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A FIXED POINT INDEX THEORY FOR
NOWHERE NORMAL-OUTWARD COMPACT

MAPS AND APPLICATIONS∗

Guangchong Yang† and Kunquan Lan‡

Abstract A fixed point index theory is developed for a class of nowhere
normal-outward compact maps defined on a cone which do not necessarily
take values in the cone. This class depends on the retractions on the cone and
contains self-maps for any retractions, and weakly inward maps and general-
ized inward maps when the retraction is a continuous metric projection. The
new index coincides with the previous fixed point index theories for compact
self-maps and generalized inward compact maps. New fixed point theorems
are obtained for nowhere normal-outward compact maps and applied to treat
some abstract boundary value problems and Sturm-Liouville boundary value
problems with nonlinearities changing signs.
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1. Introduction

The classical fixed point index theories for compact or condensing maps defined
on cones [1, 17] require the maps to be self-maps that take values in the cones.
Such indices were generalized to weakly inward or generalized inward maps [19],
where the maps are allowed to take values outside the cones but satisfy the weakly
inward or generalized inward conditions. The definitions of all the indices employ
retractions from a Banach space to its cone, but these indices are proved to be
independent of the choice of the retractions involved. However, for some maps such
as the Hammerstein integral operators A : P → C[0, 1] defined by

Az(x) :=

∫ 1

0

k(x, s)f(s, z(s)) ds for x ∈ [0, 1] (1.1)

arising from boundary value problems and some biological models (see Theorem
5.2), it is not easy to verify whether they are weakly inward or generalized inward
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maps since the nonlinearities f involved satisfy limu→∞ f(u) = −∞, where P is the
standard positive cone in C[0, 1].

In this paper, we establish a fixed point index theory for a class of r-nowhere
normal-outward maps in a Banach space X, where r is a retraction from X to a
closed convex set K of X. We first work on the class of r-nowhere normal-outward
maps. The concept of a nowhere normal-outward map was first introduced by
Halpern and Bergman in [4] when K is a compact convex set in a strictly convex
normed linear space. Roughly speaking, a map A : Ω ⊂ K → X is a r-nowhere
normal-outward map if Ax is not in the retractive set r−1(x) \ {x} of x for x ∈ Ω.
We shall provide and prove the criteria for maps to be r-nowhere normal-outward
maps. Using the criteria, we show that if A is a self-map, that is, A(Ω) ⊂ K,
then A is a r-nowhere normal-outward map for any retractions r, and if r is a
continuous metric projection, a weakly inward or generalized inward map is a r-
nowhere normal-outward map. Moreover, we prove that if the continuous metric
projection r is unique, then a r-nowhere normal-outward map is a generalized inward
map.

Next, we define the fixed point index denoted by ir,K(A,DK) for r-nowhere
normal-outward compact maps A : DK → X as the fixed point index iK(rA,DK)
for the self-map rA. The latter was employed by Lan and Webb [13] to define
a fixed point index for generalized inward maps of condensing type, where r is a
metric projection. The new index coincides with those given in [1] when A is a self-
map and in [13] when A is a weakly inward or generalized inward map. The new
index ir,K(A,DK) depends on the retraction r while the indices defined in [1,13] are
independent of the choice of the retractions r involved. However, in applications,
we always use the same retraction r to compute the indices and the dependence
on the retractions r will not affect the computations of the indices. We show that
the index has the standard properties such as existence property, normalization,
additivity and homotopy properties. Using the index, we prove some fixed point
theorems for r-nowhere normal-outward compact maps, some of which involve the
first eigenvalues of linear operators.

Using our fixed point theorems, we study the existence of positive solutions in
C[0, 1] of the following abstract nonlinear equations of the form

N z(x) = Fz(x) for a.e. x ∈ [0, 1] (1.2)

subject to the so-called generalized separated boundary conditions (GSBCs). We
shall provide conditions on N and F , under which the composite map TF is a
r-nowhere normal-outward map (see Theorem 4.1), where T is the right inverse of
N . One of these conditions requires N to be a semi-negative operator. We show
that the well-known nonlinear operator

N z(x) := −
(
p(x)|z′(x)|p−2z′(x)

)′
is a semi-negative operator.

