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TRAVELING WAVEFRONTS OF A DELAYED
LATTICE REACTION-DIFFUSION MODEL∗
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Abstract We investigate a system of delayed lattice differential system which
is a model of pioneer-climax species distributed on one dimensional discrete
space. We show that there exists a constant c∗ > 0, such that the model has
traveling wave solutions connecting a boundary equilibrium to a co-existence
equilibrium for c ≥ c∗. We also argue that c∗ is the minimal wave speed
and the delay is harmless. The Schauder’s fixed point theorem combining
with upper-lower solution technique is used for showing the existence of wave
solution.
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1. Introduction

In an ecosystem, the development of the population models depends on the species’
per capita growth rate which is called as the fitness. Some species thrive best
at low density. For example, certain varieties of pine and poplar have a fitness
which is decreasing monotonically with the total tree density of the forest. Species
whose fitness decreases with population density and have a sole equilibrium are
often refereed to “pioneer species”. On the contrast, some other species may have
survival and reproduction rates which benefit from increased population densities.
Such a species is called a climax species if its fitness increases up to a maximum
value and then decreases on its total density. Hence, a climax population is assumed
to have a non-monotone, “one-humped” smooth fitness function. Oak and maple
are the examples of climax species.

From the above introduction, we assume that the pioneer fitness function f
satisfies,

f ′(z) < 0, f(z0) = 0 (1.1)

for some z0 > 0, and the climax fitness function g satisfies,{
g(w1) = g(w2) = 0, 0 < w1 < w2,
(w∗ − w)g′(w) > 0 for w ̸= w∗ ∈ (w1, w2).

(1.2)

†the corresponding author. Email address: wengpx@scnu.edu.cn(P.X. Weng)
1School of Mathematics, South China Normal University, 510631 Guangzhou,
P. R. China

∗The authors were supported by National Natural Science Foundation of
China (11171120) and Doctoral Program of Higher Education of China
(20094407110001).



Traveling wavefronts of lattice model 65

Please see Hassell & Comins [9] and Cushing [8] for some typical examples of fitness
functions such as

f(u) =
r

(1 + bu)p
− a, g(u) = uer(1−u) − a.

Selgrade et al. [13, 14] examined the dynamics and the Hopf bifurcation of a
pioneer-climax ecosystem with the ordinary differential form,

du

dt
= uf(c11u+ v),

dv

dt
= vg(u+ c22v), (1.3)

Because of the rich equilibria possibility and the various range of parameters, the
dynamics of system (1.3) is complex. Some works and a survey review could be
found in Sumner [15,16] and Buchanan [2]).

Assuming a random dispersal mechanism and by incorporating a spatial variable
x into (1.3), we are given the following reaction-diffusion system

∂u

∂t
= d1

∂2u

∂x2
+ uf(c11u+ v),

∂v

∂t
= d2

∂2v

∂x2
+ vg(u+ c22v).

(1.4)

There are two key elements to the developmental process and study of reaction-
diffusion systems. One is the stability, another is the appearance of a traveling
wave and the spread speed. We mention here some important works on the stability
and instability dynamics of (1.4) from Buonomo and Rionero [4] and Buchanan [3].
Brown et al [1] studied the existence of traveling wave solution of (1.4) connecting
two boundary equilibria, and another kind of traveling wave connecting the pioneer-
existence equilibrium to the co-existence equilibrium for (1.4) is published recently
by Yuan and Zou [20].

Assume that the pioneer and climax species locate on the integer notes of a
one-dimensional lattice, and un(t) and vn(t) denote the densities of the pioneer and
climax species at the n-th patch and time t, respectively. If the spatial diffusion
occurs only at the nearest neighbourhood and is proportional to the difference of
the densities of the population at adjacent patches, the diffusion equation can be
derived via scaling of deterministic spatially discrete model as follows,

dun(t)

dt
=d1[un+1(t) + un−1(t)− 2un(t)]

+ un(t)f(c11un(t) + vn(t− τ)),

dvn(t)

dt
=d2[vn+1(t) + vn−1(t)− 2vn(t)]

+ vn(t)g(un(t− τ) + c22vn(t)), n ∈ Z,

(1.5)

where d1 > 0, d2 > 0 are diffusion coefficients and c11 > 0, c22 > 0. The delay τ in
the system may be interpreted as the interaction retard between the two species.

