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BIFURCATION THEORY OF FUNCTIONAL
DIFFERENTIAL EQUATIONS: A SURVEY∗
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Abstract In this paper we survey the topic of bifurcation theory of functional
differential equations. We begin with a brief discussion of the position of bifur-
cation and functional differential equations in dynamical systems. We follow
with a survey of the state of the art on the bifurcation theory of functional
differential equations, including results on Hopf bifurcation, center manifold
theory, normal form theory, Lyapunov-Schmidt reduction, and degree theory.
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1. Introduction

A functional differential equation (FDE) describes the evolution of a dynamical
system for which the rate of change of the state variable depends on not only the
current but also the historical and even future states of the system. FDEs arise
very naturally in economics, life sciences and engineering, and the study of FDEs
has been a major source of inspiration for advancement in nonlinear analysis and
infinite dimensional dynamical systems. Therefore, FDEs provides an excellent the-
oretical platform to develop an interdisciplinary approach understanding complex
nonlinear phenomena via appropriate mathematical techniques. There are differ-
ent types of FDEs airing from important applications: delay differential equations
(DDEs) (also referred to as Retarded Functional Differential Equations, RFDEs),
Neutral Functional Differential Equations (NFDEs), and Mixed Functional Differ-
ential Equations (MFDEs). The classification depends on how the current change
rate of the system state depends on the history (the historical status of the state
only, or the historical change rate and the historical status), or depends on whether
the current change rate of the system state depends on the future expectation of
the system. Moreover, we will also see that the delay involved may also depend on
the system state, leading to DDEs with state-dependent delay.

The novelty and challenge of fundamental research in the field of FDEs has
often been under appreciated. This is specially so in our effort describing the qual-
itative behaviours of solutions near equilibria or periodic orbits: these qualitative
behaviours can be derived from those of finite dimensional (ordinary differential)
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systems obtained through a center and center-unstable manifold reduction process,
and hence the (local) bifurcation theory which deals with the significant change
of these qualitative behaviours is in principle a consequence of the corresponding
theory for finite dimensional ordinary differential equations (ODEs). The highly
nontrivial and often lengthy calculation of center manifold reduction however not
only leads to enormous duplication of calculation efforts, but also prevent us from
discovering simple and key mechanisms behind observed bifurcation phenomena due
to the infinite dimensionality of FDEs. This in turns makes it difficult to express
bifurcation results explicitly in terms of model parameters and to compare and
validate different results. Another challenge is the study of the birth and global
continuation of bifurcation of periodic solutions and the coexistence of multiple pe-
riodic solutions when the parameters are away from the bifurcation/critical values.
There has been substantial progress dedicated to this global bifurcation problem,
remarkably the presence of a delayed or advanced argument in the nonlinearity
can sometimes facilitate the application of topological methods such as equivalent
degrees to examine the global continua of branches of periodic solutions, and has in-
spired interesting development of the spectral analysis of circulant matrices. In the
monograph [60], Guo and Wu summarized some practical and general approaches
and frameworks for the investigation of bifurcation phenomena of FDEs depending
on parameters.

The subsequent sections are devoted to the the art on the bifurcation theory
of FDEs, including center manifold theory, normal form theory, Lyapunov-Schmidt
reduction, and degree theory. Our concluding section is devoted to an outlook.

2. Center Manifold Reduction

A center manifold at a given non hyperbolic equilibrium is an invariant manifold
of the considered differential equation which is tangent at the equilibrium point
to the (generalized) eigenspace of the neutrally stable eigenvalues. As the local
dynamic behavior transverse to the center manifold is relatively simple, the poten-
tially complicated asymptotic behaviours of the full system are captured by the
flows restricted to the center manifolds.

