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Abstract It is of great importance to estimate the unknown parameters and
time delays of chaotic systems in control and synchronization. This paper is
concerned with the uncertain parameters and time delays of chaotic systems
corrupted with random noise. Parameters and time delays of such chaotic
systems are estimated based on the improved particle swarm optimization
algorithm for its global searching ability. Numerical simulations are given to
show satisfactory results.
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1. Introduction

Since the emergence of chaos, it has been found that chaos can be widely applied
in many fields such as secure communication, data encryption, flow dynamics and
biomedical engineering. Hyperchaos is usually described by a chaotic system with
more than one positive Lyapunov exponent [15, 16], which was first reported by
Rössler in 1979 [16]. For the reason that the dynamic behaviors of hyperchaotic
systems are difficult to predict and for the great potential of hyperchaos in tech-
nological applications, increasing attention has been paid to hyperchaotic systems.
Many hyperchaotic systems have been discovered and developed so far, such as the
hyperchaotic Rössler system [17], hyperchaotic Chen system [9], and hyperchaotic
Lü system [2].

Recently, parameter estimation of chaotic systems has been a hot research topic
in the fields of nonlinear science, computer science and artificial intelligence. Usu-
ally, the parameters of chaotic systems are assumed to be fully or partially known.
However, in real situations, these parameters are not exactly known. Therefore, it
is necessary to estimate the unknown parameters of chaotic systems in applications.
Many optimization methods [3,7,12,13,20–22] have been proposed to estimate the
unknown parameters of chaotic systems. Recently, Gao et al. put forward a novel
method using particle swarm intelligence and differential evolution (DE) algorithm
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to estimate the unknown parameters of chaotic systems corrupted with random ini-
tial noise [5,6]. However, to the best of our knowledge, very few researches have been
done to estimate the unknown time delays and parameters of noisy hyperchaotic
systems.

Since the 1990s, the study of swarm intelligence has attracted a lot of inter-
est. As a typical implementation pattern of swarm intelligence, the particle swarm
optimization (PSO) algorithm, proposed by Kennedy and Eberhart in 1995, is a
kind of efficient and powerful method with great potentiality. The PSO algorithm
is motivated by the behavior of organisms, such as fish schooling and bird flock-
ing. The PSO algorithm has several significant advantages, such as the simple
concept, easy implementation and quick convergence. Because of these properties,
the PSO algorithm has attracted much attention and is widely applied in various
fields [4, 10]. The PSO algorithm has a flexible and well-balanced mechanism to
enhance the global and local exploration abilities [1]. In addition, this algorithm is
capable of handling non-differentiable, nonlinear and multi-modal objective func-
tions, with easily chosen control parameters. Moreover, because of the simplicity
of the program and few parameters to be adjusted, the PSO algorithm has been
further developed rapidly in recent years, and many improved PSO algorithms have
been invented.

The purpose of this work is to estimate the unknown parameters and time de-
lays of noisy chaotic systems, such as the hyperchaotic Lorenz, Lü systems without
time-delay and Mackey-Glass chaotic system with time-delay. Moreover, an im-
proved PSO algorithm is applied to a proper nonnegative multi-modal numerical
optimization problem.

The rest of this paper is organized as follows. In Section 2, a brief view of
an improved PSO algorithm is provided. The process of parameter estimation
is introduced in Section 3 to transfer the estimation problem into a multi-modal
nonnegative function’s optimization. Some simulation results are given in Section
4. Finally, conclusions are presented in Section 5.

2. Improved particle swarm optimization algorithm

The PSO algorithm is a kind of evolutionary computation based on the social be-
havior of organisms such as fish schooling and bird flocking, which is created by
Kennedy and Eberhart [8]. It can search the optimal solution through cooperation
and competition among the particles in a swarm. In PSO, the solution of a specific
optimization problem is regarded as a bird in the d-dimensional searching space,
and it is abstracted into a particle without quality and volume. All of the particles
have a fitness value determined by the optimized function, and each particle has a
velocity to decide its flying distance and direction. It is assumed that each particle
is aware of the experience of its own and neighboring particles, so it can adjust its
velocity and position iteratively.