(1.5) is in fact a lattice differential system (LDEs) which is composed with
infinite number of differential equations. LDEs arise from mathematical models in
many scientific disciplines, such as materials science [5,6], pattern formation [7] and
especially population biology [11, 12, 17]. As Keener [11] shows, LDEs may exhibit
some different behaviors such as “propagation failure” (see the precise definition
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in [11]), which generally does not exist in the associated PDEs. Please also see
other literatures on the study of various of lattice differential systems, Huang, Lu &
Ruan [10], Ma, Wu & Zou [12], Weng, Huang &Wu [17], Wu & Zou [18], Zinner [21].

To the best of our knowledge, the existence of traveling wave solutions for (1.5)
has not yet been conducted. Furthermore, as we shall see in the next section that
the wave profile system (2.6) is in fact a functional differential system of mixed

type (with retarded and advanced variables). Let c∗ = 2
√

d2g(
z0
c11

). Assume that

d2 ≥ d1

2 . Yuan & Zou [20] showed that c∗ is the minimal wave speed of (1.4) in
the sense that for c ≥ c∗, there exists a traveling wave solution connecting the
pioneer-existence equilibrium to the co-existence equilibrium, and there is no such
a traveling wave solution for c ∈ (0, c∗). It is natural to ask whether this conclusion
is true or false for (1.5)? In this article, we confirm that a similar conclusion holds
for (1.5) with d2 ≥ d1, and thus “propagation failure” will not appear for this lattice
differential system.

The rest of this paper is organized as follows. In section 2, there are preliminaries
and the statement of the main theorem. In section 3, we prove the main theorem
by using Schauder’s fixed point theorem combining with a pair of upper and lower
solutions. We also identify the minimal wave speed in this section. We end this
article by a concluding discussion.

2. Preliminaries and main result

The existence of nonnegative steady states depends on the following two systems
composed with null-clines,

c11u+ v = z0, u+ c22v = w1, (2.1)

or

c11u+ v = z0, u+ c22v = w2. (2.2)

The long term behavior of solutions to (1.5) can be qualitatively determined by the
number, distribution and type of the equilibria. In this article, we will only consider
the following case,

z0 >
w1

c22
, w1 <

z0
c11

< w2. (2.3)

The conclusion c11c22 > 1 then follows. Under the above assumption (2.3), (1.5)
has four nontrivial equilibria, ( z0

c11
, 0), (0, w1

c22
), (0, w2

c22
) and (u∗, v∗) except for (0, 0),

where

u∗ =
c22z0 − w2

c11c22 − 1
, v∗ =

c11w2 − z0
c11c22 − 1

.

It is obvious that u∗ < z0
c11

. In the present article, we only consider a simple case,

w∗ ≤ u∗. (2.4)

By making changes of variables ũ = z0
c11

− u, ṽ = v and dropping the tildes,
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system (1.5) becomes

dun(t)

dt
=d1[un+1(t) + un−1(t)− 2un(t)]

+ (un(t)−
z0
c11

)f(z0 − c11un(t) + vn(t− τ)),

dvn(t)

dt
=d2[vn+1(t) + vn−1(t)− 2vn(t)]

+ vn(t)g(
z0
c11

− un(t− τ) + c22vn(t)), n ∈ Z.

(2.5)

We are interested in seeking the traveling wavefronts (monotone traveling wave
solutions) connecting equilibria ( z0

c11
, 0) and (u∗, v∗), which can be changed into

finding a traveling wave of (2.5) connection (0, 0) and (u+, v+), where u+ = z0
c11

−u∗,

v+ = v∗. Therefore, we now consider a solution of (2.5) with the form un(t) =
ϕ(n+ ct) and vn(t) = φ(n+ ct), where c > 0 is a wave speed. Denote the traveling
wave coordinate n+ ct still by t. We derive the wave profile system from (2.5)

cϕ
′
(t) =d1[ϕ(t+ 1) + ϕ(t− 1)− 2ϕ(t)]

+ [ϕ(t)− z0
c11

]f(z0 − c11ϕ(t) + φ(t− cτ)),

cφ
′
(t) =d2[φ(t+ 1) + φ(t− 1)− 2φ(t)]

+ φ(t)g(
z0
c11

− ϕ(t− cτ) + c22φ(t)).

(2.6)

Associated with (2.6), we consider its solutions subjecting to the following asymp-
totic boundary value conditions,

lim
t→−∞

(ϕ(t), φ(t)) = (0, 0), lim
t→+∞

(ϕ(t), φ(t)) = (u+, v+). (2.7)

Remark 2.1. We see from (2.6) that ϕ(t + 1) and ϕ(t − 1) appear in the first
equation, and φ(t + 1) and φ(t − 1) appear in the second equation. This implies
that the wave profile system (2.6) is a functional differential system of fixed type.
This is an important characteristic of lattice differential system.