Center manifold theory plays an important role in the study of the stability of
dynamical systems when the equilibrium point is not hyperbolic. The combination
of this theory with the normal form approach was used extensively to study param-
eterized dynamical systems exhibiting bifurcations. The center manifold theorem
provides, in this case, a means of systematically reducing the dimension of the state
spaces which need to be considered when analyzing bifurcations of a given type.
In fact, after determining the center manifold, the analysis of these parameterized
dynamical systems is based only on the restriction of the original system on the
center manifold whose stability properties are the same as the ones of the full order
system.

The classical center manifolds theory of equilibria, since first is introduced by
Pliss [101] and Kelley [81] in the 1960’s and later is developed by Carr [22], Hirsch
et al. [66], Sijbrand [107], Guckenheimer and Holmes [44], Vanderbauwhede [114]
and others. For recent developments in the approximation of center manifolds see
Jolly and Rosa [78]. Use of this for the study of bifurcation problems owes a lot
to the paper of Lanford [88]. Center manifold theory for equilibrium solutions to
MFDEs that was developed in [73].
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As a DDE generates a semiflow in an infinite dimensional Banach space, one
naturally first reduces the semiflow to a flow in the finite dimensional center man-
ifold, and then calculates the normal form of the reduced flow; See for exam-
ple, [47,50,51,56,58,59]. However, in most literatures [16,18–20,37,38], it is assumed
that the equilibrium point is always fixed at the origin. As stated before, this is not
true in a general physical system or an engineering problem. In the case where the
equilibrium point isn’t always fixed at the origin as the perturbation parameter α
varies, one may first ignore the perturbation parameter α and compute the center
manifold as well as normal form, and then add unfolding to the resulting normal
form. In other words, the normal form of the original system with parameters is
equal to the normal form of the reduced system plus the unfolding. This way it
greatly reduces the computation effort, with the cost that it does not provide the
nonlinear transformation between the original system and the normal form. See,
for example, [16, 18, 19], in the context of functional differential equations with
symmetries.

Guo and Man [57] provided a general framework to obtain the reduced equation
on the center manifold in the case where the equilibrium point isn’t always fixed at
the origin as the perturbation parameter varies. The approach of Guo and Man [57]
starts with the consideration of the structures of the center spaces associated with
finite subsets of eigenvalues of the infinitesimal generator for the linearized equations
of FDEs at the singularity, and then follows by enlarging the phase space in such
a way that FDEs can be rewritten as an abstract ODE in a Banach space. Then
the center manifold theorem for this abstract ODE can be employed to obtain
the reduced equation on the center manifold, which may inherit the symmetry of
the original system. This approach and general results can be illustrated by some
applications to fold and Bogdanov-Takens bifurcations.

3. Normal form theory

Normal forms theory provides one of the most powerful tools in the study of non-
linear dynamical systems, in particular, in the stability and bifurcation analysis. In
the context of finite-dimensional ordinary differential equations (ODEs), this theory
can be traced back as far as Euler. However, Poincaré [102] and Birkhoff [12] were
the first to bring forth the theory in a more definite form. Now, many systematic
procedures for constructing normal forms have been developed. A method of Lie
brackets is given in Chow and Hale [27], Takens [111] and Ushiki [113], a method
using an inner product in the space of homogeneous polynomials is given in Elphick
et al. [35] and Ashkenazi and Chow [6], a method for direct computations is given in
Bruno [15] and Chen and Della Dora [23], a method using the Carleman lineariza-
tion is given in Tsiligiannis and Lyberatos [112] and Chen and Della Dora [24].
The nilpotent case is treated in Cushman and Sanders [30] using the representation
theory of sl2(R). Recently, the normal form for a generalized Hopf bifurcation is
expressed as a 4-dimensional real system by Cushman and Sanders [31] and as a
2-dimensional complex system by Elphick et al. [35] and Iooss and Adelmeyer [74].

