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Abstract In this paper, a semi-discrete model is derived for a nonlinear
simple population model, and its stability and bifurcation are investigated
by invoking a key lemma we present. Our results display that a Neimark-
Sacker bifurcation occurs in the positive fixed point of this system under
certain parametric conditions. By using the Center Manifold Theorem and
bifurcation theory, the stability of invariant closed orbits bifurcated is also
obtained. The numerical simulation results not only show the correctness of
our theoretical analysis, but also exhibit new and interesting dynamics of this
system, which do not exist in its corresponding continuous version.
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1. Introduction

In order to describe the control of a single population of cells, Nazarenko [23] pro-
posed the nonlinear delay differential equation

dξ

dt
= −pξ(t) +

qξ(t)

r + ξm(t− ω)
, t ≥ 0, (1.1)

where p, q, r, ω ∈ (0,+∞), m ∈ {1, 2, ...} and q > pr, ξ(t) is the size of the popula-
tion at time t, p is the death rate, the feedback is given by the function f(z, z(t−
ω)) = qz(t)

r+zm(t−ω) , and ω is the generation time. Since then, Eq.(1.1) has been well

studied by several authors (see [5, 16,27,33]).
In recent years, the modern theories of difference equations have been widely ap-

plied in the discrete systems of computer science, economy, neutral net, ecology and
control theory etc., especially, in the applications of population dynamics. Many
authors (see [1,22]) have argued that the discrete systems governed by difference e-
quations are more appropriate than the continuous counterparts, particularly, when
the populations have nonoverlapping generations. Li [17] studied the dynamics of a
discrete food-limited population model with time delay. Saker [26] investigated the
nonlinear periodic solutions, oscillation and attractivity of discrete nonlinear delay
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population model. Liz [18] considered the global stability for a discrete population
model. Song and Peng [28] discussed the periodic solutions of a nonautonomous
periodic model of population with continuous and discrete time. Li [19] studied
the global stability and oscillation in nonlinear difference equations of population
dynamics. Zhang etc. [34] studied the periodic solutions of a single species discrete
population model with periodic harvest/stock. It is well known that the dynamics
including stability, bifurcations and chaos etc. of a system have been a popular
subject (see [2, 4, 6–8,10–14,20,21,24,30–32,35]).

In this paper, motivated by the above work we discuss the analogue of the Eq.
(1.1). Without loss of generality, we may assume ω = 1 in (1.1). In fact, by letting

s = t
ω , namely, ξ(t) = ξ(sω)

∆
= η(s), (1.1) is reduced to

dη

ds
= −pωη(s) +

qωη(s)

r + ηm(s− 1)
, s ≥ 1. (1.2)

By resetting p by p
ω and q by q

ω , Eq.(1.2) becomes

dη

ds
= −pη(s) +

qη(s)

r + ηm(s− 1)
, s ≥ 1. (1.3)

This is just (1.1) with ω = 1.
Suppose that the average growth rate in (1.3) changes at regular intervals of time,

then we may incorporate this aspect into (1.3) and obtain the following version of
(1.3)

1

η(s)

dη(s)

ds
= −p+

q

r + ηm([s− 1])
, s 6= 1, 2, 3, ..., (1.4)

where [s − 1] denotes the integer part of s − 1, s ∈ [1,+∞). Equation of type
(1.4) is known as differential equation with piecewise constant arguments and these
equations occupy a position midway between differential and difference equations.
By a solution of Eq. (1.4), we mean a function η(s), which is defined for s ∈ [1,+∞),
and possesses the following properties:

(i) η(s) is continuous on [1,+∞);

(ii) the derivative dη(s)/ds exists at each point s ∈ [1,+∞) with the possible
exception of the point s ∈ {1, 2, 3, ...}, where the left-side derivative exists;

(iii) the Eq. (1.4) is satisfied on each internal [k, k + 1) with k = 1, 2, 3, ....