As illustration, we study the existence of positive solutions of Sturm-Liouville
boundary value problems

− (p(t)z′(t))′ = f(t, z(t)) a.e. on [0, 1] (1.3)

subject to the separated BCs, where f is defined on [0, 1]×R+ and satisfies Carathéodory
conditions. The key assumption on f is the positivity condition at 0: f(x, 0) ≥ 0,
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so f is allowed to take negative values and may have no lower bounds. Hence, f
may not satisfy the semi-positone condition: f(x, u) ≥ −η for some η > 0, em-
ployed in [2,9–11]. We prove that under the positivity condition at 0, the operator
A defined in (1.1) with the Green’s function k for −(p(t)z′(t))′ = 0 subject to the
separated BCs, is a r-nowhere normal-outward map on P although it is not clear
whether the operator A is a weakly inward or generalized inward map. Hence, the
new index can be applied to study the existence of nonnegative solutions of such
Sturm-Liouville boundary value problems (1.3), where the previous index theories
and results on semi-positone problems [2, 9, 15] can not be applied.

In section 2 of this paper, we study r-nowhere normal-outward maps and define
the fixed point index for such maps. In section 3, we prove some fixed point the-
orems. In section 4, we provide a special class of r-nowhere normal-outward maps
and study existence of solutions of (1.2) subject to the GSBCs. In section 5, we
study the existence of nonzero nonnegative solutions of Sturm-Liouville boundary
value problems with nonlinearities satisfying the positivity condition at 0.

2. A fixed point index for nowhere normal-outward
compact maps

Let X be a Banach space and K a closed convex set in X. Let r : X → K be a
retraction, that is, r is continuous and satisfies r(x) = x for x ∈ K. The Dugundji
extension theorem [3] (also see [5, section 18]) shows that for every closed convex
set K in X there exists a retraction from X onto K.

Definition 2.1. A map A : Ω ⊂ K → X is called a r-nowhere normal-outward
map on Ω relative to K if

Ax ∈
(
X \ r−1(x)

)
∪ {x} for x ∈ Ω. (2.1)

The concept of a nowhere normal-outward map was first introduced in [4] when
K is a compact convex set in a strictly convex normed linear space.

The following new results provide criteria for a map to be a r-nowhere normal-
outward map.

Proposition 2.1. Assume that A : Ω ⊂ K → X is a map. Then the following
assertions are equivalent.

(H1) A is a r-nowhere normal-outward map on Ω relative to K.
(H2) If x = r(Ax) for some x ∈ Ω, then x = Ax.
(H3) If y = A(r(y)) for some y ∈ r−1(Ω), then y ∈ Ω.

Proof. Assume that (H1) holds and x = r(Ax) for some x ∈ Ω. By (2.1), x = Ax
and (H2) holds. Assume that (H2) holds and y = A(r(y)) for some y ∈ r−1(Ω).
Let x = r(y). Then x ∈ Ω and y = Ax. This implies that x = r(y) = r(Ax).
By (H2), we have y = Ax = x ∈ Ω and (H3) holds. Assume that (H3) holds and
Ax /∈

(
X \r−1(x)

)
∪{x} for some x ∈ Ω. Then x 6= Ax and x = r(Ax). Let y = Ax.

Then y ∈ r−1(x) ⊂ r−1(Ω) and y = Ax = A(r(y)). By (H3), y ∈ Ω. Hence, we
have x = r(Ax) = r(y) = y = Ax, a contradiction. Hence, (H1) holds.