The basic idea of normal form consists of employing successive, near-identity,
nonlinear transformations, which leads to a differential equation in a simpler form,
qualitatively equivalent to the original system in the vicinity of a fixed equilibrium
point, thus hopefully greatly simplifying the dynamics analysis. As we develop the
method, three important characteristics should become apparent. (i) The method is
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local in the sense that the coordinate are generated in a neighborhood of a known so-
lution. For our purposes, the known solution will be an equilibrium. (ii) In general,
the coordinate transformations will be nonlinear of the dependent variables. How-
ever, the important point is that coordinate transformations are found by solving a
sequence of problems. (iii) The structure of the norm form is determined entirely by
the linear part of the vector field. A key notion in normal form reduction is that of
resonance. In particular, the Jacobian matrix of the system, evaluated at the equi-
librium point determines which monomials in the formal expansion of the system
are resonant and cannot be removed by any smooth coordinate transformation.

The principal difficulty in developing a normal form theory for FDEs is the fact
that the phase space is not finite dimensional. The first work in this direction, in
such a way to overcome this difficulty, is due to Faria and Magalhães [37, 38], who
considered an RFDE as an abstract ODE in an adequate infinite-dimensional phase
space which was first presented in the work of Chow and Mallet-Paret [28]. This
infinite dimensional ODE was then handled in a similar way as in the finite dimen-
sional case. Through a recursive process of nonlinear transformations, Faria and
Magalhães [37, 38] succeeded to reduce to a simpler infinite dimensional ODE so
defined as a normal form of the original RFDE. Faria and Magalhães [37, 38] illus-
trated that their method provides an efficient algorithm for approximating normal
forms for a RFDE directly without computing beforehand a local center manifold
near the singularity. This is important as this approach does not lead to the loss
of the explicit relationships between the coefficients in the normal form obtained
and the coefficients in the original RFDE. Guo, Chen, and Wu [49] developed an
effective approach to compute normal forms on sub-center manifolds for equivariant
FDEs near equilibria and use the normal forms to study the qualitative behavior of
solutions on those manifolds.

4. Lyapunov-Schmidt Reduction

Generally, particular types of solutions of a differential equation, such as a fixed
point, relative equilibrium, or a periodic orbit can be found by determining the
zeros of an appropriate map F and applying the Lyapunov-Schmidt procedure.
The Lyapunov-Schmidt reduction results in the so-called bifurcation equations, a
finite set of equations, equivalent to the original problem. This finite set of equations
may inherit the symmetry properties of the original system if the reduction is done
properly. For example, if we are looking for periodic solution, the map F has a
natural symmetry group S1 representing phase shifts along the periodic solution.

It would be interesting to know for what values of parameter, say α, solutions
of the bifurcation equation disappear or are created. These particular values of α
are called bifurcation values. Now there exists an extensive mathematical machin-
ery called singularity theory (see Golubitsky and Guillemin [41]) which deals with
such questions. Singularity theory is concerned with the local properties of smooth
functions near a zero of the function. It provides a classification of the various
cases based on codimension. The reason this is possible is that the codimension
k submanifolds in the space of all smooth functions having zeros can be described
algebraically by imposing conditions on derivatives of the functions. This gives us
a way of classifying the various possible bifurcations and of computing the proper
unfoldings.
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Lyapunov-Schmidt reduction is a very effective method to investigate the phe-
nomenon of Hopf bifurcation, which concerns the birth of a periodic solution from
an equilibrium solution through a local oscillatory instability. Stech [109] used the
Lyapunov-Schmidt reduction method and generalized a proof given by De Oliveira
and Hale [32] in the case of ODEs to infinite delay differential equations. Stech [109]
also gaves a computational scheme of bifurcation elements via an asymptotic ex-
pansion of the bifurcation function. Staffans [108] established the theorem in a
case analogous to Stech’s for neutral functional differential equations, using the
Lyapunov-Schmidt reduction method. Guo and Wu [61] presented a treatment of
resonant Hopf bifurcation for DDEs on the basis of Lyapunov-Schmidt reduction.
In the process explicit expressions in terms of the coefficients of the original systems
are obtained to determine whether either no branch, or one, or two branches of pe-
riodic solutions exist as the bifurcation parameter varies. With these expressions at
our disposal, the study of resonant Hopf bifurcation in concrete DDE system can
now be performed without having to resort to lengthy computations associated to
the center manifold reduction. This will be shown by a case study on the van der
Pol oscillator with delayed feedback in [61]. By means of a Lyapunov-Schmidt re-
duction, Guo, Lamb, and Rink [55] have addressed an elementary question whether
the monochromatic and bichromatic wave trains of the linear FPU lattice continue
to exist in the nonlinear lattice. This is a way of reducing an advance-delay dif-
ferential equations to a finite-dimensional bifurcation equation. This method was
extended by Zhang and Guo [121] to study the existence and branching patterns
of wave trains in a two-dimensional lattice with linear and nonlinear coupling be-
tween nearest particles and a nonlinear substrate potential. The works [55, 121]
also show how the particle-shift Z-equivariance, the time reversal symmetry, and
the Hamiltonian structure manifest themselves in the reduced bifurcation equation.

