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A METHOD FOR IMAGE ENCRYPTION
BASED ON FRACTIONAL-ORDER

HYPERCHAOTIC SYSTEMS∗
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Abstract By using sequences generated from fractional-order hyperchaotic
systems, a color image encryption scheme is investigated. Firstly, a plain im-
age, which is known to users in advance, is chosen as a secret key to confuse
the original image. Then, the confused image is encrypted by the sequences
generated from the fractional-order hyperchaotic systems. With this simple
encryption method, we can get an encrypted image that is fully scrambled
and diffused. For chaos-based image cryptosystems, this encryption scheme
enhances the security and improves the effectiveness. Furthermore, the cryp-
tosystem resists the differential attack. Experiments show that the algorithm
is suitable for image encryption, and some statistical tests are provided to
show the high security in the end.
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analysis.
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1. Introduction

Chaos is a very interesting phenomenon in nonlinear science, thanks to its sensitivity
to initial values and parameters. In 1963, the chaotic Lorenz system was proposed,
then many chaotic systems and hyperchaotic systems were investigated by scholars,
such as the Rössler system, Lü system, Chen system, high-dimensional hyperchaotic
systems, and multi-wing hyperchaotic systems [6,7,17]. In recent years, chaos-based
encryption has attracted much attention due to its potential advantage of good
confusion and diffusion properties in commercial, military and medical applications.

Methods of chaos-based image encryption have been widely studied in the past.
As we know, the ciphered images should be greatly different from the original im-
ages, for example, the pixel values are changed pseudo-randomly and the correlation
coefficient drops near to zero. Determining whether a system can have good resis-
tance to attacks, it can be measured by means of NPCR (number of pixels change
rate) and UACI (unified average changing intensity) [1]. One of the key points
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in image encryption is to change the positions or pixel values based on some low-
dimensional chaotic systems, such as the cat map and the logistic map, which are
used to generate pseudo-random sequences. Accordingly, encryption based on hy-
perchaotic systems will be a typical and useful method due to its good results.
Mazloom et al. [10] proposed a novel chaos-based image encryption algorithm to
encrypt color images by using a coupled nonlinear chaotic map. For getting higher
security and higher complexity, they employ the image size and color components
into the cryptosystem, thereby significantly increasing the resistance to known and
chosen plaintext attacks. Liu and Wang [8] designed a triple color image encryption
scheme based on chaos where the Lorenz system was employed to generate four
pseudo-random sequences, and the 256-bit hash value came from three images was
applied to produce the initial values and parameters for the Lorenz system. In [15],
a new color image encryption algorithm was investigated based on the chaotic se-
quences generated from two fractional-order hyperchaotic systems.

However, recent cryptanalysis works have demonstrated that some chaos-based
image cryptosystems are insecure against various attacks, and have been broken
easily [9, 13]. The weaknesses in these insecure algorithms include insensitiveness
to the changes of the plain image and weak secret keys. Compared to integer-
order chaotic systems, the dynamics of fractional-order chaotic systems are more
complex, because fractional derivatives have complex geometrical interpretation for
their nonlocal character and high nonlinearity [12, 15]. In addition, the derivative
order of fractional-order chaotic systems can be used as secret keys. Based on
a combination of fractional-order hyperchaotic systems, we propose a method of
image encryption in this paper.

Specially, a plain image is employed to scramble the pixel values of the original
image. Then, the scrambled image is encrypted once again by using sequences
generated from the combination of fractional-order hyperchaotic systems. Similarly,
the decryption algorithm is the reverse of the encryption. The encrypted image can
be deciphered successfully when the user obtains the correct keys. In the end, the
results of several experiments show that the scheme of image encryption is effective,
and some security tests are provided to show its high security for image encryption
and transmission.

The paper is organized as follows. In Section 2, the definition of fractional-
order derivative and some fractional-order hyperchaotic systems are introduced.
The proposed encryption scheme is investigated in Section 3. Experimental results
are performed in Section 4. Some security analyses are performed and discussed in
Section 5. Finally, Conclusions are drawn in Section 6.