The PSO algorithm initializes a group of random particles at first, and then the
particles could find a better solution (position) in the searching space iteratively.
Each particle in the d-dimensional searching space is characterized by two factors,
i.e. its position Xi = (xi,1, xi,2, ..., xi,d) and velocity Vi = (vi,1, vi,2, ..., vi,d), where
i denotes the ith particle in the swarm. Let Pi(t) = (pi,1, pi,2, ..., pi,d) denote the
best position found by i within t iteration steps. Pg(t) = (pg,1, pg,2, ..., pg,d) denotes
the best position among all particles in the swarm so far. Particles update their
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positions and velocities according to the following formulas:

vi,j(t+ 1) = wvi,j(t) + c1r1[pi,j − xi,j(t)] + c2r2[pg,j − xi,j(t)], (2.1)

xi,j(t+ 1) = xi,j(t) + vi,j(t+ 1), i = 1, 2, ..., n, (2.2)

where n denotes the number of particles in the swarm; Vi(t) and Xi(t) represent
the velocity and position of the ith particle in the solution space at the tth iteration
step, respectively; r1 and r2 are two random numbers uniformly distributed in
the range [0,1]; c1 and c2 are positive learning factors; w is the inertia weight
factor. Generally, the value of each component in Vi is controlled within the range
[Vmin, Vmax] to avoid excessive roaming of particles outside the searching space.
Each particle updates its individual best position Pi(t) and global best position
Pg(t) in the swarm according to Eqs. (2.1) and (2.2), and then finds the new position
and velocity. This process is repeated until a user-defined stopping criterion, usually
when the maximum iteration number tmax is reached.

According to the PSO procedure, the performance mainly depends on its pa-
rameters. It can be seen that the first part of Eq. (2.1) shows the influence of the
previous velocity, which is considered as the necessary momentum for particles to
roam across the searching space. The inertia weight w in Eq. (2.1) is the modulus
that controls the impact of the previous velocity on the current one. It can be seen
that w is a crucial parameter which influences the balance between the exploration
and exploitation in the PSO algorithm. Thus, a proper control of the inertia weight
is very important to find the optimum solution accurately and efficiently. In order
to achieve the balance between exploration and exploitation, w can be set to vary
adaptively in response to the objective function values of the particles. In this pa-
per, we apply the adaptive inertia weight factor (AIWF) [11] to Eq. (2.1) as an
improved PSO algorithm. AIWF is described as follows:

w =

wmin −
(wmax − wmin) ∗ (f − fmin)

(favg − fmin)
, f ≤ favg,

wmax, f > favg,

(2.3)

where wmax and wmin denote the maximum and minimum of w respectively, f
denotes the current value of the particles’ objective function, favg and fmin denote
the average value and the minimum of the fitness function.

According to Eq. (2.3), w varies depending on the value of the fitness function.
It shows that particles with low objective function values can be ’protected’ while
particles with objective values over the average objective function will be ’disrupted’.
In other words, good particles tend to perform exploitation to refine results by local
searching, while bad particles tend to perform large modification to explore space
with a large step. Thus, AIWF provides a good way to maintain population diversity
and to sustain good convergence capacity.

3. Parameter estimation for noisy chaotic systems

Generally, chaotic systems are described by a set of nonlinear differential equations.
In this paper, two kinds of noisy chaotic systems are considered.
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3.1. Parameter estimation for chaotic systems without time
delays

Considering the following n-dimensional chaotic system described by an ordinary
differential equation (ODE):

ẋ = f(x(t), x0, θ), (3.1)

where x(t) = (x1(t), x2(t), ..., xn(t))T ∈ Rn denotes the state vector and x0 =
(x10, x20, ..., xn0)+rand is the initial state vector with random noise, θ = (θ1, θ2, ..., θd)

T

is the systematic parameters. The unknown parameter θ is to be estimated.
Suppose the structure of system (3.1) is known. Then, the estimated system

can be written as

˙̃x = f(x̃(t), x0, θ̃), (3.2)

where ˙̃x(t) = ( ˙̃x1(t), ˙̃x2(t), ..., ˙̃xn(t))T ∈ Rn is the state vector of system (3.1),
θ̃ = (θ̃1, θ̃2, ..., θ̃d)

T is the systematic parameters to be estimated.
To estimate the unknown parameters, an objective function is defined:

J =

N∑
k=1

‖xk − x̃k‖2, (3.3)

where k = 1, 2, ..., N is the sampling time point, N denotes the length of data used
for parameter estimation, xk and x̃k (k = 1, 2, ..., N) denote the state vectors of the
original and the estimated system at time k, respectively. The parameter estimation
for system (3.1) can be achieved by searching suitable θ∗ such that the objective
function (3.3) is minimized, i.e.