5. Degree theory

Many applications, including some bifurcation problems of functional differential
equations, lead to the problem of finding all zeros of a mapping f : U ⊆ X →
X, where X is some (real) Banach space. The basic idea of degree theory is as
follow. Given a (sufficiently smooth) domain U with enclosing Jordan curve ∂U ,
we have defined a degree deg(f, U, z0) = n(f(∂U), z0) = n(f(∂U) − z0, 0) ∈ Z,
which counts the number of solutions of f(z) = z0 inside U . The invariance of this
degree with respect to certain deformations of f allowed us to explicitly compute
deg(f, U, z0) even in nontrivial cases. Degree theory has been developed for various
classes of mappings. For relevant results on topological degree, see, for example,
[7, 8, 76, 77, 82–86, 86]. Moreover, similar ideas also appears in the definitions of
Fuller index. See, for example, Chow and Mallet-Paret [29].

In 1912, Brouwer [13] introduced the so-called Brouwer degree in Rn. See
Brouwder [14], Sieberg [106] for historical developments. In 1934, Leray and Schauder
[93] generalized Brouwer degree theory to an infinite Banach space and established
the so-called the Leray-Schauder degree. It turns out that the Leray-Schauder de-
gree is very powerful tool in proving various existence results for nonlinear differen-
tial equations. As in the previous section, we study nonlinear parameter-dependent
problem F (u, α) = 0, where F : E×R → X is a C1-map such that F (0, α) = 0 for all
α ∈ R, E ⊆ X is an open neighborhood of 0 (possibly E = X). Note that F (·, α) has
the trivial zero point for all values of α. We shall now consider the question of bifur-
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cation from this trivial branch of solutions and demonstrate the existence of global
branches of nontrivial solutions bifurcating from the trivial branch. If X = Rn, then
we use the Brouwer degree; if X is an infinite-dimensional (real) Banach space, then
we assume that F (x, α) = x+f(x, α) and that f : E×R → X is completely contin-
uous. Thus, for F (·, α) the Leray-Schauder degree is applicable. The application of
degree theory to bifurcation theory goes back to Krasnoselskii [191]. Global bifur-
cation theorem of the following type were first proved by Rabinowitz [251]. Several
generalizations have been given by Ize et al. [76, 77], Krawcewicz et al. [83–86, 86],
and Nussbaum et al. [97–100].