2. Systems description

In general, hyperchaotic systems have more complex behavior. So, fractional-
order hyperchaotic systems are employed to design the cryptosystem. Riemann-
Liouville definition and the predictor-corrector algorithm are used in computing
the fractional-order differential equations. There are several definitions of fraction-
al derivatives [3, 11], and the Riemann-Liouville definition is given by

dαf(t)

dtα
=

1

Γ(n− α)

dn

dtn

∫ t

0

f(τ)

(t− τ)α−n+1
dτ,

where Γ(•) is the gamma function, and Γ(z) =
∫∞
0

e−ttz−1dt, n− 1 ≤ α ≤ n.
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The fractional-order hyperchaotic Lü, Lorenz and Chen systems are combined
to generate pseudo-random sequences. In this subsection, they will be described
separately. The hyperchaotic Lü equation can be described as follows [2]:

dαx

dtα
= a1(y − x) + z,

dαy

dtα
= −xz + c1y,

dαz

dtα
= −b1z + xy,

dαw

dtα
= d1w + xz,

(2.1)

where x, y, z, w are the state variables and a1, b1, c1, d1 are the parameters. It has
a hyperchaotic attractor when a1 = 36, b1 = 3, c1 = 20, d1 = −0.4, α = 0.95. The
hyperchaotic attractor is shown in Figure 1.
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Figure 1. The attractor of the hyperchaotic Lü system.

Similarly, the fractional-order hyperchaotic Lorenz system is given by

dβx

dtβ
= a2(y − x) + w,

dβy

dtβ
= −xz + c2x− y,

dβz

dtβ
= −b2z + xy,

dβw

dtβ
= r2w − xz,

(2.2)

where a2 = 10, b2 = 8/3, c2 = 28, d2 = −1, β = 0.95, and system (2.2) exhibits
a hyperchaotic behavior, as described in [16]. Furthermore, the fractional-order
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hyperchaotic Chen system is in the form of

dγx

dtγ
= a3(y − x) + w,

dγy

dtγ
= −xz + b3x− c3y,

dγz

dtγ
= −d3z + xy,

dγw

dtγ
= r3w + xz,

(2.3)

and, when a3 = 35, b3 = 7, c3 = 12, d3 = 0.5, γ = 0.95, it has a hyperchaotic
attractor [4].

3. Encryption scheme based on the combination of
fractional-order hyperchaotic systems

3.1. Generation of the variable initial values and parameters

Chaotic systems are sensitive to the initial values and parameters. In order to
improve the security of a designed scheme, the key point is to keep the initial values
dynamic, which associates to the original image.

SHA-256 is a widely used cryptographic hash function with 256-bit hash value
in cryptography [8]. The 256-bit hash value generated from the original image is
divided into 8-bit blocks ki (i = 1, 2, . . . , 32), so they are used to regenerate the
initial values and parameters. For example, the new initial values and parameters
are given as follows:

x
′

0 = x0 +
k1 ⊕ k2 ⊕ k3 ⊕ k4

256
, y

′

0 = y0 +
k5 ⊕ k6 ⊕ k7 ⊕ k8

256
,

z
′

0 = z0 +
k9 ⊕ k10 ⊕ k11 ⊕ k12

256
, w

′

0 = w0 +
k13 ⊕ k14 ⊕ k15 ⊕ k16

256
,

a
′

0 = a0 +
k17 ⊕ k18 ⊕ k19 ⊕ k20

256
, b

′

0 = b0 +
k21 ⊕ k22 ⊕ k23 ⊕ k24

256
,

d
′

0 = d0 +
k25 ⊕ k26 ⊕ k27 ⊕ k28

256
, r

′

0 = r0 +
k29 ⊕ k30 ⊕ k31 ⊕ k32

256
,

(3.1)

where x
′

0, y
′

0, z
′

0, w
′

0, a
′

0, b
′

0, d
′

0, r
′

0 are the new initial values and parameters, respec-
tively.

