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ON CONVOLUTIONS OF HARMONIC
UNIVALENT MAPPINGS CONVEX IN THE

DIRECTION OF THE REAL AXIS∗

Zhi-Gang Wang1,†, Zhi-Hong Liu2,3 and Ying-Chun Li3

Abstract In this paper, we show that convolutions of some planar harmonic
mappings which convex in the direction of the real axis are also convex in
the same direction. Furthermore, by means of the Mathematica software, we
present an example to illuminate the main result.
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1. Introduction

A complex-valued harmonic function f in the open unit disk D = {z ∈ C : |z| < 1}
is given by f = h + g, where h and g are analytic functions in D. As usual, h is
called the analytic part of f , and g is called the co-analytic part of f . The Jacobian
of the mapping f = h+ g is given by Jf = |h′|2 − |g′|2. A necessary and sufficient
condition for f to be locally univalent and sense-preserving in D is that |g′| < |h′|,
or equivalently, the dilatation ω = g′/h′ has the property |ω| < 1 in D for h′ 6= 0
(see [3] or [11]).

We denote SH by the class of harmonic, sense-preserving and univalent mappings
in D, normalized by the conditions f(0) = 0 and fz(z) = 1. Thus, a harmonic
mapping in the class SH can be expressed as f = h+ g, where

h(z) = z +

∞∑
n=2

anz
n and g(z) =

∞∑
n=1

bnz
n.

Let S0H be the subclass of SH whose members satisfy the additional condition
fz(0) = 0. Also, let K0

H and C0H be the subclasses of S0H whose image domains
are convex and close-to-convex, respectively.

A domain Ω ⊂ C is said to be convex in the direction γ, if for all a ∈ C, the
set Ω ∩ {a + teiγ : t ∈ R} is either connected or empty. In particular, a domain is
convex in the horizontal direction (CHD), if every line parallel to the real axis has
a connected intersection with the domain. The shear construction is essential to
the present work as it allows one to study harmonic functions through their related
analytic functions, it produces a univalent harmonic function that maps D to a
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region which is CHD. This construction relies on the following result due to Clunie
and Sheil-Small [3].

Theorem A. A harmonic function f = h+ g locally univalent in D is a univalent
mapping of D onto a domain convex in the direction of the real axis if and only if
h− g is a conformal univalent mapping of D onto a domain convex in the direction
of the real axis.

A function f = h+ g ∈ S0H is called a CHD mapping if f maps D onto a CHD
domain. We denote all such CHD mappings by S0CHD. Clearly, we know that
S0CHD ⊂ C0H .

For two harmonic functions given by

f(z) = h(z) + g(z) = z +

∞∑
n=2

anz
n +

∞∑
n=2

bnz
n

and

F (z) = H(z) +G(z) = z +

∞∑
n=2

Anz
n +

∞∑
n=2

Bnz
n,

their convolution f ∗ F is defined by

f ∗ F = h ∗H + g ∗G = z +

∞∑
n=2

anAnz
n +

∞∑
n=2

bnBnz
n.

For some recent investigations involving harmonic mappings and related topics,
one can refer to [1,2,4,5,7–9,12–24,26,29–32]. In particular, Dorff [8] and Dorff et
al. [9] derived convolutions involving right half-plane mappings, and obtained the
following results, respectively.

Theorem B. Let f1 = h1 + g1 ∈ K0
H , f2 = h2 + g2 ∈ K0

H with hk + gk = z/(1− z)
for k = 1, 2. If f1∗f2 is locally univalent and sense-preserving, then f1∗f2 ∈ S0CHD.

Theorem C. Let f = h + g ∈ K0
H with h + g = z/(1 − z) and ω = g′/h′ =

eiθzn (n ∈ Z+; θ ∈ R). If n = 1, 2, then f0 ∗ f ∈ S0CHD, where

f0 = h0 + g0 =
z − 1

2z
2

(1− z)2
+
− 1

2z
2

(1− z)2
.