The main result is given in the following theorem.

Theorem 2.1. Let d2 ≥ d1. Then there is a c∗ > 0 such that for c ≥ c∗, there exists
a co-invasion traveling wave solution of (1.5) connecting (z0/c11, 0) and (u∗, v∗) with
speed c.

3. Proof of the main result

For some positive constants β1, β2, let

H1(ϕ, φ)(t) := d1[ϕ(t+ 1) + ϕ(t− 1)− 2ϕ(t)]

+ [ϕ(t)− z0
c11

]f(z0 − c11ϕ(t) + φ(t− cτ)) + β1ϕ(t),

H2(ϕ, φ)(t) := d2[φ(t+ 1) + φ(t− 1)− 2φ(t)]

+ φ(t)g(
z0
c11

− ϕ(t− cτ) + c22φ(t)) + β2φ(t).
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Then, (2.6) can be written as{
cϕ

′
(t) = −β1ϕ(t) +H1(ϕ, φ)(t),

cφ
′
(t) = −β2φ(t) +H2(ϕ, φ)(t).

(3.1)

Define a set

D = {(ϕ, φ) ∈ C(R,R2) | 0 ≤ ϕ(t) ≤ u+, 0 ≤ φ(t) ≤ v+ for t ∈ R},

and an operator Q = (Q1, Q2), D → C(R,R2) by
Q1(ϕ, φ)(t) =

1

c
e−

β1
c t

∫ t

−∞
e

β1
c sH1(ϕ, φ)(s)ds,

Q2(ϕ, φ)(t) =
1

c
e−

β2
c t

∫ t

−∞
e

β2
c sH2(ϕ, φ)(s)ds.

(3.2)

Then for any (ϕ, φ) ∈ D, we have
Q

′

1(ϕ, φ)(t) = −β1

c
Q1(ϕ, φ)(t) +

1

c
H1(ϕ, φ)(t),

Q
′

2(ϕ, φ)(t) = −β2

c
Q2(ϕ, φ)(t) +

1

c
H2(ϕ, φ)(t).

(3.3)

Therefore a fixed point of Q is a solution of (2.6), and vice verse.
In the following, we introduce an exponential decay norm. Let µ ∈ (0,min{β1

c , β2

c })
and equip C(R,R2) with the norm | · |µ defined by |Φ|µ = supt∈R |Φ(t)|e−µ|t| < ∞.
Let

Bµ(R,R2),= {Φ ∈ C(R,R2) | sup
t∈R

|Φ(t)|e−µ|t| < ∞}.

Then it is easy to check that (Bµ(R,R2), | · |µ) is a Banach space.
For the above H, it is easy to show that for sufficiently large β1, β2 > 0 and

(ϕi, φi) ∈ D, i = 1, 2 with ϕ1(t) ≤ ϕ2(t) and φ1(t) ≤ φ2(t), t ∈ R, we have the
following monotonic properties,

(i)H1(ϕ2, φ2)(t) ≥ H1(ϕ1, φ1)(t);H2(ϕ2, φ2)(t) ≥ H2(ϕ1, φ1)(t) for t ∈ R;
(ii)H1(ϕ, φ)(t),H2(ϕ, φ)(t) are nondecreasing on t ∈ R, if ϕ(t), φ(t) are nonde-

creasing on t ∈ R.

Similarly, Q = (Q1, Q2) also enjoys the same properties as those for H = (H1,H2)
settled above, and we shall use these monotonic properties of H and Q directly in
the following arguments.

Definition 3.1. A function Φ(t) = (ϕ(t), φ(t)) is called an upper solution of (2.6),
if there exists a set with finite of numbers S = {ti | i = 1, 2, · · · , p}, such that Φ(t)
is differentiable in R\S and satisfies,

c
dϕ(t)

dt
≥d1[ϕ(t+ 1) + ϕ(t− 1)− 2ϕ(t)]

+ [ϕ(t)− z0
c11

]f(z0 − c11ϕ(t) + φ(t− cτ)),

c
dφ(t)

dt
≥d2[φ(t+ 1) + φ(t− 1)− 2φ(t)]

+ φ(t)g(
z0
c11

− ϕ(t− cτ) + c22φ(t)),
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for t ∈ R\S. A lower solution of (2.6) can be defined by reversing the above
inequalities.

Remark 3.1. We have from (3.3) that an upper solution of (2.6) satisfies an e-
quivalent system with two inequalities for t ∈ R\S,{

cϕ
′
(t) ≥ −β1ϕ(t) +H1(ϕ, φ)(t),

cφ
′
(t) ≥ −β2φ(t) +H2(ϕ, φ)(t),

and two reversed inequalities hold for a lower solution of (2.6).