3.2. Design of the encryption scheme

In this subsection, a color image encryption scheme is investigated. A color image
could be decomposed into three colors (RGB). Assume that the image size is w×h
and the value of each pixel is an integer in the interval [0, 255].

First, a plain image (‘I’) is employed to scramble the original image (‘O’) by the
exclusive OR operation instead of encrypting an image using a chaotic sequences
directly. The detailed encryption algorithm is described as follows:

Step 1. There are a variety of options on image (‘I’), but it must be different from
the image (‘O’), where the size of images (‘I’) is also w × h. Image (‘I’) can be
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converted into IR, IG, IB, so the size of matrix (‘IR, IG, IB ’) is w×h too. Therefore,
the image (‘I’) is used to scramble the pixel values of image (‘O’). The encryption
procedure is according to the formula

PR(i, j) = OR(i, j)⊕ IR(i, j),

PG(i, j) = OG(i, j)⊕ IG(i, j),

PB(i, j) = OB(i, j)⊕ IB(i, j),

(3.2)

where i = 1, 2, . . . , w; j = 1, 2, . . . , h, and ⊕ is the exclusive OR operator. After
the operations of ‘XOR’ and ‘mod’, all the pixel values of image (‘O’) are changed,
therefore we get a scrambled image (‘P ’).

Step 2. We need to generate the pseudo-random sequences from hyperchaotic
systems by using the initial values and parameters in (2.1)(2.2)(2.3). The corre-
sponding pseudo-random sequences are shown as follows:

Xk = [x1, x2, . . . , xn], Y k = [y1, y2, . . . , yn],

Zk = [z1, z2, . . . , zn], W k = [w1, w2, . . . , wn],

where k = 1, 2, 3, n = w × h+ l, and w, h stand for the width and height of image
respectively, and l is the discarded former values of each sequence.

Step 3. The pseudo-random sequences generated from the fractional-order hyper-
chaotic Lü system are preprocessed according to formula

Xk
i = ((Xk

i+l − [Xk
i+l])× 105) mod 256,

Y k
i = ((Y k

i+l − [Y k
i+l])× 105) mod 256,

Zk
i = ((Zk

i+l − [Zk
i+l])× 105) mod 256,

W k
i = ((W k

i+l − [W k
i+l])× 105) mod 256,

(3.3)

where i = 1, 2, . . . , w×h, and [ ] is the rounding integer of Xk, Y k, Zk,W k. So, the
new pseudo-random sequences X1, Y 1, Z1,W 1 with length of w × h are integers in
the interval [0,256].

Similarly, the pseudo-random sequences generated from the fractional-order hy-
perchaotic Lorenz and Chen systems are preprocessed according to the formula
(3.3), therefore, we get random sequences X2, Y 2, Z2,W 2 and X3, Y 3, Z3,W 3,
which have good stochastic properties.

Step 4. From Step 3, we can now obtain a random sequence via a combination
of the random sequences. Select any three random sequences from X1, Y 1, Z1,W 1,
X2,Y 2,Z2,W 2 and X3,Y 3,Z3,W 3, and combine them into new sequences C1,C2,C3.
For instance, one combination is given by

CR = (X1 + Y 2 + Z3) mod 256,

CG = (Y 1 + Z2 +W 3) mod 256,

CB = (Z1 +W 2 +X3) mod 256.

(3.4)

Furthermore, the new pseudo-sequences CR, CG, CB are rearranged into three
matrices C

′

R, C
′

G, C
′

B, respectively, whose sizes are also w × h.
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Step 5. Modify the pixel values for RGB color components of the image (‘P ’) by
the formulas 

P
′

R(i, j) = PR(i, j)⊕ C
′

R(i, j),

P
′

G(i, j) = PG(i, j)⊕ C
′

G(i, j),

P
′

B(i, j) = PB(i, j)⊕ C
′

B(i, j).

(3.5)

The pixel values of image (‘P ’) are completely diffused by the pseudo-sequences
C

′

R, C
′

G, C
′

B , so that we get the resulting encryption image (‘P
′
’) via the exclusive

OR operation.

