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ANALYTICAL SOLUTION OF
TIME-FRACTIONAL TWO-COMPONENT

EVOLUTIONARY SYSTEM OF ORDER 2 BY
RESIDUAL POWER SERIES METHOD

Marwan Alquran

Abstract In this paper, we introduce and formulate a novel study of obtain-
ing the approximate solutions to the generalized time-fractional two-component
evolutionary system of order 2 subject to given constraints conditions based
on the generalized Taylor series formula. Here, a very recent technique based
on the so called residual power series method is extended to handle such sys-
tem. The solution methodology is based on generating the multiple fractional
power series expansion solutions in the form of a rabidly convergent series
with minimum size of calculations. A detailed description of the method is
given and the obtained results reveal that the technique is a new significant
method for exploring linear and nonlinear fractional models.

Keywords Generalized Taylor series, residual power series, time-fractional
two-component evolutionary system of order 2.
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1. Introduction

Fractional differentiation is natural generalization of notions of integer-order dif-
ferentiation and includes the n-th derivative as a particular case. There is still
a lack of geometric and physical interpretation of fractional-order operators com-
pared with the simple interpretations of their integer-order counterpart. More-
over, the definitions of the fractional-order derivative are not unique and there
exist several definitions, including: Grunwald-Letnikov, Riemann-Liouville, Weyl,
Riesz and Caputo sense. Therefore, authors have put their efforts to construct
and develop analytical and numerical methods to study the solutions of fractional
differential equations trying to provide a link of their findings to known classi-
cal integer-order case [20]. A few methods were extensively used in the litera-
ture based on its well-imposed simplicity and efficiency to handle some fractional
models appears in the applied sciences. Such methods are: Variational iteration
method and multivariate Pade approximations [21], Iterative Laplace transform
method [13], Adomian decomposition method [12, 17–19, 22], Homotopy analy-
sis method [10, 11], Laplace-Homotopy perturbation method [14], Decomposition
method [15] and Sumudu transform method [16].

In this context we offering the residual power series (RPS) method as an alter-
native technique to obtain analytic solutions of different types of fractional linear
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and nonlinear partial differential equations applied in mathematics, physics and
engineering. The RPS method was developed as an efficient method for determin-
ing values of coefficients of the power series solution for the first-order and the
second-order fuzzy deferential equations [1]. It has been successfully applied to
handle the numerical solution of the generalized Lane-Emden equation -which is-
a highly nonlinear singular differential equation [2], the solution of composite and
non-composite fractional deferential equations [3], predicting and representing the
multiplicity of solutions to boundary value problems of fractional order [4], con-
structing and predicting the solitary pattern solutions for nonlinear time-fractional
dispersive partial deferential equations [5], the approximate solution of the nonlinear
fractional KdV-Burgers equation [6], the approximate solutions of fractional popu-
lation diffusion model [7], and the numerical solutions of linear non-homogeneous
partial differential equations of fractional order [8]. The RPS method is effective and
easy to construct power series solution for strongly linear and nonlinear equations
without linearization, perturbation, or discretization. Different from the classical
power series method, the RPS method does not need to compare the coefficients
of the corresponding terms and a recursion relation is not required. This method
computes the coefficients of the power series by a chain of algebraic equations of
one or more variables. In fact, the RPS method is an alternative procedure for
obtaining analytic solutions for partial differential equations of fractional order. By
using residual error concept, we get a series solutions; in practice truncated se-
ries solutions. Moreover, the obtained solutions and all their time-space-fractional
derivatives are applicable for each arbitrary point and each multi-dimensional vari-
able in the given domain. On the other aspect as well, the RPS method does not
require any converting while switching from the low-order to the higher-order; as
a result the method can be applied directly to the given system by choosing an
appropriate initial guesses approximations.