By integrating (1.4) on any interval [n, n+ 1), n = 1, 2, 3, ..., we can get

η(s) = η(n) exp

(
−p+

q

r + ηm(n− 1)

)
(s− n). (1.5)

Letting s→ n+ 1, we have

η(n+ 1) = η(n) exp

(
−p+

q

r + ηm(n− 1)

)
, (1.6)

which is the discrete analogy of Eq. (1.3) without delay.
Let {

x(n) = η(n− 1),

y(n) = η(n),
(1.7)
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then we arrive in a discrete system as follows:
x(n+ 1) = y(n),

y(n+ 1) = y(n) exp

(
−p+

q

r + xm(n)

)
,

(1.8)

where p, q, r andm are defined as in Eq. (1.1).
The main aim of this paper is to investigate the dynamics of the system (1.8)

by using the Center Manifold Theorem, bifurcation theory ( [3, 9, 15], [25, 29]) and
numerical simulations. It is shown that the system (1.8) possesses a Neimark-Sacker
bifurcation and other complex dynamics under certain parametric conditions, which
have not been considered in any known literature.

The rest of this paper is organized as follows. The existence and stability of the
fixed points for the system (1.8) are analyzed in the next section. In Section 3, the
sufficient conditions of the existence for Neimark-Sacker bifurcation are obtained.
In Section 4, numerical simulations are presented, which not only illustrate our
theoretical results, but also exhibit other complex dynamics of the system (1.8), and
the Lyapunov exponents are computed numerically to confirm some of its dynamics.
A brief conclusion is given in Section 5.

2. Existence and stability of fixed point

In this section, we first determine the existence of the fixed points of the system
(1.8), then investigate their stability.

The fixed points of the system (1.8) satisfy the following equations:
y = x,

y exp

(
−p+

q

r + xm

)
= y.

(2.1)

By some computations to the system (2.1), it is easy to obtain:

(i) the trivial fixed point E0(0, 0), which always exists for all parameter values;

(ii) the unique positive fixed point E+(x∗, y∗)( feasible because of q > pr), where

x∗ =

(
q − pr
p

)1/m

, y∗ =

(
q − pr
p

)1/m

. (2.2)

Now investigate the local stability of every fixed point of the system (1.8). The
Jacobian matrix of the system (1.8) at a fixed point E(x, y) is

J =


0 1

−y exp

(
−p+

q

r + xm

)
mqxm−1

(r + xm)2
exp

(
−p+

q

r + xm

)
 . (2.3)

The characteristic equation associated with (2.3) is

λ2 − Tr(J)λ+ Det(J) = 0, (2.4)
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where λ is the eigenvalue, Tr(J) and Det(J) are the trace and determinant of (2.3)
respectively, namely,

Tr(J) = exp

(
−p+

q

r + xm

)
(2.5)

and

Det(J) = −y exp

(
−p+

q

r + xm

)
mqxm−1

(r + xm)2
. (2.6)

Hence the system (1.8) is (see [14])

(i) a dissipative dynamical system if and only if∣∣∣∣−y exp

(
−p+

q

r + xm

)
mqxm−1

(r + xm)2

∣∣∣∣ < 1;

(ii) a conservative dynamical system if and only if∣∣∣∣−y exp

(
−p+

q

r + xm

)
mqxm−1

(r + xm)2

∣∣∣∣ = 1;

(iii) an undissipated dynamical system otherwise.

In order to study the local stability and bifurcation for a fixed point of a general
2D system, the following lemma will be very useful and even essential.

Lemma 2.1. Let F (λ) = λ2 + Bλ + C, where B and C are two real constants.
Suppose λ1 and λ2 are two roots of F (λ) = 0. Then the following statements hold.

(i) If F (1) > 0, then

(i.1) |λ1| < 1 and |λ2| < 1 if and only if F (−1) > 0 and C < 1;

(i.2) λ1 = −1 and λ2 6= −1 if and only if F (−1) = 0 and B 6= 2;

(i.3) |λ1| < 1 and |λ2| > 1 if and only if F (−1) < 0;

(i.4) |λ1| > 1 and |λ2| > 1 if and only if F (−1) > 0 and C > 1;

(i.5) λ1 and λ2 are a pair of conjugate complex roots and |λ1| = |λ2| = 1 if
and only if −2 < B < 2 and C = 1;

(i.6) λ1 = λ2 = −1 if and only if F (−1) = 0 and B = 2.

(ii) If F (1) = 0, namely, 1 is one root of F (λ) = 0, then the other root λ satisfies
|λ| = (<,>)1 if and only if |C| = (<,>)1.