We remark that

f0(z) =
z − 1

2z
2

(1− z)2
+
− 1

2z
2

(1− z)2
= <

(
z

1− z

)
+ i=

(
z

(1− z)2

)
is the well-known right half-plane mapping.

In this paper, we consider the harmonic mapping fc(z) = hc + gc satisfies the
condition

hc − gc =
z

1− z
with the dilatation ω = z, by applying the shearing technique, we have

hc =
z − 1

2z
2

(1− z)2
=

1

2

(
z

(1− z)2
+

z

1− z

)
,
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and

gc =
1
2z

2

(1− z)2
=

1

2

(
z

(1− z)2
− z

1− z

)
,

that is,

fc(z) = <
(

z

(1− z)2

)
+ i=

(
z

1− z

)
. (1.1)

If a function F is analytic in D with F (0) = 0, then

hc(z) ∗ F (z) =
1

2
(zF ′(z) + F (z)) ,

and

gc(z) ∗ F (z) =
1

2
(zF ′(z)− F (z)) .

In what follows, we consider the image domain fc(D). For convenience, we write

fc(z) = <
(

z

(1− z)2

)
+ i=

(
z

1− z

)
= u+ iv.

Let z = eiθ ∈ ∂D. Then

u = <
(

z

(1− z)2

)
= <

(
eiθ

(1− eiθ)2

)
=

2 cos θ − 2

(2− 2 cos θ)2
= − 1

2− 2 cos θ
,

and

v = =
(

z

1− z

)
= =

(
eiθ

1− eiθ

)
=

sin θ

2− 2 cos θ
.

Thus, we get

v2 = −
(
u+

1

4

)
.

Since the point z = 0 is mapped into fc(0) = 0, we find that

fc(D) =

{
u+ iv : v2 > −

(
u+

1

4

)}
.

The images of concentric circles inside D under the harmonic mapping fc(z) are
shown in Figure 1, which implies that fc(z) is a CHD mapping and not a right
half-plane mapping.

Recently, Nagpal and Ravichandran [25, Theorems 2.2 and 2.3] gave the radii of

convexity and starlikeness of fc(z) are 2 −
√

3 and 1
3

√
1
3 (37− 8

√
10), respectively.

In this paper, we aim at deriving convolutions of fc(z) and some special harmonic
mappings in the class S0CHD are also belonging to the class S0CHD. Furthermore, we
present an example to illustrate the result with the aid of Mathematica software.
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Figure 1. Image of fc

2. Preliminaries

The following lemmas will be required in the proof of our main result.

Lemma 2.1. (see [27]) Let f be an analytic function in D with f(0) = 0 and
f ′(0) 6= 0, and let

ϕ(z) =
z

(1 + zeiθ1)(1 + zeiθ2)
, (2.1)

where θ1, θ2 ∈ R. If

<
(
zf ′(z)

ϕ(z)

)
> 0 (z ∈ D),

then f is convex in the direction of the real axis.

Lemma 2.2. (see [6, Cohn’s Rule]) Given a polynomial

f(z) = a0 + a1z + · · ·+ anz
n

of degree n, let

f∗(z) = znf(1/z) = an + an−1z + · · ·+ a0z
n.

Denote by p and s the number of zeros of f inside the unit circle and on it, respec-
tively. If |a0| < |an|, then

f1(z) =
anf(z)− a0f∗(z)

z

is of degree n − 1 with p1 = p − 1 and s1 = s the number of zeros of f1 inside the
unit circle and on it, respectively.
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Lemma 2.3. (see [10]) Let ϕ and G be analytic in D with ϕ′(0) = G(0) = 0. If ϕ
is convex and G is starlike, then for each function F analytic in D and satisfying
<(F (z)) > 0, we have

<
(

(ϕ ∗ FG)(z)

(ϕ ∗G)(z)

)
> 0 (z ∈ D).

Lemma 2.4. Let f1 = h1 + g1 ∈ S0CHD with h1 − g1 = z/(1 − z), f2 = h2 + g2 ∈
S0CHD with

h2 − g2 =
1

2i sinα
log

(
1 + zeiα

1 + ze−iα

)
for π/2 ≤ α < π. If f1 ∗ f2 is locally univalent, then f1 ∗ f2 ∈ S0CHD.