In what follows, we assume that exist an upper solution Φ(t) = (ϕ(t), φ(t)) and
a lower solution Φ(t) = (ϕ(t), φ(t)) of (2.6) satisfying

(P1) (0, 0) < (ϕ(t), φ(t)) ≤ (ϕ(t), φ(t)) ≤ (u+, v+) for t ∈ R;

(P2) lim
t→−∞

(ϕ(t), φ(t)) = (0, 0), lim
t→+∞

(ϕ(t), φ(t)) = (u+, v+);

(P3) sup
s≤t

ϕ(s) ≤ ϕ(t), sup
s≤t

φ(s) ≤ φ(t).

Remark 3.2. For (0, 0) < (ϕ(t), φ(t)) for t ∈ R, we mean that either ϕ(t) ̸≡ 0 or
φ(t) ̸≡ 0 holds.

Define a set Ω = Ω(Φ,Φ) by

Ω(Φ,Φ) =

{
(ϕ, φ) ∈ C(R,R2)

∣∣∣∣∣ (1)ϕ(t) ≤ ϕ(t) ≤ ϕ(t), φ(t) ≤ φ(t) ≤ φ(t) for t ∈ R;
(2)ϕ(t), φ(t) are nondecreasing for t ∈ R.

}

Let ϕ(t) = sups≤t ϕ(s), φ(t) = sups≤t φ(s), it’s easy to know that (ϕ(t), φ(t)) ∈ Ω,

therefore, Ω(Φ,Φ) is nonempty.

Lemma 3.1. For sufficiently large β1, β2 > 0, we have Q(Ω) ⊂ Ω. Furthermore, if
(P1)− (P3) hold, then Q(Ω) is a compact set in Bµ(R,R2).

Proof. We only show the compactness of Q(Ω). For any (ϕ, φ) ∈ Ω(Φ,Φ), we
have

Q
′

1(ϕ, φ)(t) = −β1

c2
e−

β1
c t

∫ t

−∞
e

β1
c sH1(ϕ, φ)(s)ds+

1

c
H1(ϕ, φ)(t)

≥ −β1

c2
e−

β1
c t

∫ t

−∞
e

β1
c sH1(ϕ, φ)(s)ds ≥ −β1

c
ϕ(t) ≥ −β1

c
u+,

Q
′

1(ϕ, φ)(t) = −β1

c2
e−

β1
c t

∫ t

−∞
e

β1
c sH1(ϕ, φ)(s)ds+

1

c
H1(ϕ, φ)(t)

≤ 1

c
H1(ϕ, φ)(t) ≤

1

c
H1(u

+, v+).

It implies that Q
′

1(ϕ, φ)(t) is uniformly bounded. Similarly, Q
′

2(ϕ, φ)(t) is uniformly
bounded. Hence Q(Ω) is equi-continuous with respect to the supremum norm.
Furthermore, it is easy to see that Q(Ω) is also uniformly bounded.

Now we can verify that Q(Ω) is a compact set in Bµ(R,R). In fact, assume that
{Φ(n)(t) = (ϕ(n)(t), φ(n)(t))} ⊂ Q(Ω) is a sequence. For any given ϵ > 0, choose
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M1 > 0 large enough such that

sup
|t|≥M1

[|ϕ(n)(t)− ϕ(m)(t)|+ |φ(n)(t)− φ(m)(t)|]e−µ|t|

≤2(u+ + v+)e−µM1 <
ϵ

2
.

(3.4)

Since {Φn(t)} is uniformly bounded and equi-continuous on [−M1,M1], by Arzéra-
Ascoli theorem, {Φ(n)(t)} has a subsequence which is convergent on [−M1,M1]
with respect to the supremum norm. Without loss of generality, we still denote this
subsequence by {Φ(n)(t)}. This leads to the conclusion that {Φ(n)(t)} is a Cauchy
sequence on [−M1,M1] with respect to the supremum norm. Therefore, there exists
K > 0 such that

sup
|t|≤M1

[|ϕ(n)(t)− ϕ(m)(t)|+ |φ(n)(t)− φ(m)(t)|]e−µ|t|

≤ sup
|t|≤M1

[|ϕ(n)(t)− ϕ(m)(t)|+ |φ(n)(t)− φ(m)(t)|] < ϵ

2
for n,m > K.