(iii) If F (1) < 0, then F (λ) = 0 has one root lying in (1, ∞). Moreover,

(iii.1) the other root λ satisfies λ < (=)− 1 if and only if F (−1) < (=)0;

(iii.2) the other root λ satisfies −1 < λ < 1 if and only if F (−1) > 0.

Proof. The proof for Lemma 2.1 is simple and omitted here.

Remark 2.1. (i) When F (1) > 0, our results are the same as the ones in [21] except
the cases (ii) and (vi).

Corresponding to the above (i.2), the conclusion in [21] is stated as:
λ1 = −1 and |λ2| 6= 1 if and only if F (−1) = 0 and B 6= 0, 2.
We think, B 6= 0 is redundant. Otherwise, λ1 + λ2 = 0, together with λ1 = −1,

implies λ2 = 1, which is contrary to F (1) > 0. Therefore, B 6= 0 should be kicked
out.
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So, our results correct the case (iv) of Lemma 2.2. in [21] and give a new
conclusion (vi) which is not considered in any known literature.

(ii) The results for the cases F (1) = 0 and F (1) < 0 are completely new.

Next, we recall the definition of topological types for a fixed point (x, y).

Definition 2.1. Let E(x, y) be a fixed point of the system (1.8) with multipliers
λ1 and λ2.

(i) A fixed point E(x, y) is called sink if |λ1| < 1 and |λ2| < 1, so sink is locally
asymptotically stable.

(ii) A fixed point E(x, y) is called source if |λ1| > 1 and |λ2| > 1, so source is
locally asymptotically unstable.

(iii) A fixed point E(x, y) is called saddle if |λ1| < 1 and |λ2| > 1(or |λ1| > 1 and
|λ2| < 1).

(iv) A fixed point E(x, y) is called to be non-hyperbolic if either |λ1| = 1 or
|λ2| = 1.

Now, we discuss the local dynamics for the fixed points of the system (1.8). The
result for the stability of the fixed point E0(x0, y0) is as follows.

Theorem 2.1. The fixed point E0(0, 0) of the system (1.8) is a saddle.

Proof. The Jacobian matrix J of the system (1.8) at E0 is given by

J(E0) =

 0 1

0 exp

(
q − pr
r

)  . (2.7)

Obviously, the eigenvalues of (2.7) are λ1 = 0 and λ2 = exp( q−prr ) with |λ1| < 1
and |λ2| > 1 (because of q > pr). Thus E0 is a saddle.

In the following we deduce the local dynamics of the fixed point E+(x∗, y∗).

Theorem 2.2. The system (1.8) has a unique positive fixed point E+(x∗, y∗), where
x∗ = y∗ = ( q−prp )1/m.

(i) When 0 < mp ≤ 1, E+ is a sink.

(ii) When mp > 1, there exist three different topological types of E+ for all per-
missible values of parameters:

(ii.1) E+ is a sink if q < mp2r
mp−1

∆
= q0;

(ii.2) E+ is a source if q > q0;

(ii.3) E+ is non-hyperbolic if q = q0.

Proof. The Jacobian matrix J of the system (1.8) at E+ is given by

J(E+) =

 0 1

−mp(q − pr)
q

1

 . (2.8)

The corresponding characteristic equation of (2.8) can be written as

F (λ) = λ2 − λ+
mp(q − pr)

q
= 0. (2.9)
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It is easy to verify that

F (1) =
mp(q − pr)

q
> 0 (2.10)

and

F (−1) = 2 +
mp(q − pr)

q
> 0. (2.11)

When 0 < mp ≤ 1, mp(q−pr)
q < 1. By using Lemma 2.1 (i.1), Eq. (2.9) has two

eigenvalues λ1 and λ2 with |λ1| < 1 and |λ2| < 1, so E+ is a sink.

When mp > 1, q < (>,=) q0 is equivalent to mp(q−pr)
q < (>,=) 1. By Lemma

2.1 and Ddfinition 2.1, it is easy to see E+ is a sink for q < q0, a source for q > q0

and non-hyperbolic for q = q0.

Remark 2.2. Theorem 2.2 shows that there exists a 2D locally stable manifold
W s
loc in E+ for q < q0 whereas a 2D locally unstable manifold Wu

loc for q > q0.
Hence, one can see that there will be an occurrence of bifurcation at E+ for q = q0.