Proof. Let

F1 = (h1 − g1) ∗ (h2 + g2) = h1 ∗ h2 + h1 ∗ g2 − h2 ∗ g1 − g1 ∗ g2,

and

F2 = (h1 + g1) ∗ (h2 − g2) = h1 ∗ h2 − h1 ∗ g2 + h2 ∗ g1 − g1 ∗ g2.

Thus, we have

h1 ∗ h2 − g1 ∗ g2 =
1

2
(F1 + F2). (2.2)

Next, we shall prove that 1
2 (F1 + F2) is CHD. Since

h2 − g2 =
1

2i sinα
log

(
1 + zeiα

1 + ze−iα

)
,

we know that

zF ′1 = (h1 − g1) ∗ [z (h′2 + g′2)] = (h1 − g1) ∗
[
z(h′2 − g′2)

(
h′2 + g′2
h′2 − g′2

)]
=

z

1− z
∗ z

(1 + zeiα)(1 + ze−iα)

(
1 + ω2

1− ω2

)
=

zp2(z)

(1 + zeiα)(1 + ze−iα)
,

where

p2(z) =
1 + ω2

1− ω2

satisfies the condition <(p2(z)) > 0. Thus, we get

<

(
zF ′1
z

(1+zeiα)(1+ze−iα)

)
= < (p2(z)) > 0. (2.3)

In what follows, we consider

zF ′2 = [z (h′1 + g′1)] ∗ (h2 − g2) =

[
z(h′1 − g′1)

(
h′1 + g′1
h′1 − g′1

)]
∗ (h2 − g2)

=

[
z(h′1 − g′1)

(
1 + ω1

1− ω1

)]
∗ (h2 − g2) =

zp1(z)

(1− z)2
∗ (h2 − g2),
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where

p1(z) =
1 + ω1

1− ω1

satisfies the condition <(p1(z)) > 0. Using the fact that

Ψ(z) ∗ z

(1− z)2
= zΨ′(z)

and h2 − g2 is convex, by Lemma 2.3, we have

<

(
zF ′2
z

(1+zeiα)(1+ze−iα)

)
= <

(
(h2 − g2) ∗ p1(z) z

(1−z)2

z(h′2 − g′2)

)

= <

(
(h2 − g2) ∗ p1(z) z

(1−z)2

(h2 − g2) ∗ z
(1−z)2

)
> 0.

(2.4)

Combining (2.3) with (2.4), we get

<

(
z(F1 + F2)′

z
(1+zeiα)(1+ze−iα)

)
> 0,

by Lemma 2.1, we know that F1 + F2 is convex in the direction of the real axis.
Thus, by Theorem A, we get the desired result of Lemma 2.4.

3. Main result

We now give the main result below.

Theorem 3.1. Let fn = hn + gn ∈ S0CHD with

hn − gn =
1

2i sinα
log

(
1 + zeiα

1 + ze−iα

)
for π/2 ≤ α < π and ωn = eiθzn. If n = 1, 2, then fc ∗ fn ∈ S0CHD, where fc is
given by (1.1).

Proof. By Lemma 2.4, we only need to prove that fc ∗ fn = Hn +Gn are locally
univalent. By noting that

hn − gn =
1

2i sinα
log

(
1 + zeiα

1 + ze−iα

)
and g′n = ωnh

′
n, we have g′′n = ωnh

′′
n + ω′nh

′
n. Therefore, we know that

ω̃(z) =
(gc ∗ gn)′

(hc ∗ hn)′
=

(zg′n − gn)′

(zh′n + hn)′
=

zg′′n
2h′n + zh′′n

= z
ωnh

′′
n + ω′nh

′
n

2h′n + zh′′n
. (3.1)

Moreover, we observe that

h′n =
1

(1− ωn)(1 + zeiα)(1 + ze−iα)
, (3.2)
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and

h′′n = −2(cosα+ z)(1− ωn)− ω′n(1 + 2z cosα+ z2)