The flowchart of the encryption process is shown in Figure 2.

Figure 2. The procedure of image encryption.

Remark 3.1. For the initial values of fractional-order hyperchaotic systems, they
are usually set by the user. In Subsection 3.1, SHA-256-bit hash function is em-
ployed to generate new initial values, which are unique. Therefore, the secret key is
dynamic and relates to the original image. Accordingly, the proposed scheme has a
good effect on resisting the differential attack.

Remark 3.2. The fractional-order hyperchaotic systems are used to produce four
pseudo-random sequences. However, the color image has three RGB colors. So,
we only need to choose any three sequences generated from Xk, Y k, Zk,W k (k =
1, 2, 3). From the perspective of cryptography, this would expand the key space of
the scheme.

Remark 3.3. In Step 1, a plain image (‘I’) is randomly chosen to scramble the
pixel values of the original image, and it is known in advance.
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3.3. Design of the decryption scheme

At the receiver side, the image (‘P
′
’) is decrypted by the same pseudo-random

sequences generated from a combination of fractional-order Lü, Lorenz and Chen
hyperchaotic system. The decryption procedure is similar to the encryption process,
with the reversed order, and the decryption procedure consists of the following two
steps:

Step 1. We need to get a correct key including initial values and parameters, and
use it to generate pseudo-random sequences from the combined fractional-order
hyperchaotic systems. According to the encryption steps, reprocess the pseudo-
sequences, then decipher the image (‘P

′
’). Thus, we get the deciphered image

(‘P ’).

Step 2. The plain image (‘I’) is known, so the original image (‘O’) can be recovered
according to the reverse algorithm of the encryption in Step 1 if the secret key is
correct.

However, it can not be deciphered correctly if initial values or parameters are
incorrect. More about security analyses and key sensitivities will be discussed in
Section 5.

(a) The original image ‘O’ (b) The image ‘I’
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Figure 3. The images and the corresponding histograms
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4. Experimental results

This experiment is based on the platform of Matlab R2011a, and the results of
simulations show the feasibility of the proposed scheme.

The variables initial values of the fractional-order hyperchaotic Lü system are
set by

x1
0 = 1.2157, y10 = 3.0436, z10 = 1.8573, w1

0 = 2.9458.

Meanwhile, the variables initial values of the hyperchaotic Lorenz and Chen
system are chosen as:

x2
0 = 2.2254, y20 = 5.5124, z20 = 2.2458, w2

0 = 1.2408,

x3
0 = 0.5124, y30 = 2.5278, z30 = 0.8192, w3

0 = 4.5281.

The familiar ‘Lena.bmp’ is chosen as the original image (‘O’), and the plain
image (‘I’) is ‘Pepper.bmp’. They are shown in Figure 3 respectively, whose sizes
are set as 300× 300.

In Step 1, the image ‘Lena.bmp’ is confused as shown in Figure 4(a), which is
blurred and confused. Then, the image ‘P ’ is also encrypted as described in the
previously encryption Steps 2-5. Finally, we get the resulting encrypted image.
The resulting encrypted images and histograms are shown in Figure 4. Without
any encryption, the image histograms are different and uneven. However, after the
encryption of Steps 2-5, the histogram becomes much evenly as shown in Figure 4
(d).

(a) The first encrypted image (b) The resulting encrypted image
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(d) The histogram of ‘P
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Figure 4. The encrypted images and corresponding histograms



A method for image encryption 205

5. Security analyses

Here, several security tests are employed to verify the effectiveness of the new image
encryption scheme.

5.1. Key space analysis

The high sensitiveness to initial conditions and parameters has a significant advan-
tage in secure communications. It would provide a large enough key space against
the brute force attacks.

In this encryption algorithm, system initial values, parameters values, derivative
order of the fractional-order hyperchaotic systems, and the plain image (‘I’) are
secret keys. For the initial conditions x2

0, y
2
0 , z

2
0 , w

2
0 of the hyperchaotic Lorenz

system, if the precision is 10−14, the key space size will be 1056. In our scheme,
the initial values key space size is above 1014×4×3, the parameter key space size is
above 1014×3, and the derivative order can also create a larger key space. So, the
total key space is more than S ≈ 1014×4×3 = 10210, which is large enough to resist
brute-force attacks.