θ∗ = arg min
θ∈Γ

J, (3.4)

where Γ is the searching space admitted for parameters.
In this paper, the above improved PSO algorithm is employed to estimate the

unknown parameter θ of system (3.1).
To explain the parameter estimation method, we take the hyperchaotic Lorenz

system [23] for example. The new estimated system is constructed from the original
hyperchaotic Lorenz system:

ẋ = a(y − x) + w,
ẏ = cx− y − xz,
ż = xy − bz,
ẇ = −yz + rw,
X = (x, y, z, w),

→


˙̃x = ã(ỹ − x̃) + w̃,
˙̃y = c̃x̃− ỹ − x̃z̃,
˙̃z = x̃ỹ − b̃z̃,
˙̃w = −ỹz̃ + r̃w̃,

X̃ = (x̃, ỹ, z̃, w̃),

(3.5)

where a, b, c, and r are unknown parameters to be estimated.
Firstly, we initialize the parameters ã, b̃, c̃, r̃ randomly within the searching

range, which is set as 8 ≤ ã ≤ 12, 2 ≤ b̃ ≤ 5, 25 ≤ c̃ ≤ 30, −1.5 ≤ r̃ ≤ −0.1.
Secondly, we generate the initial state vector x0 with random noise in [−0.1, 0.1]4,

which follows behind a period of transient process. Then, we use the ODE solver [18]
in Matlab to solve system (3.5). Let the step size h = 0.01 in order to get a
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discrete-time series of system (3.5) at (x(t), y(t), z(t), w(t)), (x̃(t), ỹ(t), z̃(t), w̃(t)),
t = 0h, h, ..., 100h.

Thirdly, the objective function is chosen as:

F (θ̃) =

100h∑
t=0h

‖X̃ −X‖2. (3.6)

The function is optimized by the improved PSO algorithm repeatedly until the
termination condition is satisfied.

The system is hyperchaotic when a = 10, b = 8
3 , c = 28, and r = −1.
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Figure 1. Parameter estimation for the hyperchaotic Lorenz system (3.5) based on the improved PSO
algorithm.

3.2. Parameter estimation for chaotic systems with time de-
lays

Considering the following n-dimensional time-delay chaotic system described by
delay differential equation (DDE):

ẋ = f(x(t), x(t− τ), x0, θ), (3.7)

where x(t) = (x1(t), x2(t), ..., xn(t))T ∈ Rn denotes the state vector, x0 = (x10, x20, ...,
xn0) + rand denotes the initial state vector with random noise for t > τ , θ =
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Figure 2. Evolution process of absolute er-
rors of the unknown parameters for the hyper-
chaotic Lorenz system (3.5)
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Figure 3. Convergence trajectory of the objec-
tive function of the hyperchaotic Lorenz system
(3.5) based on the improved PSO algorithm

(θ1, θ2, ..., θd)
T is a set of original parameters. In this paper, the time-delay τ is

treated as a parameter to be estimated.
Suppose the structure of system (3.7) is known. Then, the estimated system

can be written as

˙̃x = f(x̃(t), x̃(t− τ̃), x0, θ̃), (3.8)

where ˙̃x(t) = ( ˙̃x1(t), ˙̃x2(t), ..., ˙̃xn(t))T ∈ Rn is the state vector of the estimated
system, θ̃ = (θ̃1, θ̃2, ..., θ̃d)

T is a set of parameters to be estimated, and τ̃ is the
estimated time delay.

Then, the objective function is constructed as:

(θ∗, τ∗) = arg min
(θ,τ)∈Γ

J, (3.9)

where Γ is the searching space admitted for parameters. And we estimate both the
parameters and time delays based on the improved PSO algorithm.

To explain the optimization process, we take the time-delay Mackey-Glass chaotic
system [14] for example. The new estimated system is constructed from the original
time-delay Mackey-Glass chaotic system:{

ẋ(t) = −αx(t) + βx(t−τ)
1+x(t−τ)10 ,

X = x,
→

{
˙̃x(t) = −α̃x̃(t) + β̃x̃(t−τ̃)

1+x̃(t−τ̃)10 ,

X̃ = x̃,
(3.10)

where τ, α, and β are unknown parameters to be estimated.
Firstly, we initialize the parameters τ̃ , α̃, β̃ randomly within the searching range,

which is set as 12 ≤ τ̃ ≤ 20, 0.05 ≤ α̃ ≤ 1, 0.05 ≤ β̃ ≤ 1.
Secondly, we generate the initial state vector x0 with random noise in [−0.1, 0.1],

which follows behind a period of transient process. Then, we use the DDE solver [19]
in Matlab to solve system (3.10). Let the step size h = 0.01 in order to get a
discrete-time series of system (3.10) at x(t), x̃(t), t = 0h, h, ..., 100h.