(1− ωn)2(1 + zeiα)2(1 + ze−iα)2
. (3.3)

By substituting (3.2) and (3.3) into (3.1), yields

ω̃(z) = z
ω2
n −

(
ωn − 1

2ω
′
nz
)

+ 1
2ω
′
n
1+z cosα
cosα+z

1+z cosα
cosα+z −

(
ωn − 1

2ω
′
nz
)

1+z cosα
cosα+z + 1

2ω
′
nz

2
. (3.4)

Now, we consider the case ω1 = eiθz, then

ω̃(z) = z
e2iθz2 −

(
eiθz − 1

2e
iθz
)

+ 1
2e
iθz 1+z cosα

cosα+z
1+z cosα
cosα+z −

(
eiθz − 1

2e
iθz
)

1+z cosα
cosα+z + 1

2e
iθz2

= ze2iθ
z3 +

(
cosα− 1

2e
−iθ) z2 + 1

2e
−iθ

1 +
(
cosα− 1

2e
iθ
)
z + 1

2e
iθz3

= ze2iθ
p(z)

p∗(z)
.

Note that p∗(z) = z3p(1/z), if z0 is one zero of p(z), then 1
z0

is one zero of p∗(z).
Thus, we have

ω̃(z) = ze2iθ
(z +A)(z +B)(z + C)

(1 +Az)(1 +Bz)(1 + Cz)
,

where α ∈ [π/2, π) and θ ∈ [−π, π].
It is sufficient to show that A,B,C ∈ D. We apply Cohn’s Rule to

p(z) = z3 +

(
cosα− 1

2
e−iθ

)
z2 +

1

2
e−iθ.

By noting that 1
2 |e
−iθ| = 1

2 < 1, we obtain

p1(z) =
a3p(z)− a0p∗(z)

z
=

3

4
z2 +

(
cosα− 1

2
e−iθ

)
z − 1

2
e−iθ

(
cosα− 1

2
eiθ
)
.

Since ∣∣∣∣−1

2
e−iθ

(
cosα− 1

2
eiθ
)∣∣∣∣ ≤ 1

4
+

1

2
| cosα| < 3

4
,

we use Cohn’s Rule on p1(z) again, then

p2(z) =
3
4p1(z) + 1

2e
−iθ (cosα− 1

2e
iθ
)
p∗1(z)

z

=
3
4

[
3
4z

2 +
(
cosα− 1

2e
−iθ) z − 1

2e
−iθ (cosα− 1

2e
iθ
)]

z

+
1
2e
−iθ (cosα− 1

2e
iθ
) [

3
4 + (cosα− 1

2e
−iθ)z − 1

2e
−iθ(cosα− 1

2e
iθz2)

]
z

=

(
9

16
− 1

4
| cosα− 1

2
eiθ|2

)
z +

3

4

(
cosα− 1

2
e−iθ

)
+

1

2
e−iθ

(
cosα− 1

2
eiθ
)2
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has one zero at

z0 =
− 3

4

(
cosα− 1

2e
−iθ)− 1

2e
−iθ (cosα− 1

2e
iθ
)2

9
16 −

1
4 | cosα− 1

2e
iθ|2

=
− 3

4 cosα+ 3
8e
−iθ − 1

2e
−iθ cos2 α+ 1

2 cosα− 1
8e
iθ

9
16 −

1
4

(
cosα− 1

2e
iθ
) (

cosα− 1
2e
−iθ
)

=
− cosα− 2e−iθ cos2 α+ 3

2e
−iθ − 1

2e
iθ

2− cos2 α+ cosα cos θ
.