The main objective of this paper is to present a new generalization of a two-
component evolutionary homogeneous system of order 2 by replacing the first order
time derivative by a fractional derivative of order α, 0 ≤ α ≤ 1, and takes the form

∂αu(x, t)

∂tα
= −3vxx(x, t),

∂αv(x, t)

∂tα
= uxx(x, t) + 4u2(x, t), (1.1)

where x and t are the space and time variables. Theoretically, α can be any pos-
itive number. Note that for α = 1, Equation (1.1) represents the standard two-
component evolutionary homogeneous system of order 2. To the best of our knowl-
edge this system is new and to be explored in this study by means of residual power
series method. The paper has been organized as follows. In Section 2, the fractional
power series is described. In Section 3, we derive a residual power series solution
to the time-fractional two-component evolutionary homogeneous system of order 2.
Graphical results regards the proposed system is presented in Section 4.

2. Fractional power series

In this section we re-introduce some needed parts from [3, 6, 7] regards fractional
power series. First, we should pointed here that the fractional derivative considered
in this study is of Caputo type. In Caputo case, the derivative of a constant is zero
and one can define, properly, the initial conditions for the fractional differential
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equations which can be handled by using an analogy with the classical integer
case [9].

Definition 2.1. For m to be the smallest integer that exceeds α, the Caputo
fractional derivatives of order α > 0 is defined as

Dαu(x, t) =
∂αu(x, t)

∂tα
=

{
1

Γ(m−α)

∫ t

0
(t− τ)m−α−1 ∂mu(x,τ)

∂τm dτ, m− 1 < α < m,
∂mu(x,t)

∂tm , α = m ∈ N.

Definition 2.2. A power series expansion of the form

∞∑
m=0

cm(t− t0)
mα = c0 + c1(t− t0)

α + c2(t− t0)
2α + ... 0 ≤ n− 1 < α ≤ n, t ≤ t0

is called fractional power series PS about t = t0.

Theorem 2.1. Suppose that f has a fractional PS representation at t = t0 of the
form

f(t) =
∞∑

m=0

cm(t− t0)
mα, t0 ≤ t < t0 +R.

If Dmαf(t), m = 0, 1, 2, .. are continuous on (t0, t0 +R), then cm = Dmαf(t0)
Γ(1+mα) .

Definition 2.3. A power series expansion of the form

∞∑
m=0

fm(x)(t− t0)
mα

is called multiple fractional power series PS about t = t0.

Theorem 2.2. Suppose that u(x, t) has a multiple fractional PS representation at
t = t0 of the form

u(x, t) =
∞∑

m=0

fm(x)(t− t0)
mα, x ∈ I, t0 ≤ t < t0 +R.

If Dmα
t u(x, t), m = 0, 1, 2, .. are continuous on I × (t0, t0 +R), then

fm(x) =
Dmα

t u(x, t0)

Γ(1 +mα)
.

From the last theorem, it is clear that if n+1-dimensional function has a multiple
fractional PS representation at t = t0, then it can be derived in the same manner.
i.e.

Corollary 2.1. Suppose that u(x, y, t) has a multiple fractional PS representation
at t = t0 of the form

u(x, y, t) =
∞∑

m=0

gm(x, y)(t− t0)
mα, (x, y) ∈ I1 × I2, t0 ≤ t < t0 +R.

If Dmα
t u(x, y, t), m = 0, 1, 2, .. are continuous on I1 × I2 × (t0, t0 +R), then

gm(x, y) =
Dmα

t u(x, y, t0)

Γ(1 +mα)
.
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3. Residual power series (RPS) for time-fractional
evolutionary homogeneous system of order 2

Consider the time-fractional two-component evolutionary system

Dα
t u(x, t) = −3vxx(x, t),

Dα
t v(x, t) = uxx(x, t) + 4u2(x, t), (3.1)

subject to the initial conditions:

u(x, 0) = f(x),

v(x, 0) = g(x). (3.2)

We aim to derive the solution of the above system by substituting its power series
(PS) expansion among its truncated residual function [1–3]. From the resulting
equation a recursion formula for the computation of the coefficients is derived,
while the coefficients in the fractional PS expansion can be computed recursively
by recurrent fractional differentiation of the truncated residual function.

