0) + hz(—bozg + KZQ)Q)]

= —[(221]7,(—0'021 + 0022) + hz(_0'021 + 0'022)2 + 00(2h22(_22 — fZg)-i—
hz(—ZQ — 62’3)2) + 0’0(223h(—b02’3 + 622) + h2(—b023 + 622)2))]

= —2h[zl(—0021 + 0'02’2) + 0'02’2(—22 — 623) + 0’023(—()023 + 622)]
—hQ[(—O'()Zl + 0'02’2)2 + 0'0(—2’2 — 62’3)2 + 00(—b023 + 62’2)2]

= _2h[_0'02% + 002122 — 0'02’% — oolzozs — Uobozg + 0023622)]
—h2[(=00z1 + 0022)% + 00(—22 — £23)% + 00(—boz3 + £22)?]

= 2hoo[2? — 2122 + 23 + boz3)] — h2[(—0021 + 0022)+
0'0(—22 — 623)2 + Uo(—boZg + 62’2)2].

Let g(Z,0) := (—0021+ 0022)% + 00(—22 — £23)* + 00(—boz3 + £22)*. There exists
o > 0 such that |z1(n) + £,| < lo. Let k1 :=supzep,, sefo,0,) 9(Z, £). Therefore,
—V(Z,0) > 2hog[2? — 2120 + 22 + boz2)] — k1R
—V(Z,0) — phV(Z) > 2hoo[2} — 2122 + 23 + bo23] — phl2} + 0023 + 0023] — k1h?
= h[(200 — p)z} — 2120 + 00(2 — p)23 + 00 (2by — p)22] — k1h?.
If we take p := min{og, 1,bo}, then

—V(Z,0) — phV (Z) > hlooz? — 2120 + 0022 + o0boz2] — k1h? > —k 2.

The last inequality follows from the Sylvester Criterion, since the quadratic form
0022 — 2122 + 0023 + 00boz3 is positive definite.
In Figure 1, we show some simulations for this system with h = 0.01.

Example 3.2. A Discretized Oscillator This application to communication sys-
tems is motivated by the synchronization of the coupled continuous oscillators sys-
tem

{327 : (6)

= —woz — coy — qo (9(x +m(t)))” — rog(x + m(t)) cos(t)

(32" 7)

b= —wu—cv—q(g(z+m(t)* = rgz +m(t)) cos(t).

In this case, m(t) plays the role of the signal transmitted and was studied in [5].
We define the function

5= (52) 20 5= (Lo alald - rgttyonton)

where A = (c,w, q,7), with ¢, w, ¢, and 7 being positive and g: R — R being a C?,
bounded and globally Lipschitz function.
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Figure 1. Simulations for the discretized Lorenz system. In (a) we plot the solutions
(x1(n),z3(n)) and (u1(n),us(n)); in (b) we show |z1(n) —uy(n)|+|x2(n) —uz(n)| +
|z3(n) — uz(n)]; in (c) we plot the original message a(n) and the coded message
z(n)+a(n); and in (d) we plot the original message «(n) and the decoded message
z(n) + a(n) — u(n).
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Figure 2. Simulations for the discretized oscillator. In (a) we plot the solutions
(z1(n), r2(n)) and (u1(n), uz(n)); in (b) we show [z1(n) —ui(n)| + [22(n) — u2(n)|;
in (c) we plot the original message «(n) and the coded message x(n) + «(n); and in
(d) we plot the original message a(n) and the decoded message x(n)+ a(n) —u(n).
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We consider the following discrete system

{ X(n+1)=X(n)+h[f(X(n),z1(n) + €n, Xo)] 8)
U(n+1)=U(n)+h[f(U(n),z1(n) + o, N)],

where Ag := (co, wo, g0, 70), With wo = ¢g, and {¢,, } nen is a sequence of real numbers.
Using results of Rodrigues, Wu & Gabriel [15] and the ideas of Gameiro &
Rodrigues [5], with similar Lyapunov functions, one can prove that the above system
is globally dissipative.
Let us verify that hypothesis (H2):