Similarly, the problem of finding a nontrivial periodic solution to a differential
equation can be solved by using the so-called S1-equivariant degree. Equivariant
degree theory was developped by Ize et al. [76, 77] and independently by Geba et
al. [40], which in the case of G-symmetric (with respect to a general compact Lie
group G) equation provides a topological tool to classify the solutions according to
their symmetry properties (in the same way as the Brouwer degree is applied to
equations without symmetries). This method provides an effective and complete
method for a full analysis of the symmetric Hopf bifurcation problems. It allows to
directly translate the equivariant spectral properties of the characteristic operator
(associated with the system) into a topological invariant containing the information
related to the occurrences of the Hopf bifurcation, the symmetric structure of the
bifurcating branches of non-constant periodic solutions, and their multiplicity. It is
important to point out, that in the case of a complete classification of a symmetric
Hopf bifurcation, it is necessary to use the full primary equivariant degree [8] of
the associated maps. The computations of such a full primary degree can be done
based on the standard properties and the so-called multiplication tables. Guo et
al. [48, 52, 53] employed S1-equivariant degree to investigate the spatio-temporal
patterns of nonlinear oscillations in ring networks with delay. Recently, Hu and
Wu [70,71] provided a general tool and framework for studying the Hopf bifurcation
problem, and in particular, the global continuation of local bifurcation of periodic
solutions of state-dependent DDEs from an equivariant-degree point of view.

6. Bifurcation of FDEs

For equilibria of flows, a (generic) codimension one bifurcation means that the
crossing of the stability region (the imaginary axis) is taking place with either one
eigenvalue of the linear part going through 0, or one pair of complex conjugate
eigenvalues crossing the imaginary axis. As pointed out repeatedly by Arnold [5],
examples of Hopf bifurcation can be found in the work of Poincaré [103]. The first
specific study and formulation of a theorem was due to Andronov [3]. However,
the work of Poincaré and Andronov was concerned with two-dimensional vector
fields. The existence of such a bifurcation was found in the context of a general n-
dimensional ODEs by Hopf [68] in 1942. This was before the discovery of the center
manifold theorem. For these reasons we usually refer to this kind of bifurcation as
Poincaré-Andronov-Hopf bifurcation.

In the seventies of last century, Hsu and Kazarinoff [69], Poore [104], Marsden
and McCracken [95] and others discussed in their works the computation of im-
portant features of the Hopf bifurcation, especially the direction of bifurcation and
dynamical aspects (stability, attractiveness, etc), both from theoretical and numer-
ical standpoints. A very important new achievement was the proof by Alexander
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and Yorke [2] of what is known as the global Hopf bifurcation theorem, which
roughly speaking describes the global continuation of the local branch. The the-
ory was also extended to allow further degeneracies (more than two eigenvalues
crossing the imaginary axis, or multiplicity higher than one, etc) leading notably to
the development of the generalized Hopf bifurcation theory (Bernfeld, Negrini and
Salvadori [9, 10], Negrini and Salvadori [96]).

The first results on Hopf bifurcation for retarded FDEs date back to work by
Chafee in 1971. However, according to Hale [62], the first proof of the Hopf bifurca-
tion theorem for RFDEs under analytically computable conditions was presented by
Chow and Mallet-Paret [28] in 1977. Since then, a considerable number of studies
have been done by many authors, treating many aspects related to bifurcation of pe-
riodic solutions. For existence, uniqueness and regularity of the bifurcating branch,
several approaches have been undertaken: the averaging method was notably de-
veloped by Gumowski [45] and Chow and Mallet-Paret [28]. Another approach,
based on integral manifolds, was developed by Hale [63] and was further extended
to the case of infinite delay by Stech [109]. Arino [4] treated the same problem by
formulating an adapted implicit function theorem. Adimy [1] proved a Hopf bifur-
cation theorem using the integrated semigroup theory. Diekmann et al. [33] tackled
the problem due to the lack of regularity of the solution operator associated with
a delay equation. Using the sun-star theory of dual semigroups, they reduced the
problem of bifurcation, on a center manifold, to a planar ODE. In [37,38], Faria and
Magalhães studied the Hopf bifurcation problem by developing a normal form the-
ory for retarded FDEs. Sieber [105] proved that periodic boundary-value problems
for DDEs are locally equivalent to finite-dimensional algebraic systems of equations
and then uses this equivalence theorem to provide a complete proof for the local
Hopf Bifurcation Theorem for state-dependent DDEs, including the regularity of
the emerging periodic orbits. Hu and Wu [70, 71] studied the Hopf bifurcation
problem of state-dependent DDEs from an equivariant degree point of view. By
means of S1-equivariant degree coupled with a higher dimensional Bendixson cri-
terion for ODEs due to Li and Muldowney [94], Wei and Li [116] established the
global extension of the local Hopf branch in a delayed Nicholson blowflies equation.