The RPS method propose the solution for Eqs. (3.1-3.2) as a fractional PS
about the initial point t = 0

u(x, t) =

∞∑
n=0

fn(x)
tnα

Γ(1 + nα)
,

v(x, t) =
∞∑

n=0

gn(x)
tnα

Γ(1 + nα)
, 0 < α ≤ 1, x ∈ I, 0 ≤ t < R. (3.3)

Next, we let uk(x, t), vk(x, t) to denote the k-th truncated series of u(x, t), v(x, t),
respectively, i.e.

uk(x, t) =
k∑

n=0

fn(x)
tnα

Γ(1 + nα)
,

vk(x, t) =

k∑
n=0

gn(x)
tnα

Γ(1 + nα)
, 0 < α ≤ 1, x ∈ I, 0 ≤ t < R. (3.4)

It is clear that by condition (3.2) the 0-th RPS approximate solutions of u(x, t) and
v(x, t) are

u0(x, t) = f0(x) = u(x, 0) = f(x),

v0(x, t) = g0(x) = v(x, 0) = g(x). (3.5)

Also, Eqs. (3.4) can be written as

uk(x, t) = f(x) +
k∑

n=1

fn(x)
tnα

Γ(1 + nα)
,

vk(x, t) = g(x) +

k∑
n=1

gn(x)
tnα

Γ(1 + nα)
,

0 < α ≤ 1, x ∈ I, 0 ≤ t < R, k = 1, 2, 3, · · · . (3.6)
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Now, we define the residual functions, Resu, Resv, for Eqs. (3.1)

Resu(x, t) = Dα
t u(x, t) + 3vxx(x, t),

Resv(x, t) = Dα
t v(x, t)− uxx(x, t)− 4u2(x, t), (3.7)

and therefore, the k-th residual functions, Resu,k, Resv,k, are

Resu,k(x, t) = Dα
t uk(x, t) + 3

∂2

∂x2
vk(x, t),

Resv,k(x, t) = Dα
t vk(x, t)−

∂2

∂x2
uk(x, t)− 4u2

k(x, t). (3.8)

As in [1–3], Res(x, t) = 0 and limk→∞ Resk(x, t) = Res(x, t) for all x ∈ I and
t ≥ 0. Therefore, Drα

t Res(x, t) = 0 -fractional derivative of a constant in the
Caputo’s sense is 0- and the fractional derivative Drα

t of Res(x, t) and Resk(x, t)
are matching at t = 0 for each r = 0, 1, 2, · · · , k. To clarify the RPS technique: First,
we substitute the k-th truncated series of u(x, t), v(x, t) into Eqs. (3.8). Second,

we find the fractional derivative formula D
(k−1)α
t of both Resu,k(x, t), Resv,k, k =

1, 2, 3, · · · , and finally, we solve the obtained algebraic system

D
(k−1)α
t Resu,k(x, 0) = 0,

D
(k−1)α
t Resv,k(x, 0) = 0, 0 < α ≤ 1, x ∈ I, k = 1, 2, 3, · · · (3.9)

to get the required coefficients fn(x), gn(x), n = 1, 2, 3, · · · , k in Eqs. (3.6). Now,
we construct the following steps.

Step 1. To determine f1(x), g1(x), we consider (k = 1) in (3.8)

Resu,1(x, t) = Dα
t u1(x, t) + 3

∂2

∂x2
v1(x, t),

Resv,1(x, t) = Dα
t v1(x, t)−

∂2

∂x2
u1(x, t)− 4u2

1(x, t). (3.10)

But, u1(x, t) = f(x) + f1(x)
tα

Γ(1+α) and v1(x, t) = g(x) + g1(x)
tα

Γ(1+α) . Therefore,

Resu,1(x, t) = f1(x) + 3g′′(x) + 3g′′1 (x)
tα

Γ(1 + α)
,

Resv,1(x, t) = g1(x)− f ′′(x)− f ′′
1 (x)

tα

Γ(1 + α)
− 4

(
f(x) + f1(x)

tα

Γ(1 + α)

)2

.