5.2. Key sensitivity analyses

We know that the secret key sensitivity play a decisive role on the key space, so the
high sensitiveness of initial values will enlarge the key space and improve the security
of the encryption scheme. One mismatch digit of initial values is used to decipher
the encrypted image, for instance, using the initial value x1

0 = 1.21570000000001,
which is a little bigger than x1

0 = 1.2157, and the other initial values keep matched.
The deciphered image is shown in Figure 5 (a), from which one couldn’t find any
useful information. Therefore, if the secret keys value is changed a little, then the
decrypted image is absolutely different from the original image. Meanwhile, if one
of the initial values xi

0, y
i
0, z

i
0, w

i
0 (i = 1, 2, 3) is mismatched, then the deciphered

image is blurred such that one can’t get any useful information.
Similarly, choose one parameter, whose value is a little bigger than the standard

parameters of equations (2.1) (2.2) (2.3), such as a = 35.00000000000001, while
the others keep matched. Simulations show that the original images couldn’t be
recovered by using a wrong secret key, and Figure 5 (b) is an example for the
results. In addition, if the order α = 0.96, the recovered image shown in Figure 5(c)
is blurred too.

Table 1. Differences between cipher images produced by slightly different keys

Decryption keys Differences
ratio (%)x1=1.2157 y1=3.0436 z1=1.8573 w1=2.9258 a=35 α=0.95

+10−14 0 0 0 0 0 93.8211
0 +10−14 0 0 0 0 93.9370
0 0 +10−14 0 0 0 93.4130
0 0 0 +10−14 0 0 93.8562
0 0 0 0 +10−14 0 99.6325
0 0 0 0 0 0.01 99.5825

The differences between the corresponding ciphered images are computed and
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given in Table 1. The results obviously demonstrate that the ciphered images exhibit
no similarity and there isn’t significant correlation that could be observed from the
differential images.

(a) Incorrect initial value (b) Incorrect parameter (c) Incorrect derivative order

Figure 5. The deciphered images with incorrect secret keys

5.3. Differential attack

A good secure communication should resist all kinds of attacks, such as differential
attack. The criteria of NPCR and UACI are used to examine the encryption scheme
in resisting the differential attack. The formulae of calculating NPCR and UACI
are given as follows [1]:

NPCR =

∑
i,j D(i, j)

W ×H
× 100%,

UACI =
1

W ×H
[

∑
i,j |C0(i, j)− C

′

1(i, j)|
255

]× 100%,

where W and H represent the width and height of the image, C0(i, j) and C1
′(i, j)

are respectively the ciphered image before and after one pixel of the plain image is
changed, and D(i, j) are defined by:

D(i, j) =

{
1, if C0(i, j) ̸= C

′

1(i, j) ,

0, if C0(i, j) = C
′

1(i, j).
(5.1)

The test results are shown in Table 2. From Figure 4(b), the NPCR is over 99%
and the average UACI is over 33%, so the encryption scheme is very sensitive with
respect to the little change in the plain image. In our scheme, a simple plain image
(‘I’) is employed to scramble the pixel values of the original image. Compared with
the NPCR, to some extent, the effects of encryption are better than the method
proposed by Hussain et al. [5]. Although the images used in this scheme are dif-
ferent from other references, test results may be largely identical with only minor
differences.

5.4. Statistical analysis

The correlation coefficients of images can be used to measure the effectiveness of
an encryption algorithm. In order to calculate the correlation coefficient of two
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Table 2. NPCR and UACI of ciphered images by changing their original images by one bit.