Local Hopf bifurcation theorems for evolution equation in a Banach space with
delays have been proved in [119] (see Theorem 4.6 on page 211) and Faria [36]. Hopf
bifurcating periodic solutions can be found by means of a center manifold (see, for
example, [17, 25, 72, 110]). In addition, dynamical behavior near spatially homoge-
neous equilibriums of diffusive systems has been investigated by some researchers.
However, the discussion of dynamical behavior near a spatially nonhomogeneous
steady-state solution is very difficult since the characteristic equation is no longer al-
gebraic equations. The pioneer work about the dynamics near a spatially nonhomo-
geneous steady-state solution is Busenberg and Huang [17]. Motivated by the idea
used in [17], some researchers investigated the existence, uniqueness, and stability
of spatially nonhomogeneous steady-state solutions for some 1-dimensional and 2-
dimensional population models (see, for example, [17,25,72,110]). In [17,25,72,110],
however, the authors did not investigate the multiplicity of spatially nonhomoge-
neous steady-state solutions. Different from Busenberg and Huang [17], Guo [46]
employed a Lyapunov-Schmidt reduction to investigate the existence, stability, and
multiplicity of spatially nonhomogeneous steady-state solution and periodic solu-
tions for a reaction-diffusion model with nonlocal delay effect and Dirichlet bound-
ary condition, which includes such systems investigated in [17, 25, 72, 110] and also
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some general systems with distributed delay as special cases. Moreover, Guo [46]
derived the formula to determine the bifurcation direction and the stability of Hopf
bifurcating periodic solutions.

If a system of FDEs is symmetric, i.e., it has a nontrivial group of symmetries,
one expects that the system has symmetric orbits, symmetric fixed points and pe-
riodic orbits, symmetric attractors or repellers. Also, symmetric steady states can
generate symmetric patterns in the state space of the system. In 1998, Wu [118] em-
ployed the same techniques as that in [62] to establish a Hopf bifurcation for RFDEs
with symmetry under the condition that the imaginary eigenspace is isomorphic to
the direct sum of two copies of the same absolutely irreducible representation. Guo
and Lamb [54] developed the theory of equivariant Lyapunov-Schmidt procedure in
NFDEs with symmetry to set up a more general equivariant Hopf bifurcation theory
and obtained some important explicit formulas giving the relevant coefficients for
the determinations of the monotone of the periods and Hopf bifurcation direction
of the bifurcating symmetric periodic solutions directly in terms of the coefficients
of the original equations.

Typically, branches of solutions bifurcate from the original equilibrium and are
approximated to leading order by the corresponding eigenfunctions at singulari-
ties, these branches are often referred to as modes. Generically we expect, in a
one-parameter system, to have only one critical mode. Multiple critical modes are
expected in systems with more than one parameter. A secondary bifurcation is
thought of as resulting from an interaction of several critical modes, called mode in-
teraction. Since there are two types of critical modes (steady-state and Hopf) there
may exist four types of mode interactions in two-parameter systems: (a) Bogdanov-
Takens bifurcations, (b) fold/fold bifurcation, (c) Hopf/fold, (d) Hopf/Hopf. For
example, the interaction of a fold bifurcation with a Hopf bifurcation can lead to
much richer dynamics than just the expected equilibria and periodic solutions, in-
cluding the possibility of an invariant 2-torus on which the flow may be periodic or
quasi-periodic, see Gavrilov [39], Langford [89], Guckenheimer [43], Iooss & Lang-
ford [75]. As this torus grows fatter, generic perturbations can also lead to chaotic
dynamics, see Holmes [67], Langford [90–92]. Recently, Guo and his coworkers ob-
tained stable or unstable equilibria, periodic solutions, quasi-periodic solutions, and
sphere-like surfaces of solutions in a two-coupled-neuron network [50], a ring net-
work [47, 58], and a hierarchically organized network [56]. A general mathematical
framework for a Bogdanov-Takens and a triple-zero (with geometric multiplicity
one) bifurcations of a general class of DDEs has been developed by Campbell and
Yuan [21] via a center manifold projection and derivation of the normal forms.