FWU L) = f(U £, No) = <—ch — wuy — Q(QEL;))B —rg(f) cos(nh))

a (—Couz — Couy — %(9(25))3 —r0g(¢) cos(nh)

0
B (—(c — coJuz — (w = co)ur — (¢ = q0)(9(£))* — (r —10)g(¢) COS(nh))

From the last expression it follows that hypothesis (H2) is satisfied.
Let us consider hypothesis (H3):

f(X7 ev )‘0) - f(U7 éa )‘0)

€2
(—00:1:2 —cor1 — qo(9(€))® — rog(f) cosn )
U2
—coug — cour — qo(g(£))* — rog(¥) cosn

T2 — U2
=FX-U
—Co(l’2 - Uz) - Co(l“l - U1) ( )’

where

F(X):= 2
" \—coxe —coxr )

For hypothesis (H4) and (H5), we consider the Lyapunov function

1
V(X):= E[coxf + a3+ %03:1:172].

Like in the previous example, (H4) is easy to verify. As for (H5) we have

—V(X)=V(X) - V(X + hF(X))
= % LCQLL‘% + JJ% + %lexg] — % [CQ(&L‘l =+ h$2)2 + (LL'Q + h(—CO,TQ — CQLL‘l))ﬂ
—3 [%)(Il + h,.IQ)({EQ =+ h(—C()IQ — Coxl))}
= % ([cox% + a3 + %“3:1:172] — [co(x% + 2hx1w2 + h?23) + 2% — 2hcowa(wa + 3:1)])
— 2[R (xy 4+ 1)% + L (w120 — heoxy (22 + 21) + ha3 — h%((coz2 + coxl))]
= —3 |co(2ha132 + h%23) — 2hcowa(wy + 1) + h2cE (22 + :101)2]
_1 @ (—heow1 (22 + 1) + had — h?(coma + com1))]
- 1 [ —2hcod + L (—heo(z122 + 23) + had)] — $h? [coad + (w2 + 31)?
—%)(CQIQ + 001171)}

[ V)

2 2 2
_ 2 _¢ .2 c, 2] _h 2., .2 2
= —5 |—2cor3 — Fr1T2 — Fa] + 7“3:2} — B Jeoad + (w2 + 21)

+£ (coza + cox1)]
2

2 2 2
{—%cozzr% — 07"1:11:2 — 070331} — % [coxg + cg(:zrg + 3;1)2 — %’(cOxQ + coxl)}

[ NSEE
—

1=

2
3cow3 + cAriwa + cga:ﬂ - % [coxg +c3(wg +x1)? — F(cowa + coxl)} .

— N

h
4
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Now, setting p = %, we have

—V(X) = phV(X) =V (X) = V(X + hF(X)) — phV(X)

_ h 2 2 2,.2 coh 2 2, ¢
= 7 [300902 + cjr1T2 + coxl] - 33 [coxl + x5 + 70161902]
h? 2 2 2 _ ¢
—% [cox2 + cg(x2 +21)° — D (coz2 + coxl)}
2
_ h 2 2 2,.2 1,2,2 1, .2 ¢
= 7 ([3c0x2 + cfr1r2 + coxl] — |5¢5%7 + 5¢0%3 + leng

2
— |:C(){E§ + c§(xe + x1)? — P (22 + xl)}

2 2
= & [Beoad + ebaes + Bebot] % ook + s 420 ~ oz )
= % [500335 + %C%I1I2 + c%xﬂ - %2 [coxg +c3(wy +x1)? — F(cowa + coxl)}

> —%2 cox§+c(2)(x2+:171)2—%“(xg—kzzrl)‘.

The last inequality follows from Sylvester Criterion since the quadratic form 5cox3 +
Sc3wiaa + c§a? is positive definite.
Since this system is globally dissipative, there exists a bounded set By C R? such

that the function |coz3 + ¢g(z2 + 21)% — %(xz + z1)| is bounded in Bs. Therefore,
—V(X) = phV(X) > =k,

where ki := supxep, [coz3 + c§(z2 + x1)? — L (cow2 + cox1)|. This completes the
verification of hypothesis (H5).

In Figure 2 we present simulations for this system using A = 0.01 and ¢(t) =
arctan(t).
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