By noting that

∣∣2− cos2 α+ cosα cos θ
∣∣2 − ∣∣∣∣cosα+ 2e−iθ cos2 α− 3

2
e−iθ +

1

2
eiθ
∣∣∣∣2

=4− 4 cos2 α+ cos4 α+ 4 cosα cos θ − 2 cos3 α cos θ + cos2 α cos2 θ

−
(

cosα+ 2e−iθ cos2 α− 3

2
e−iθ +

1

2
eiθ
)(

cosα+ 2eiθ cos2 α− 3

2
eiθ +

1

2
e−iθ

)
=4− 4 cos2 α+ cos4 α+ 4 cosα cos θ − 2 cos3 α cos θ + cos2 α cos2 θ

− 4

(
1 + cos4 α+ cos3 α cos θ − 7

4
cos2 α+ cos2 α cos2 θ − 1

2
cosα cos θ − 3

4
cos2 θ

)
=3
(
− cos4 α− 2 cos3 α cos θ − cos2 α cos2 θ + cos2 α+ cosα cos θ + cos2 θ

)
=3
(
1− cos2 α)(cosα+ cos θ

)2 ≥ 0,

which shows that |z0| ≤ 1. Thus, by Cohn’s Rule, we know that f exists three zeros
in D, that is A,B,C ∈ D, and so |ω̃(z)| < 1 for z ∈ D.

Finally, we consider the case ω2 = eiθz2, by substituting ω2 = eiθz2 into (3.4),
we have

ω̃(z) = z2eiθ

(
eiθz3 + 1+z cosα

cosα+z
1+z cosα
cosα+z + eiθz3

)
= z2eiθ,

which implies that |ω̃(z)| < 1. The proof of Theorem 3.1 is completed.

Remark 3.1. The range of the dilatation function ω̃(z) in Theorem 3.1 is not
contained in D for n ≥ 3. To check this, we choose ωn(z) = zn and substitute it
into (3.4), yields

ω̃(z) = zn
zn+1 + (n2 − 1)z + n

2
1+z cosα
cosα+z

1+z cosα
cosα+z − (n2 − 1)zn 1+z cosα

cosα+z + n
2 z

n+1
= znR(z).

It is a simple calculation to see that R(eiα) = 1 and 1/R(1/z) = R(z). So R(z)
maps the closed unit disk |z| ≤ 1 onto itself. Hence R can be written as a finite
Blaschke product of order n + 1. However, n/2 is product of the module of zeros
of R in the unit disk D. This means that there exists a point z0 ∈ D such that
|ω̃(z0)| > 1 for n ≥ 3. Thus, the restriction of n = 1, 2 in Theorem 3.1 becomes
necessary for our result.

Finally, we give an example to illuminate the main result.
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Example 3.1. In Theorem 3.1, by setting f1 = h1 + g1 with

h1 − g1 =
1

2i
log

(
1 + iz

1− iz

)
and ω1 = z, we get

h1 = −1

2
log(1− z) +

1− i
4

log(1 + iz) +
1 + i

4
log(1− iz),

and

g1 = −1

2
log(1− z) +

1 + i

4
log(1 + iz) +

1− i
4

log(1− iz).

Consider the function

F1 = fc ∗ f1 = H1 +G1,

we have

H1 = hc ∗ h1 =
1

2
(zh′1 + h1)

=
1

2

(
z

(1 + z2)(1− z)
− 1

2
log(1− z) +

1− i
4

log(1 + iz) +
1 + i

4
log(1− iz)

)
,

and

G1 = gc ∗ g1 =
1

2
(zg′1 − g1)

=
1

2

(
z2

(1 + z2)(1− z)
+

1

2
log(1− z)− 1 + i

4
log(1 + iz)− 1− i

4
log(1− iz)

)
.

Thus, we obtain

F1 =<(H1 +G1) + i=(H1 −G1)

=<
(

z + z2

2(1 + z2)(1− z)
+

1

4i
log

1 + iz

1− iz

)
+ i=

(
z

2(1 + z2)
− 1

2
log(1− z) +

1

4
log
(
1 + z2

))
.

The images of concentric circles inside D under the harmonic mappings fc and
f1 are shown in Figure 1 and Figure 2, respectively. The images of these concentric
circles under the convolution map fc ∗ f1 = F1 are shown in Figure 3.
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Figure 2. Image of f1
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Figure 3. Image of fc ∗ f1
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