3. Neimark-Sacker bifurcation

From Theorem 2.2 (ii.3), it is easy to see that two eigenvalues of the fixed point

E+(( q−prp )1/m, ( q−prp )1/m) are 1±
√

3i
2 . Notice at this time that all the parameters

locate in the following set:

SE+
= {(p, q, r,m) ∈ (0,+∞) : m ∈ {1, 2, ...}, q > pr,mp > 1, q = q0

∆
=

mp2r

mp− 1
}.

The fixed point E+(x∗, y∗) can pass through a Neimark-Sacker bifurcation when
the parameters (p, q, r,m) ∈ SE+

and q varies in the small neighborhood of q0.
Based on the previous analysis, we choose the parameter q as a bifurcation

parameter to study the Neimark-Sacker bifurcation for the unique positive fixed
point E+(x∗, y∗) of the system (1.8) by using the Center Manifold Theorem and
bifurcation theory in [3, 9, 15,25,29] in this section.

We consider the system (1.8) with parameters (p, q, r,m) ∈ SE+ , which is de-
scribed by 

x→ y,

y → y exp

(
−p+

q0

r + xm

)
.

(3.1)

The first step. Giving a perturbation q∗ of parameter q0, we consider a
perturbation of the system (3.1) as follows:

x→ y,

y → y exp

(
−p+

q0 + q∗

r + xm

)
,

(3.2)

where |q∗| � 1.
The second step. Let u = x − x∗ and v = y − y∗, which transforms the

fixed point E+(x∗, y∗) to the origin O(0, 0) and system (3.2) into
u→ v,

v → (v + y∗) exp

(
−p+

q0 + q∗

r + (u+ x∗)m

)
− y∗.

(3.3)
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The characteristic equation associated with the linerization of the system (3.3) at
(u, v) = (0, 0) is given by

λ2 − a(q∗)λ+ b(q∗) = 0, (3.4)

where

a(q∗) = exp

(
−p+

q0 + q∗

r + xm∗

)
,

and

b(q∗) = exp

(
−p+

q0 + q∗

r + xm∗

)
(q0 + q∗)mxm∗

(r + xm∗ )2
.

Correspondingly, when q∗ varies in a small neighborhood of q∗ = 0, the roots of the
characteristic equation are

λ1,2 =
1

2

[
a(q∗)± i

√
4b(q∗)− a2(q∗)

]
. (3.5)

Hence
|λ1,2| = (b(q∗))1/2 (3.6)

and
d|λ1,2|

dq∗

∣∣∣∣
q∗=0

=
mxm∗ (xm∗ + q0 + r)

2(r + xm∗ )2(mq0xm∗ )1/2
> 0. (3.7)

In addition, it is required that λi1,2 6= 1, i = 1, 2, 3, 4 when q∗ = 0. Since a(q∗)|q∗=0 =

1 and b(q∗)|q∗=0 = 1, we have λ1,2 = 1
2 (1± i

√
3) = e±i

π
3 , which obviously satisfy

(λ1,2)m 6= 1, m = 1, 2, 3, 4. (3.8)

The third step. Study the normal form of the system (3.3) when q∗ = 0.
Expanding the system (3.3) as Taylor series at (u, v) = (0, 0) to the third order, we
obtain 

u→a10u+ a01v + a20u
2 + a11uv + a02v

2 + a30u
3

+ a21u
2v + a12uv

2 + a03v
3 +O((

√
|u|2 + |v|2)4),

v →b10u+ b01v + b20u
2 + b11uv + b02v

2 + b30u
3

+ b21u
2v + b12uv

2 + b03v
3 +O((

√
|u|2 + |v|2)4),

(3.9)