The Kaplan-Yorke’s method [79,80] has a clear advantage that it may change the
problem of finding periodic solutions of DDEs into the problem of finding periodic
solutions of associated Hamiltonian systems. This technique has been widely applied
in the literature, we refer to [11, 64, 65, 80, 117,120]. In particular, this method has
been developed by Han [64] to study Hopf and saddle-node bifurcations of periodic
solutions with certain periods.

The first results on bifurcation from periodic solutions in retarded FDEs dated
back to a work by Walther [115], who considered the bifurcation from slowly oscil-
lating periodic solutions of the following scalar retarded FDE

d

dt
x(t) = −αf(x(t− 1)) (6.1)

under some symmetry conditions on f . Dormayer [34] considered (6.1) with a class
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of nonmonotone functions f , periodic solutions y with the more general symme-
try: y(· + τ) = −y for some τ > 0, bifurcate from the primary branch at some
critical parameter. Their initial values lie on a smooth curve, and τ ̸= 2 except at
the bifurcation point. However, the relevant results in the aspect are rare. If an
equivariant FDE has a nontrivial periodic solution p(t) at some parameter value,
with (minimal) period ω with symmetry Σ. Then it is natural to ask these ques-
tions: What happens to the periodic solution p(t) when the parameter changes? Is
there any kinds of saddle-node bifurcation, period-doubling bifurcation, and Hopf
bifurcation? If yes, how to judge it? These seem to be open questions.

7. Discussion

In this paper we have presented a compact survey of the literature on bifurcation
theory of FDEs. FDEs with symmetry have certainly received a lot of interest in
recent years, and a lot of interesting results have been obtained. However, given the
importance and relevance of FDEs, there is still a range of problems to be tackled.
A theme throughout this survey has been the relation of dynamical systems to
delay dynamical systems. The main task for the future seems to be bringing the
bifurcation theory of FDEs to a similar maturity as that of ODEs.

On the other hand, the study of dynamical systems with symmetries has become
well established as a major branch of nonlinear systems theory. The current inter-
est in the field dates mainly back to the appearance of the equivariant branching
lemma of Vanderbauwhede and Cicogna [26] and the equivariant Hopf bifurcation
theorem of Golubitsky and Stewart [42], both of which are reviewed in the book by
Golubitsky, Stewart and Schaeffer. Since then important new theories have been
developed for more complex dynamical phenomena, including the existence, sta-
bility and bifurcations of systems of heteroclinic connections, and the symmetry
groups and bifurcations of chaotic attractors. To a large extent the phenomenal
growth in the subject has been due to its effectiveness in explaining the bifurca-
tions and dynamical phenomena that are seen in a wide range of physical systems
including coupled oscillators, reaction diffusion systems, convecting fluids and me-
chanical systems. A local symmetric bifurcation theory for FDEs can be derived
from that of ODEs, but since some special properties of spatiotemporal symmetry
of FDEs may be reflected generically in the reduced finite dimensional systems, one
can and should make general observation about the particular bifurcation patterns
of symmetric FDEs. Moreover, because the present theory for equivariant dynami-
cal systems is powerful and successful, it seems most desirable to adopt an approach
that smoothly connects to the theory for FDEs with symmetry. In order to achieve
this, the introduction of a more systematic use of group (representation) theory for
symmetry groups would be useful.

Other future directions of research might include the study of more general
space-time symmetries of FDEs, and symmetry properties of partial FDEs that
involve transformations of both the dependent and independent variables.
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−f(x(t), x(t− 1)), J. Differential Equations, 23(1977), 293–314.