This, together with (3.4), leads to the conclusion that {Φ(n)(t)} is a Cauchy sequence
in Bµ(R,R2). As Bµ(R,R2) is a Banach space, thus {Φ(n)(t)} is convergent in
Bµ(R,R2). The proof is complete.

Lemma 3.2. Assume that (ϕ, φ), (ϕ, φ) satisfy (P1) − (P3), then (2.6) has a

monotone solution (ϕ, φ) in Ω(Φ,Φ) satisfying (2.7).

Proof. Note that the set Ω(Φ,Φ) is closed, bounded and convex in the space
Bµ(R,R2), and the map Q = (Q1, Q2), D → C(R,R2) is continuous with respect
to the norm | · |µ in Bµ(R,R2). Schauder’s fixed point theorem is applicable to Q
for obtaining a fixed point Φ∗ = (ϕ∗, φ∗) in Ω(Φ,Φ). That is, (2.6) has a solution
(ϕ∗, φ∗) in Ω(Φ,Φ) satisfying

0 ≤ ϕ∗
− := lim

t→−∞
ϕ∗(t) ≤ lim

t→−∞
ϕ(t),

0 ≤ φ∗
− := lim

t→−∞
φ∗(t) ≤ lim

t→−∞
φ(t),

sup
t∈R

ϕ(t) ≤ ϕ∗
+ := lim

t→∞
ϕ∗(t) ≤ u+,

sup
t∈R

φ(t) ≤ φ∗
+ := lim

t→∞
φ∗(t) ≤ v+.

(3.5)

Therefore we can obtain from (P2) that

ϕ∗
− = 0, φ∗

− = 0.

On the other hand, we can show that ϕ∗
+ = u+, φ∗

+ = v+. In fact, since (ϕ∗, φ∗) is
a fixed point of Q, we have

ϕ∗(t) = Q1(ϕ
∗, φ∗)(t), φ∗(t) = Q2(ϕ

∗, φ∗)(t).

By using L’Hôspital’s rule, we obtain

ϕ∗
+ = lim

t→∞
ϕ∗(t) = lim

t→∞
Q1(ϕ

∗(t), φ∗(t))

= lim
t→∞

1
c

∫ t

−∞ e
β1
c sH1(ϕ

∗, φ∗)(s)ds

e
β1
c t

=
1

β1
H1(ϕ

∗
+, φ

∗
+).
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Similarly, one can obtain φ∗
+ = 1

β2
H2(ϕ

∗
+, φ

∗
+). That is, (ϕ∗

+, φ
∗
+) is a nonnegative

equilibrium of (2.6) in D. Furthermore, we have from Remark 3.2 and (3.5) that
(ϕ∗

+, φ
∗
+) is a positive equilibrium. Note that the assumption (2.4) implies that

there is only one positive equilibrium (u+, v+) of (2.6) in D. Thus (ϕ∗, φ∗) is a
monotone solution of (2.6) satisfying (2.7) in Ω(Φ,Φ). The proof is complete.

Now, summarizing the above discussion, we obtain a theorem.

Theorem 3.1. If (2.6) has a pair of upper and lower solutions satisfy (P1)− (P3),
then system (2.5) has a traveling wave solution satisfying (2.7).

In order to construct appropriate upper-lower solutions for (2.6), we linearize
(2.6) at (0, 0) and obtain

d1[ϕ(t+ 1) + ϕ(t− 1)− 2ϕ(t)]− cϕ
′
(t) + z0f

′
(z0)ϕ(t)−

z0
c11

f
′
(z0)φ(t− cτ) = 0,

d2[φ(t+ 1) + φ(t− 1)− 2φ(t)]− cφ
′
(t) + φ(t)g(

z0
c11

) = 0.

(3.6)
Consider the following characteristic equation,

F (λ, c),= d2(e
λ + e−λ − 2)− cλ+ g(

z0
c11

) = 0.

Note the following facts,

F (λ, 0) > 0 for any λ ∈ R,

F (0, c) = g(
z0
c11

) > 0, F (∞, c) = ∞ for any c > 0,

∂F (λ, c)

∂λ
= d2(e

λ − e−λ)− c,

∂2F (λ, c)

∂λ2
= d2(e

λ + e−λ) > 0,

and we can obtain the following Lemma.

Lemma 3.3. The following conclusions are true.