Recall that a map A : Ω ⊂ K → X is called a weakly inward map on Ω relative
to K if Ax ∈ IK(x) for x ∈ Ω, where IK(x) is the closure of the inward set

IK(x) = {x+ c(z − x) : z ∈ K for c ≥ 0}
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( [13]); a generalized inward map on Ω relative to K if Ax ∈ GK(x), where

GK(x) = {y ∈ X \K : d(y,K) < ‖y − x‖} ∪K

is the generalized inward set of x relative to K. It is known that a weakly inward
map is a generalized inward map, but the converse is false (see [13]).

By Proposition 2.1 (H2), we see that if A : Ω ⊂ K → K, then A is a r-
nowhere normal-outward on Ω relative to K. It is not clear whether a weakly
inward or generalized inward map is a r-nowhere normal-outward map if there are
no restrictions on the retraction r. However, in the following we prove that it is
true if the retraction r is a continuous metric projection, and the converse is true if
the metric projection is unique.

Recall that a map r : X → K is called a metric projection if

‖x− r(x)‖ = d(x,K) for each x ∈ X,

where d(x,K) = inf{‖x− y‖ : y ∈ K}.

Proposition 2.2. Assume that r : X → K is a continuous metric projection. If
A : Ω ⊂ K → X is a generalized inward map on Ω relative to K, then A is a r-
nowhere normal-outward on Ω relative to K. The converse is true if the continuous
metric projection r is unique.

Proof. We prove that

GK(x) ⊂
(
X \ r−1(x)

)
∪ {x} := Nr,K(x) for x ∈ K.

If the inclusion were false, then there exist x ∈ K, y ∈ GK(x) and y /∈ Nr,K(x).
Since y /∈ Nr,K(x), x = r(y) and y 6= x. This implies y /∈ K. Since y ∈ GK(x),
0 < d(y,K) < ‖y − x‖. Since r is a metric projection, we have

‖y − x‖ = ‖y − r(y)‖ = d(y,K) < ‖y − x‖,

a contradiction. For the converse, it suffices to show that

Nr,K(x) ⊂ GK(x) for x ∈ K.

In fact, if not, there exist x ∈ K and y ∈ Nr,K(x) such that y /∈ GK(x). The latter
implies that y /∈ K and 0 < d(y,K) = ‖y − x‖. Since r is unique, x = r(y) and
y 6= x and we have y /∈ Nr,K(x), a contradiction.

The following example shows that a r-nowhere normal-outward map may not be
generalized inward even when r is a metric projection and the sum of two r-nowhere
normal-outward maps may not be a r-nowhere normal-outward map.

Example 2.1. Let X be the Banach space R2 with the maximum norm ‖(x, y)‖ =
max{|x|, |y|}, K = R2

+ and let r : X → K be the metric projection defined by

r(x, y) = (max{x, 0},max{y, 0}}.

Define maps A,B : K → X by

A(x, y) = (x− y, 0) and B(x, y) = (0, y − x).

Then the following assertions hold.
(1) A and B are r-nowhere normal-outward maps on K relative to K.
(2) A is not a generalized inward map on K relative to K.
(3) A+B is not a r-nowhere normal-outward map on K relative to K.



A fixed point index theory for nowhere normal-outward compact maps 669

Proof. (1) Suppose (x, y) = Ar(x, y) for some (x, y) ∈ R2(= r−1(K)). Then

(x, y) = Ar(x, y) =
(
max{x, 0} −max{y, 0}, 0}

)
and x = max{x, 0} −max{y, 0} and y = 0. Hence, x = max{x, 0} ≥ 0 and y = 0.
It follows that (x, y) = (x, 0) ∈ K. By Proposition 2.1 (H3), A is a r-nowhere
normal-outward map. A similar proof shows that B is a r-nowhere normal-outward
map.

(2) Since A(0, y) = (−y, 0) /∈ K for y > 0 and

d(A(0, y),K) = |y| = ‖(−y, y)‖ = ‖A(0, y)− (0, y)‖,

A is not a generalized inward map.
(3) Since (1,−1) = (A + B)r(1,−1) and (1,−1) /∈ K, by Proposition 2.1 (H3),

A+B is not a r-nowhere normal-outward map.
Example 2.1 shows that in general, when A and B are r-nowhere normal-outward

maps, αA + βB may not be a r-nowhere normal-outward map for α, β ≥ 0. How-
ever, in section 4, we shall show that it is true for some special maps arising in
applications, see Corollary 4.1.