where

a10 =0, a01 = 1, a20 = 0, a11 = 0, a02 = 0, , a30 = 0,

a21 =0, a12 = 0 a03 = 0, b10 = −1, b01 = 1, b12 = 0, b03 = 0,

b20 =
2m2q0x

2m−1
∗

(r + xm∗ )3
+
m2q2

0x
2m−1
∗

(r + xm∗ )4
− mq0(m− 1)xm−1

∗
(r + xm∗ )2

, b11 = −mq0x
m−1
∗

(r + xm∗ )2
,

b21 =
2m2q0x

2m−2
∗

(r + xm∗ )3
+
m2q2

0x
2m−2
∗

(r + xm∗ )4
− mq0(m− 1)xm−2

∗
(r + xm∗ )2

, b02 = 0,

b30 =
3m2(m− 1)q2

0x
2m−2
∗ − 6m3q0x

3m−2
∗

(r + xm∗ )4
− 6m3q2

0x
3m−2
∗

(r + xm∗ )5

− m3q3
0x

3m−2
∗

(r + xm∗ )6
− mq0(m− 1)(m− 2)xm−2

∗
(r + xm∗ )2

+
6m2q0(m− 1)x2m−2

∗
(r + xm∗ )3

.
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Let

J(E+) =

(
a10 a01

b10 b01

)
, namely, J(E+) =

(
0 1

−1 1

)
.

By some computations we obtain the eigenvalues of the matrix J(E+) are

λ1 =
1 + i

√
3

2
and λ2 =

1− i
√

3

2
.

The fourth step. Find the normal form of (3.3). Let matrix

T =

 0 1√
3

2

1

2

 , then T−1 =

 − 1√
3

2√
3

1 0

 .

Using transformation
(u, v)T = T (X,Y )T ,

the system (3.9) is transformed into the following form
X → 1

2
X −

√
3

2
Y + F (X,Y ) +O((

√
|X|2 + |Y |2)4),

Y →
√

3

2
X +

1

2
Y +G(X,Y ) +O((

√
|X|2 + |Y |2)4),

(3.10)

where

F (X,Y ) =

(
2√
3
b20 +

1√
3
b11

)
Y 2 + b11XY + b21XY

2 +

(
2√
3
b30 +

1√
3
b21

)
Y 3

and
G(X,Y ) = 0.

The fifth step. Compute some coefficients. On the center manifold the
system (3.9) has the above norm form (3.10). For convenience, for a function
F (x1, x2, ..., xn), denote Fxi , Fxixj , and Fxixjxk as the first order, the second order
and the third order partial derivative of F (x1, x2, ..., xn), respectively. Then,

FXX |(0,0) = 0, FXY |(0,0) = b11, FY Y |(0,0) =
4√
3
b20 +

2√
3
b11,

FXXX |(0,0) = 0, FXXY |(0,0) = 0, FXY Y |(0,0) = 2b21,

FY Y Y |(0,0) =
12√

3
b30 +

6√
3
b21, GXX |(0,0) = 0, GXY |(0,0) = 0,

GY Y |(0,0) = 0, GXXX |(0,0) = 0, GXXY |(0,0) = 0,

GXY Y |(0,0) = 0, GY Y Y |(0,0) = 0.

The sixth step. Compute the discriminating quantity a∗, which determines
the stability of the invariant circle bifurcated from Nemark-Sacker bifurcation of
the system (3.10) and can be computed via the formulae (see [25])

a∗ = −Re

[
(1− 2λ)λ

2

1− λ
L11L20

]
− 1

2
|L11|2 − |L02|2 +Re(λL21), (3.11)
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where

L20 =
1

8
[(FXX − FY Y + 2GXY ) + i(GXX −GY Y − 2FXY )],

L11 =
1

4
[(FXX + FY Y ) + i(GXX +GY Y )],

L02 =
1

8
[(FXX − FY Y − 2GXY ) + i(GXX −GY Y + 2FXY )],

L21 =
1

16
[(FXXX + FXY Y +GXXY +GY Y Y )

+ i(GXXX +GXY Y − FXXY − FY Y Y )].

(3.12)

Some computations produce

L20 = −1

8

[(
4√
3
b20 +

2√
3
b11

)
+ i2b11

]
, L11 =

1

4

(
4√
3
b20 +

2√
3
b11

)
,

L02 =
1

8

[
−
(

4√
3
b20 +

2√
3
b11

)
+ i2b11

]
, L21 =

1

16

[
2b21 − i

(
12√

3
b30 +

6√
3
b21

)]
.

(3.13)
Hence,

a∗ =
1

8
(b11b20 − b21 − 3b30)

=
16m3q2

0x
3m−2
∗

(r + xm∗ )5
+

18m3q0x
3m−2
∗ − (8m− 7)m2q2

0x
2m−2
∗

(r + xm∗ )4

− 2m2(9m− 8)q0x
2m−2
∗

(r + xm∗ )3
+

3mq0(m− 1)(m− 2)xm−2
∗

(r + xm∗ )2
.