(i)There exists a (λ∗, c∗) such that λ∗ > 0, c∗ > 0, F (λ∗, c∗) = 0, ∂F (λ,c)
∂λ |(λ∗,c∗) = 0;

(ii) for 0 < c < c∗, F (λ, c) > 0, for λ ∈ R;

(iii) for c > c∗, the equation F (λ, c) = 0 has two zeros 0 < λ1,= λ1(c) < λ2,= λ2(c)
such that

F (λ, c) < 0 for λ1 < λ < λ2. (3.7)

In what follows, we shall use the above conclusions to construct a pair of upper
and lower solutions of (2.6). Although the form of this pair of upper-lower solutions
have similar forms as that in [20], the verification has its own feature and difficulties
because of the advanced time t+ 1 and the decay time t− 1 and t− cτ .

Lemma 3.4. Let c > c∗, d1 ≤ d2. Define

ϕ(t) = min{eλ1t, u+}, φ(t) = min{c11eλ1t, v+}.

Then (ϕ(t), φ(t)) is an upper solution of (2.6).
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Proof. Let t1, t2 be such that eλ1t1 = u+, c11e
λ1t2 = v+. Notice that v+ = c11u

+.

We have t0 := t1 = t2 = 1
λ1

ln v+

c11
. Firstly, note the facts,

ϕ(t) ≤ eλ1t, ϕ(t) ≤ u+ for t ∈ R,
φ(t) ≤ c11e

λ1t, φ(t) ≤ v+ for t ∈ R.
(3.8)

For t < t0, ϕ(t) = eλ1t, φ(t − cτ) = eλ1(t−cτ). Since that f(w) is nonincreasing
for w ≥ 0, and eλ1t − z0

c11
≤ 0, and thus

(ϕ(t)− z0
c11

)f(z0 − c11ϕ(t) + φ(t− cτ)) = (eλ1t − z0
c11

)f(z0 − c11e
λ1t + c11e

λ1(t−cτ))

≤ (eλ1t − z0
c11

)f(z0 − c11e
λ1t + c11e

λ1t)

= (eλ1t − z0
c11

)f(z0) = 0,

we obtain

d1[ϕ(t+ 1) + ϕ(t− 1)− 2ϕ(t)]− cϕ
′

(t) + (ϕ(t)− z0
c11

)f(z0 − c11ϕ(t) + φ(t− cτ))

≤d1[e
λ1(t+1) + eλ1(t−1) − 2eλ1t]− cλ1e

λ1t = {d1[eλ1 + e−λ1 − 2]− cλ1}eλ1t

≤{d2[eλ1 + e−λ1 − 2]− cλ1}eλ1t = −g(
z0
c11

)eλ1t ≤ 0.

For t ≥ t0, ϕ(t) = u+, φ(t − cτ) ≤ v+. Since that f(w) is nonincreasing for
w ≥ 0, u+ − z0

c11
≤ 0, and thus

(ϕ(t)− z0
c11

)f(z0 − c11ϕ(t) + φ(t− cτ)) ≤ (u+ − z0
c11

)f(z0 − c11u
+ + v+)

≤ (u+ − z0
c11

)f(z0) = 0,

we obtain

d1[ϕ(t+ 1) + ϕ(t− 1)− 2ϕ(t)]− cϕ
′

+ (ϕ(t)− z0
c11

)f(z0 − c11ϕ(t) + φ(t− cτ))

≤d1[u
+ + u+ − 2u+]− c · 0 = 0.

For t ≤ t0, φ(t) = c11e
λ1t, ϕ(t−cτ) = eλ1(t−cτ). Since that g(w) is nonincreasing

for w ≥ w∗, z0
c11

− eλ1te−λ1cτ + c22c11e
λ1t ≥ z0

c11
+ (c22c11 − 1)eλ1t ≥ z0

c11
≥ w∗, and

thus

φ(t)g(
z0
c11

− ϕ(t− cτ) + c22φ(t)) = c11e
λ1tg(

z0
c11

− eλ1(t−cτ) + c22c11e
λ1t)

= c11e
λ1tg(

z0
c11

− eλ1te−λ1cτ + c22c11e
λ1t)

≤ c11e
λ1tg(

z0
c11

),

we obtain

d2[φ(t+ 1) + φ(t− 1)− 2φ(t)]− cφ
′
+ φ(t)g(

z0
c11

− ϕ(t− cτ) + c22φ(t))

≤d2[c11e
λ1(t+1) + c11e

λ1(t−1) − 2c11e
λ1t]− cc11λ1e

λ1t + c11e
λ1tg(

z0
c11

)

={d2(eλ1 + e−λ1 − 2)− cλ1 + g(
z0
c11

)}c11eλ1t = 0.
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For t > t0, ϕ(t − cτ) ≤ u+, φ(t) = v+. Since that g(w) is nonincreasing for
w ≥ w∗, z0

c11
− ϕ(t− cτ) + c22φ(t) ≥ z0

c11
− u+ + 0 = u∗ ≥ w∗, and thus

φ(t)g(
z0
c11

− ϕ(t− cτ) + c22φ(t)) ≤ v+g(
z0
c11

− u+ + c22v
+)

= v+g(w2) = 0,

we obtain

d2[φ(t+ 1) + φ(t− 1)− 2φ(t)]− cφ
′
+ φ(t)g(

z0
c11

− ϕ(t− cτ) + c22φ(t))

≤d2[v
+ + v+ − 2v+]− c · 0 + v+g(w2) = 0.