Images
NPCR(%) UACI(%)

R G B Ave. R G B Ave.
Figure 4(a) 0.0017 0.0008 0.0015 0.0013 0.0004 0.0004 0.0004 0.0004
Figure 4(b) 99.6100 99.6311 99.6177 99.6196 33.3403 33.2045 33.2496 33.2648
Ref. [5] 94.6836 95.6835 98.6810 — 33.4647 34.5048 35.4999 —

adjacent pixels, we randomly select 5000 pairs of adjacent pixels to calculate it
according to the following formula:

rxy =
cov(x, y)√
D(x)

√
D(y)

, where cov(x, y) =
1

N

N∑
i=1

(xi − E(x))(yi − E(y)),

E(x) =
1

N

N∑
i=1

xi, D(x) =
1

N

N∑
i=1

(xi − E(x))2.

Table 3 shows the correlation coefficients of the original image (‘O’) and the ciphered
image (‘P ’). The correlation coefficients of the original image are nearly 1, implying
that the image has good relevancy. After encryption, the correlation coefficients are
close to zero, implying that the ciphered image has been well encrypted.

Table 3. Correlation coefficients of adjacent pixels in different images

Vertical Horizontal Diagonal

Plain Lena
Figure 3(a)

Red 0.9769 0.9522 0.9318
Green 0.9745 0.9552 0.9370
Blue 0.9531 0.9117 0.8767

Ciphered Lena
Figure 4(a)

Red 0.4512 0.5611 0.4825
Green 0.6397 0.6737 0.5959
Blue 0.4311 0.5184 0.4151

Ciphered Lena
Figure 4(b)

Red -0.0242 0.0018 0.0171
Green 0.0241 0.0094 -0.0074
Blue -0.0076 -0.0115 0.0121

5.5. Information entropy

In 1949, Shannon firstly introduced the information entropy, which was a mathemat-
ical property that reflects the randomness and the unpredictability of an information
source [14]. The entropy of information H(s) is defined as

H(s) = −
∑2N−1

i=0 P (si) log2 P (si),

where s is the source, N is the number of bits to represent the symbol si, and P (si)
is the probability of the symbol si. For a truly random source consisting of 2N

symbols, the entropy is N . Therefore, for an effective cryptosystem, the entropy
of the ciphered image with 256 gray levels should ideally be 8. The information
entropies are calculated and listed in Table 4.

From Table 4, where three different images are chosen as test objects, the results
show that the information entropies could approach the theoretical value 8. So, in-
formation leakage in the encryption procedure could be negligible and the proposed
algorithm is secure against entropy analysis.
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Table 4. Entropies of the original images and encryption results

Plain image Ciphered images
Original First encrypted Resulting encrypted
image images images

lena 7.2898 7.9268 7.9979
Baboon 2.8413 7.5589 7.9976
Barb 7.7340 7.9185 7.9978

6. Conclusions

In this paper, an image encryption method is proposed. The original image is scram-
bled by using a known image. Then, image is encrypted once again by the pseudo-
random sequences generated from the combined fractional-order hyperchaotic sys-
tems. Experiments demonstrate that the scheme is suitable for image encryption
with the same size in batches. Some security tests are discussed to show the ef-
fectiveness of the new scheme. The key space is large enough to resist brute force
attacks. For chaos-based secure communications, in the future, we will investigate
some better algorithms and use other high-dimensional hyperchaotic systems.
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state feedback control, Physica A: Statistical Mechanics and its Applications,
364(2006), 103-110.

[3] K. Diethelm, N.J. Ford and A.D. Freed, A predictor-corrector approach for the
numerical solution of fractional differential equations, Nonlinear Dyn, 29(2002),
3-22.

[4] A. S. Hegazia and A. E. Matouk, Dynamical behaviors and synchronization in
the fractional order hyperchaotic Chen system, Applied Mathematics Letters,
24(2011), 1938-1944.

[5] I. Hussain, T. Shah and M. A. Gondal, Image encryption algorithm based
on PGL(2,GF(28)) S-boxes and TD-ERCS chaotic sequence, Nonlinear Dyn,
70(2012), 181-187.

[6] E. N. Lorenz, Deterministic nonperiodic flow, J Atmospheric Sciences,
20(1963), 130-141.
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