Clearly, (3.7) and (3.8) demonstrate that the transversal condition and the non-
degenerate condition of the system (1.8) are satisfied. So, summarizing the above
discussions, we obtain the following conclusion.

Theorem 3.1. If a∗ 6= 0, then the system (1.8) undergoes a Neimark-Sacker bi-
furcation at the fixed point E+(x∗, y∗) when the parameter q∗ varies in the small
neighborhood of origin. Moreover, if a∗ < 0 (resp., a∗ > 0), then an attracting
(resp., repelling) invariant closed curve bifurcates from the fixed point for q∗ > 0
(resp., q∗ < 0).

Two examples, which illustrate the above Theorem 3.1, are given below.

Example 3.1. Consider the system (1.8) with r = 0.19, m = 2, p = 10, q = q0 =
2. Then, there is a unique positive fixed point E+(0.1, 0.1) with the multipliers

λ = 1
2 +

√
3

2 i and λ = 1
2−

√
3

2 i, |λ| = 1,
d|λ1,2|

dq∗

∣∣∣
q∗=0

= 5.5 > 0, and a∗ = −77.75 < 0.

Hence, according to Theorem 3.1, an attracting invariant closed curve bifurcates
from the fixed point for q∗ > 0.

Example 3.2. Consider the system (1.8) with r = 9, m = 1, p = 10, q = q0 = 100.
The unique positive fixed point is E+(1, 1) for the system (1.8), whose multipliers

are λ = 1
2 +

√
3

2 i and λ = 1
2 −

√
3

2 i with |λ| = 1,
d|λ1,2|

dq∗

∣∣∣
q∗=0

= 0.11 > 0 and
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a∗ = 0.3225 > 0. Hence, Theorem 3.1 tells us that an repelling invariant closed
curve bifurcates from the fixed point for q∗ < 0.

4. Numerical simulation

In this section, by using numeral simulation, we give the bifurcation diagrams,
phase portraits and Lyapunov exponents of the system (1.8) to confirm the previous
theoretical analysis and show some new interesting complex dynamical behaviors
existing in the system (1.8). Without lose generality, the bifurcation parameters
are considered in the following two cases:

Case 1. Fix the parameters p = 0.1, r = 10,m = 2, the initial value (x0, y0) =
(0.001, 0.001) and assume that q varies in the interval [1.8, 2.8].

Evidently, 0 < mp < 1. We see that the system (1.8) has the unique positive

fixed point E+(
√

q−1
0.1 ,

√
q−1
0.1 ). Figures 1, 2 and 3 show the correctness of the

Theorem 2.1 (i) in Section 2.
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Figure 1. The dynamic behavior for the system (1.8) which exist for p = 0.1, r =
10,m = 2 and q ∈ [1.8, 2.8].

From Figure 1 we see that the fixed point E+(
√

q−1
0.1 ,

√
q−1
0.1 ) is asymptotically

stable.

Taking q = 1.8, 2.0, 2.2 and 2.8 and submitting it into E+(
√

q−1
0.1 ,

√
q−1
0.1 ), the

positive fixed point is (2.8284, 2.8284), (3.1623, 3.1623), (3.4641, 3.4641) and
(4.2426, 4.2426), respectively. The phase portraits corresponding to Figure 1 are
plotted in Figure 2 which show that the fixed point is asymptotically stable.

The maximum Lyapunov exponents corresponding to Figure 1 and 2 are com-
puted and plotted in Figure 3 in which we can easily see that the maximal Lyapunov
exponents are negative for the parameter q ∈ [1.8, 2.8], that is to say, the fixed point

E+(
√

q−1
0.1 ,

√
q−1
0.1 ) is stable.
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Figure 2. Phase portrait of the system (1.8) versus q.
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Figure 3. Maximal Lyapunov exponent versus q corresponding to Figure 1 and 2.

Case 2. Choose the parameters p = 10, r = 0.19,m = 2, the initial values (x0, y0) =
(0.001, 0.001) and assume that q varies in the interval [1.9, 4.8].

We see that mp > 1 and the unique positive fixed point is E+(
√

q−1
0.1 ,

√
q−1
0.1 ).