The proof is complete.

Lemma 3.5. Let c > c
∗
and q > 1 is large, and η = 1 + ϵ > 1 (ϵ > 0 is small).

Define

ϕ(t) = 0, φ(t) = max{c11(eλ1t − qeηλ1t), 0}.

Then (ϕ(t), φ(t)) is a lower solution of (2.6) .

Proof. Since ϕ(t) = 0 and φ(t− cτ4) ≥ 0, we always have

d1[ϕ(t+ 1) + ϕ(t− 1)− 2ϕ(t)]− cϕ
′
+ (ϕ(t)− z0

c11
)f(z0 − c11ϕ(t) + φ(t− cτ))

≥− z0
c11

f(z0) = 0.

Let t3 be such that c11(e
λ1t − qeηλ1t) = 0. It follows t3 = 1

(η−1)λ1
ln 1

q < 0.

Denote m = min
t∈[

z0
c11

,
z0
c11

+c22v+]
g

′
(t) < 0. For t < t3, we have eλ1t − qeηλ1t ≥ 0, and

thus

g(
z0
c11

+ c11c22(e
λ1t − qeηλ1t))

=[g(
z0
c11

+ c11c22(e
λ1t − qeηλ1t))− g(

z0
c11

)] + g(
z0
c11

)

≥mc11c22(e
λ1t − qeηλ1t) + g(

z0
c11

),

c11(e
λ1t − qeηλ1t)g(

z0
c11

+ c11c22(e
λ1t − qeηλ1t))

≥mc211c22(e
λ1t − qeηλ1t)2 + c11(e

λ1t − qeηλ1t)g(
z0
c11

).

Note that φ(t) ≥ c11(e
λ1(t) − qeηλ1(t)) for t ∈ R. For t < t3, we obtain

d2[φ(t+ 1) + φ(t− 1)− 2φ(t)]− cφ
′
(t) + φ(t)g(

z0
c11

− ϕ(t− cτ) + c22φ(t))

≥d2[c11(e
λ1(t+1) − qeηλ1(t+1)) + c11(e

λ1(t−1) − qeηλ1(t−1))− 2c11(e
λ1t − qeηλ1t)]

− cc11λ1(e
λ1t − qηeηλ1t) + c11(e

λ1t − qeηλ1t)g(
z0
c11

+ c11c22(e
λ1t − qeηλ1t))

≥d2c11[(e
λ1(t+1) − qeηλ1(t+1)) + (eλ1(t−1) − qeηλ1(t−1))− 2(eλ1t − qeηλ1t)]

− cc11(λ1e
λ1t − qηλ1e

ηλ1t) +mc211c22(e
λ1t − qeηλ1t)2 + c11(e

λ1t − qeηλ1t)g(
z0
c11

)
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=c11e
λ1tF (λ1, c)− c11qe

ηλ1tF (ηλ1, c) +mc211c22(e
λ1t − qeηλ1t)2

=c11[−qeηλ1tF (ηλ1, c) +mc11c22(e
λ1t − qeηλ1t)2]

=c11e
ηλ1t[−qF (ηλ1, c) +mc11c22(e

λ1(1− η
2 )t − qe

η
2 λ1t)2],

where F (λ, c) = d2[e
λ + e−λ − 1]− cλ+ g( z0

c11
). Let ω(t) := eλ1(1− η

2 )t − qe
η
2 λ1t and

solve the equation

ω′(t) = λ1{(1−
η

2
)eλ1t − q

η

2
e

η
2 λ1t} = 0.

We obtain that t̄ = 1
( η
2−1)λ1

ln( 2−η
ηq ). Thus

max
t∈R

ω(t) = ω(t̄) = e
1− η

2
(
η
2
−1)

ln( 2−η
ηq )

− qe
η

η−2 ln( 2−η
ηq ) =

ηq

2− η
− q(

2− η

ηq
)

η
η−2 .