(3.11)

From Eqs. (3.9) we deduce that Resu,1(x, 0) = 0, Resv,1(x, 0) = 0 and thus,

f1(x) = −3g′′(x),

g1(x) = f ′′(x) + 4f2(x). (3.12)

Therefore, the 1-st RPS approximate solutions are

u1(x, t) = f(x)− 3g′′(x)
tα

Γ(1 + α)
,

v1(x, t) = g(x) +
(
f ′′(x) + 4f2(x)

) tα

Γ(1 + α)
. (3.13)
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Step 2. To obtain f2(x), g2(x), we substitute the 2-nd truncated series u2(x, t) =

f(x)+f1(x)
tα

Γ(1+α) +f2(x)
t2α

Γ(1+2α) and v2(x, t) = g(x)+g1(x)
tα

Γ(1+α) +g2(x)
t2α

Γ(1+2α)

into the 2-nd residual function Resu,2(x, t) and Resv,2(x, t), i.e.

Resu,2(x, t) = Dα
t u2(x, t) + 3

∂2

∂x2
v2(x, t)

= f1(x) + f2(x)
tα

Γ(1 + α)
+ 3

(
g′′(x) + g′′1 (x)

tα

Γ(1 + α)
+ g′′2 (x)

t2α

Γ(1 + 2α)

)
(3.14)

and

Resv,2(x, t) = Dα
t v2(x, t)−

∂2

∂x2
u2(x, t)− 4u2

2(x, t)

=g1(x) + g2(x)
tα

Γ(1 + α)
−
(
f ′′(x) + f ′′

1 (x)
tα

Γ(1 + α)
+ f ′′

2 (x)
t2α

Γ(1 + 2α)

)
− 4

(
f(x) + f1(x)

tα

Γ(1 + α)
+ f2(x)

t2α

Γ(1 + 2α)

)2

. (3.15)

Applying Dα
t on both sides of Eqs. (3.14) and (3.15) gives

Dα
t Resu,2(x, t) = f2(x) + 3

(
g′′1 (x) + g′′2 (x)

tα

Γ(1 + α)

)
,

Dα
t Resv,2(x, t) = g2(x)−

(
f ′′
1 (x) + f ′′

2 (x)
tα

Γ(1 + α)

)
− 8

(
f(x) + f1(x)

tα

Γ(1 + α)
+ f2(x)

t2α

Γ(1 + 2α)

)
·
(
f1(x) + f2(x)

tα

Γ(1 + α)

)
. (3.16)

By the fact that Dα
t Resu,2(x, 0) = 0 = Dα

t Resv,2(x, 0) and solving the resulting
system in (3.16) for the unknown coefficient functions f2(x), g2(x), we get

f2(x) = −3g′′1 (x),

g2(x) = f ′′
1 (x) + 8f(x)f1(x). (3.17)

Therefore, the 2-nd RPS approximate solutions of system (3.1-3.2) has the form

u2(x, t) = f(x)− 3g′′(x)
tα

Γ(1 + α)
− 3g′′1 (x)

t2α

Γ(1 + 2α)
,

v2(x, t) = g(x) + (f ′′(x) + 4f2(x))
tα

Γ(1 + α)
+ (f ′′

1 (x) + 8f(x)f1(x))
t2α

Γ(1 + 2α)
.

(3.18)

Step 3. In this step we first derive f3(x). Substitute the 3-rd truncated series

u3(x, t) = f(x) + f1(x)
tα

Γ(1+α) + f2(x)
t2α

Γ(1+2α) + f3(x)
t3α

Γ(1+3α) and v3(x, t) = g(x) +

g1(x)
tα

Γ(1+α)+g2(x)
t2α

Γ(1+2α)+g3(x)
t3α

Γ(1+3α) into the 3-rd residual functionResu,3(x, t),
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i.e.

Resu,3(x, t)

= Dα
t u3(x, t) + 3

∂2

∂x2
v3(x, t)

= f1(x) + f2(x)
tα

Γ(1 + α)
+ f3(x)

t2α

Γ(1 + 2α)

+ 3

(
g′′(x) + g′′1 (x)

tα

Γ(1 + α)
+ g′′2 (x)

t2α

Γ(1 + 2α)
+ g′′3 (x)

t3α

Γ(1 + 3α)

)
. (3.19)

Applying D2α
t on both sides of Eq. (3.19) yields

D2α
t Resu,3(x, t) = f3(x) + 3

(
g′′2 (x) + g′′3 (x)

tα

Γ(1 + α)