After calculation for the positive fixed point of the system (1.8), we find that
the Neimark-Sacker bifurcation emerges from the fixed point (0.1, 0.1) at q = 2,

whose multipliers are λ1,2 = 1±i
√

3
2 with |λ1,2| = 1.
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(a) q ∈ [1.9, 2.2] (b) q ∈ [2.2, 2.8]

(c) q ∈ [2.8, 3.2] (d) q ∈ [3.2, 3.6]

(e) q ∈ [3.6, 4.0] (f) q ∈ [4.0, 4.4]

(g) q ∈ [4.4, 4.8] (h) q ∈ (4.8, 5.2]

Figure 4. Bifurcation diagrams of component x for the system (1.8) versus q.
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(a) q ∈ [1.8, 2.2] (b) q ∈ [2.2, 2.8]

(c) q ∈ [2.8, 3.2] (d) q ∈ [3.2, 3.6]

(e) q ∈ [3.6, 4.0] (f) q ∈ [4.0, 4.4]

(g) q ∈ [4.4, 4.8] (h) q ∈ (4.8, 5.2]

Figure 5. Bifurcation diagrams of component y for the system (1.8) versus q.
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In Figures 4 and 5, the bifurcation diagrams for the system (1.8) are plotted
as a function of the control parameter q for 1.8 ≤ q ≤ 5.2. From Figures 4(a)
and 5(a), it is clear that the fixed point is stable for q < 2, and loses its stability
at the Neimark-Sacker bifurcation parameter value q = 2. An attracting invariant
circle appears when the parameter q exceeds 2. This shows the correctness of the
Theorem 3.1. Figures 4 and 5 also display the new and interesting dynamics as q
increases.

The maximum Lyapunov exponents corresponding to Figures 4 and 5 are com-
puted and plotted in Figure 6, in which we can easily see that the maximal Lyapunov
exponents are negative for the parameter q ∈ (1.9, 2.0), that is to say that fixed
point is stable for q < 2. For q ∈ (2.0, 5.2), some Lyapunov exponents are positive
and some are negative, so there exist stable fixed point or stable period windows in
the chaotic region. In general, when the maximal Lyapunov exponent is positive,
this can be considered to be one of the characteristics for the existence of chaos.
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Figure 6. Maximal Lyapunov exponent versus q corresponding to Figure 4 and 5.

The phase portraits are considered in the following:

An attractive fixed point takes place for q = 1.98, which means that the system
orbit is a fixed point, as shown in Figure 7(a).

Figure 7(b) shows that fixed point E+ is a stable attractor at q = 1.998. For
this parameter value, the fixed point E+ occurs with x∗ = 0.0995, y∗ = 0.0995
and the associated complex conjugate eigenvalues are λ1,2 = 0.5 ± 0.8605i with
|λ1,2| = 0.9952, which means that the fixed point E+ is asymptotically stable.

Figure 7(c) demonstrates the behavior of the system (1.8) before the Neimark-
Sacker bifurcation when q = 1.9996 while Figure 7(d) demonstrates the behavior of
the system (1.8) after the Neimark-Sacker bifurcation when q = 2.001. From Figure
7(c) and Figure 7(d), we deduce that the fixed point E+ loses its stability through
a Neimark-Sacker bifurcation when the parameter q varies from 1.9996 to 2.001.
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Figure 7. Phase portraits for the system (1.8) versus q.

Increasing the control parameter q(q = 2.02), the system (1.8) has the fixed
point E+(0.1095, 0.1095), whose associated eigenvalues are λ1,2 = 0.5 ± i0.9686
with |λ1,2| = 1.0900. So, one can conclude that the fixed point becomes unstable
and invariant closed curve is created around the fixed point. Figure 7(e) and 7(f)
confirms the above argument. Continuing to increase the value of q, we observe that
the dynamics of the fixed point E+ becomes complex from Figure 7(g-l). There exist
chaotic sets.

5. Conclusion

In this paper, a semi-discrete model is derived for a nonlinear simple population
model and its stability and bifurcation have been investigated. Our results display
that a Neimark-Sacker bifurcation phenomenon occurs in the positive fixed point
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of this system under certain parametric conditions. Some other basic dynamical
properties of the system (1.8) have been analyzed by means of bifurcation diagrams,
phase portraits, Lyapunov exponents. Numerical simulations show that the system
has more complex dynamical behaviors than its corresponding continuous case.
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