Note η = 1+ϵ, and thus one can choose ϵ > 0 small enough such that F (ηλ1, c) < 0.
On the other hand, we have m < 0, so that we can choose q > 1 large enough such
that

− qF (ηλ1, c) +mc11c22(e
λ1(1− η

2 )t − qe
η
2 λ1t)2

≥− qF (ηλ1, c) +mc11c22ω
2(t̄) ≥ 0,

which leads to

d2[φ(t+ 1) + φ(t− 1)− 2φ(t)]− cφ
′
(t) + φ(t)g(

z0
c11

− ϕ(t− cτ) + c22φ(t)) ≥ 0.

Note φ(t) ≥ 0 for t ∈ R and φ(t) = 0 for t > t3. Thus we obtain,

d2[φ(t+ 1) + φ(t− 1)− 2φ(t)]− cφ
′
(t) + φ(t)g(

z0
c11

− ϕ(t− cτ) + c22φ(t))

≥d2[0 + 0− 2 · 0]− c · 0 + 0 · g( z0
c11

+ c22 · 0) = 0.

The proof is complete.

Remark 3.3. It is obvious that the upper-lower solutions defined in Lemmas 3.4
and 3.5 satisfy (P1)-(P3).

Theorem 3.2. Assume that d1 ≤ d2. Then for any c ≥ c∗, system (2.5) has a
traveling wave solution with speed c, which connects (0, 0) with (u+, v+)

Proof. The conclusion for c > c∗ can be obtained from the above discussion. Thus
we only need to established the existence of traveling wave solution when c = c∗.
For this case, let ck ⊂ (c∗, c∗ + 1) be a decreasing series with limk→∞ ck = c∗. For
ck > c∗, equation (2.6) with c = ck admits a nondecreasing solution (ϕk(t), φk(t))
such that

lim
t→−∞

(ϕk(t), φk(t)) = (0, 0), lim
t→+∞

(ϕk(t), φk(t)) = (u+, v+).

By using a limit argument similar to Zhao and Wang [22], we are able to obtain the
existence result. We omit the details. The proof is complete.

Summarizing the results in Theorem 3.2 and noting the equivalence between
(1.5) and (2.5), we in fact obtain the conclusion in Theorem 2.1.
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We say that c∗ is the minimal wave speed in the sense that (2.5) has no traveling
wave solution with c ∈ (0, c∗). In the following, we argue that c∗ is the minimal
wave speed. In fact, the linearized system of (2.6) at zero solution is (3.6) and the
function F (λ, c) is obtained by substituting eλt into the second equation of (3.6).
For 0 < c < c∗, we have from (ii) of Lemma 3.3 that F (λ, c) = 0 has no real root.
Furthermore, assume that F (λ, c) = 0 has a root λ = α + iβ with β > 0, then we
obtain

F (α+ iβ) = 2d2(e
α cosβ − 1)− c(α+ iβ) + g(

z0
c11

) = 0,

which is impossible. Therefore, F (λ, c) = 0 has no root in C. That is, the second
equation of (3.6) has no solution with the form φ(t) = eλt for λ ∈ C.

Assume that (2.6) has a nondecreasing solution (ϕ(t), φ(t)) satisfying lim
t→−∞

(ϕ(t),

φ(t)) = (0, 0). We have from (2.6) that lim
t→−∞

(ϕ′(t), φ′(t)) = (0, 0). If (ϕ(t), φ(t))

is smooth enough, one can obtain lim
t→−∞

(ϕ(k)(t), φ(k)(t)) = (0, 0) for any integer

k > 0. For second equation of the linearized system (3.6), its solution with the
property, lim

t→−∞
φ(k)(t) = 0 could only be a function with the form eλt. But this is

unavailable.

4. Concluding discussions

Recently, Yu, Weng and Huang [19] considered a corresponding model of (1.4) with

nonlocal diffusion terms
∫ +∞
−∞ J(y−x)[u(t, y)−u(t, x)]dy and

∫ +∞
−∞ J(y−x)[v(t, y)−

v(t, x)]dy. They showed that the sufficient condition for the existence of minimal
wave speed c∗ is d1 ≤ d2. This implies that the nonlocal diffusion of the pioneer
species accelerates the mild wave propagation. It seems that our results obtained for
lattice system (1.5) are the same as in [19]. That is to say: the lattice distribution
and diffusion of pioneer-climax species also accelerates the mild wave propagation.
On the other hand, we see that time delay τ is a harmless delay.

This is the first time that the dynamics of the lattice pioneer-climax competition
model with delay is studied, and we only considered one possible case about the
traveling wave solution connecting one boundary equilibrium and the coexisting
equilibrium. This model has complex dynamical properties, and is worth to be the
target of further study.
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