Thirdly, the objective function is chosen as:

F (θ̃) =

100h∑
t=0h

‖X̃ −X‖2. (3.11)
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The function is optimized by the improved PSO algorithm repeatedly until the
termination condition is satisfied.

When τ = 17, α = 0.1, β = 0.2, system (3.10) is chaotic.

4. Numerical simulations

In this section, three simulation examples are given to show the parameter esti-
mation for noisy chaotic systems, and to verify the effectiveness of the parameter
estimation method based on the improved PSO algorithm.
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Figure 4. Parameter estimation for the hyperchaotic Lü system (4.1) based on the improved PSO
algorithm

4.1. Simulations on noisy chaotic systems without time delays

We select two hyperchaotic systems, free of time delays, for numerical examples.
The first one is the noisy hyperchaotic Lorenz system (3.5), as described above.

In this example, the unknown parameters are estimated based on the improved PSO
algorithm. The estimated results of the parameters a, b, c, and r are shown in Fig.
1. The final estimated values are ã = 10, b̃ = 8

3 , c̃ = 28, and r̃ = −1. Thus, the
actual parameters are fully estimated. The changes of parameters’ absolute errors
are shown in Fig. 2. The objective function value converges to zero quickly, as
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Figure 6. Convergence trajectory of the ob-
jective function of the hyperchaotic Lü system
(4.1) based on the improved PSO algorithm

shown in Fig. 3. And the convergence result approaches to a value smaller than
10−6.

The second example is the hyperchaotic Lü system described by
ẋ = a(y − x) + w,
ẏ = −xz + cy,
ż = xy − bz,
ẇ = xz + dw,

(4.1)

where a, b, c, and d are unknown parameters to be estimated. The system is
hyperchaotic when a = 36, b = 3, c = 20, and d = 1.3. The chaotic behavior is
shown in Fig. 6. Let Γ̃ = (ã, b̃, c̃, d̃) ∈ [33, 39] × [1, 5] × [18, 22] × [0.5, 2.5]. The
initial state x0 is added with random noise in [−0.1, 0.1]4.

In this example, parameters are estimated based on the improved PSO algo-
rithm. The estimated results of parameters a, b, c, and d are shown in Fig. 4. The
final estimated values are ã = 36, b̃ = 3, c̃ = 20, and d̃ = 1.3. Thus, the actual
parameters are fully estimated. The changes of parameters’ absolute errors are
shown in Fig. 5. The convergence result of the objective function shown in Fig. 6
approaches 10−3. It can be seen that the objective function value converges to zero
quickly.

4.2. Simulations on time-delay noisy chaotic systems

We choose the time-delay Mackey-Glass chaotic system (3.10) with random noise
for the last numerical example.

In this example, the unknown parameters are estimated based on the improved
PSO algorithm. The estimated results of the parameters τ, α, and β are shown in
Fig. 7. The final estimated values are τ̃ = 17, α̃ = 0.1, and β̃ = 0.2. Thus, the
actual parameters are fully estimated. The changes of parameters’ absolute errors
are shown in Fig. 8. The objective function value converges to zero quickly, as
shown in Fig. 9. And the convergence result approaches a value smaller than 10−2.
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Figure 7. Parameter estimation for the Mackey-Glass chaotic system (3.10) based on the improved
PSO algorithm
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Figure 9. Convergence trajectory of the objec-
tive function of the noisy Mackey-Glass chaotic
system (3.10) based on the improved PSO al-
gorithm

5. Conclusions

In this paper, we investigated the parameter estimation problem for noisy chaotic
systems with unknown time delays and parameters based on an improved PSO
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algorithm. Simulation results on noisy hyperchaotic Lorenz and Lü systems and
the time-delay noisy Mackey-Glass chaotic system show that the improved PSO
algorithm can successfully estimate the time delays and parameters. Moreover, the
effectiveness and efficiency of the improved PSO algorithm are verified by numerical
examples.
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