)
. (3.20)

By the fact that D2α
t Resu,3(x, 0) = 0 and solving the resulting equation in (3.20)

for the unknown coefficient function f3(x), we get

f3(x) = −3g′′2 (x). (3.21)

Now, to compute g3(x), we consider

Resv,3(x, t) = Dα
t v3(x, t)− 3

∂2

∂x2
u3(x, t)− 4u2

4(x, t)

= g1(x) + g2(x)
tα

Γ(1 + α)
+ g3(x)

t2α

Γ(1 + 2α)

− 3

(
f ′′(x) + f ′′

1 (x)
tα

Γ(1 + α)
+ f ′′

2 (x)
t2α

Γ(1 + 2α)
+ f ′′

3 (x)
t3α

Γ(1 + 3α)

)
− 4

(
f(x) + f1(x)

tα

Γ(1 + α)
+ f2(x)

t2α

Γ(1 + 2α)
+ f3(x)

t3α

Γ(1 + 3α)

)2

. (3.22)

Applying D2α
t on both sides of Eq. (3.22) yields

D2α
t Resv,3(x, t) = Dα

t (Dα
t (Resv,3(x, t)))

= g3(x)−
(
f ′′
2 (x) + f ′′

3 (x)
tα

Γ(1 + α)

)
− 8

(
f1(x) + ...+ f3(x)

t2α

Γ(1 + 2α)

)2

− 8

(
f(x) + ...+ f3(x)

t3α

Γ(1 + 3α)

)(
f2(x) + f3(x)

tα

Γ(1 + α)

)
. (3.23)

By solving D2α
t Resv,3(x, 0) = 0 we get

g3(x) = f ′′
2 (x) + 8(f(x)f2(x) + f2

1 (x)). (3.24)

Finally, we solve the system D3α
t Resu,4(x, 0) = 0, D3α

t Resv,4(x, 0) = 0 to obtain
the following results

f4(x) = −3g′′3 (x),

g4(x) = f ′′
3 (x) + 8(f(x)f3(x) + 3f1(x)f2(x)). (3.25)

By the above recurrence relations, we are ready to present some graphical results
regards the time-fractional two-component evolutionary system.
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4. Validity of the RPS

The purpose of this portion is to test the derivation of the residual power series
solutions of the system:

Dα
t u(x, t) = −3vxx(x, t), Dα

t v(x, t) = uxx(x, t) + 4u2(x, t), (4.1)

subject to the initial conditions:

u(x, 0) = f(x) = − 3

4(1 + cos(x))
, v(x, 0) = g(x) =

√
3

4
tan(

x

2
). (4.2)

Figure 1, represents the 4-th RPS approximate solution of the function u(x, t) for
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Figure 1. The 4-th RPS approximate solution of the function u(x, t): (a1) u4(x, t, α = 0.5), (b1)
u4(x, t, α = 0.75), (c1) u4(x, t, α = 1), (d1) u(x, t) for α = 1, −1 < x < 1, 0 < t < 0.2.

different values of the fractional order α. Figure 2, represents the corresponding
4-th RPS approximate solutions of the function v(x, t).

5. Conclusions

In this paper, a relatively new analytical iterative technique based on the residual
power series (RPS) is proposed to obtain an approximate solution to a nonlinear
time-fractional two-component evolutionary system of order 2. This method can
be used as an alternative to obtain analytic solutions of different types of fractional
linear and nonlinear partial differential equations applied in mathematics, physics,
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Figure 2. The 4-th RPS approximate solution of the function v(x, t): (a2) v4(x, t, α = 0.5), (b2)
v4(x, t, α = 0.75), (c2) v4(x, t, α = 1), (d2) v(x, t) for α = 1, −1 < x < 1, 0 < t < 0.2

and engineering. Efficacious computational algorithm is provided to guarantee the
procedure and to illustrate the theoretical statements of the present method in order
to show its potentiality, generality, and superiority for solving such systems. Graph-
ical results and numerical descriptions are presented to illustrate the solutions. As
future work, we will extend the RPS method to handle (2 + 1)-dimensional linear
and nonlinear space- and time-fractional physical models.
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