[81] A. Kelley, The stable, center-stable, center, center-unstable and unstable man-
ifolds, J. Differential Equations, 3(1967), 546–570.

[82] M. A. Krasnosel’skii, Topological Methods in the Theory of Nonlinear Integral
Equations, Pergamon Press, New York, 1965.

[83] W. Krawcewicz and P. Vivi, Normal bifurcation and equivariant degree, Indian
J. Math., 42(2000), 55–68.

[84] W. Krawcewicz and J. Wu, Theory of Degrees with Applications to Bifurcations
and Differential Equations, CMS Series of Monographs, Wiley, New York, 1997.

[85] W. Krawcewicz and J. Wu, Theory and applications of Hopf bifurcations
in symmetric functional-differential equations, Nonlinear Analysis TMA,
35(7)(1999), 845–870.

[86] W. Krawcewicz and J. Wu, Theory of degrees with applications to bifurcations
and differential equations, Canadian Mathematical Society Series of Mono-
graphs and Advanced Texts, John Wiley & Sons, New York, 1997.

[87] W. Krawcewicz,J. Wu and H. Xia, Global Hopf bifurcation theory for con-
densing fields and neutral equations with applications to lossless transmission
problems, Canad. Appl. Math. Quart., 1(1993), 167–220.

[88] O.E. Lanford, Bifurcation of periodic perodic solutions into invariant tori: The
work of Ruelle and Takens, Nonlinear Problems in the Physical Sciences and
Biology, Lecture Notes in Mathematics, 322(1973), 159–192.

[89] W.F. Langford, Periodic and steady-state mode interactions lead to tori, SIAM
J. Appl. Math., 37(1979), 649–686.

[90] W.F. Langford, Chaotic dynamics in the unfoldings of degenerate bifurcations.
In: Proceedings of the International Symposium on Applied Mathematics and
Information Science, pp. 241–247, Kyoto University, Japan, 1982.

[91] W.F. Langford, A review of interactions of Hopf and steady-state bifurcations,
In: Nonlinear Dynamics and Turbulence (eds: G. I. Barenblatt, G. Iooss, & D.
D. Joseph), pp. 215–237, Pitman Advanced Publishing Program, 1983.

[92] W.F. Langford, Hopf bifurcation at a hysteresis point, In: Differential Equa-
tions: Qualitative Theory, Colloq. Math. Soc. János Bolyai, 47, (North Hol-
land) 1984, pp. 649–686.

[93] J. Leray and J. Schauder, Topologie et equations fonctionnelles, Ann. Sci. Ecole.
Norm. Sup., 51(1934), 45–78.

[94] M.Y. Li and J.S. Muldowney, On Bendixson’s criterion, J. Differential Equa-
tions, 106(1993), 27–39.



Bifurcation theory of FDEs 765

[95] J. Marsden and M. McCracken, The Hopf Bifurcation and its Applications,
Appl. Math. Sci. 19, Springer, New York, 1976.

[96] P. Negrini and L. Salvadori, Attractivity and Hopf bifurcation, Nonlinear Anal-
ysis 3(1979), 87–99.

[97] R.D. Nussbaum, Global bifurcation of periodic solutions of some autonomous
functional differential equations, J. Math. Anal. Appl., 55(1976), 699–725.

[98] R.D. Nussbaum, The range of periods of periodic solutions of x′(t) = −αf(x(t−
1)), J. Math. Anal. Appl., 58(1977), 280–292.

[99] R.D. Nussbaum, A global Hopf bifurcation theorem of functional differential
systems, Trans. Amer. Math. Soc., 238(1978), 139–164.

[100] R.D. Nussbaum, Circulant matrices and differential-delay equations, J. Dif-
ferential Equations, 60(1985), 201–217.

[101] V.A. Pliss, A reduction principle in the theory of stability of motion (Russian),
Izv. Akad. Nauk SSSR Ser. Mat., 28(1964), 1297–1324.
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