The following result shows that if A is a r-nowhere normal-outward map, then
the sets of fixed points for the three maps A, rA and Ar are same. Its proof follows
directly from Proposition 2.1 and is omitted.

Proposition 2.3. Assume that A : Ω ⊂ K → X is r-nowhere normal-outward on
Ω relative to K. Then

{x ∈ Ω : x = Ax} = {x ∈ Ω : x = r(Ax)} = {y ∈ r−1(Ω) : y = A(ry)}.

Recall that a map A : D ⊂ X → X is said to be compact if A is continuous and
A(Ω) is relatively compact for each bounded subset Ω of D.

Let D be an open set in X. We denote by DK and ∂DK the closure and the
boundary, respectively, of DK = D∩K relative to K. We refer to [7] for properties
among these sets.

We define the fixed point index for r-nowhere normal-outward compact maps.

Definition 2.2. Let K be a closed convex set in X and let r : X → K be a
retraction. Let D be a bounded open set in X such that DK 6= ∅. Assume that
A : DK → X is compact and is a r-nowhere normal-outward map on ∂DK relative
to K such that x 6= Ax for x ∈ ∂DK . Then we define a fixed point index of A over
DK relative to r and K as follows:

ir,K(A,DK) = iK(rA,DK), (2.2)

where iK(rA,DK) is the fixed point index defined in [1].

Since r : X → K is continuous and A is compact, rA : DK → K is compact.
By Proposition 2.3 with Ω = ∂DK , we see that x 6= rAx for x ∈ ∂DK since x 6= Ax
for x ∈ ∂DK . Hence, the index iK(rA,DK) is well defined, so is ir,K(A,DK). If
A(DK) ⊂ K, then the index ir,K(A,DK) coincides with the usual index iK(A,DK)
given in [1] for any retraction r from X to K.

We remark that the index ir,K(A,DK) defined in (2.2) depends on the retraction
r. This is different from those in [1,13]. In applications, we need to choose a suitable
retraction r and always use the same r to compute the fixed point index.
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The new fixed point index has most of the properties of fixed point index. Note
that the new fixed point index is defined for a map A that is a r-nowhere normal-
outward map on ∂DK relative to K, but we need A to be a r-nowhere normal-
outward map on DK relative to K to ensure that a nonzero index implies the
existence of fixed points of A.

Theorem 2.1. Let D be a bounded open set in X such that DK 6= ∅. Assume that
A : DK → X is a compact map such that x 6= Ax for x ∈ ∂DK and A is r-nowhere
normal-outward on DK relative to K. Then the index ir,K(A,DK) has the following
properties:

(P1) (Existence property) If ir,K(A,DK) 6= 0, then A has a fixed point in DK .

(P2) (Normalization) If x0 ∈ DK , then ir,K(x̂0, DK) = 1, where x̂0(x) = x0 for
x ∈ DK .

(P3) (Additivity property) If W1 and W2 are disjoint relatively open subsets of DK

such that x 6= Ax for x ∈ DK \ (W1 ∪W2), then

ir,K(A,DK) = ir,K(A,W 1) + ir,K(A,W 2).

(P4) (Homotopy property) If H : [0, 1]×DK → X is compact such that x 6= H(t, x)
for t ∈ [0, 1] and x ∈ ∂DK , and if H(t, ·) is r-nowhere normal-outward on
∂DK relative to K for each t ∈ [0, 1], then

ir,K(H(0, ·), DK) = ir,K(H(1, ·), DK).

Proof. (P1) If ir,K(A,DK) 6= 0, then by Definition 2.2, iK(rA,DK) 6= 0. It
follows from the fixed point index theory in [1, Thorem 11.1] that rA has a fixed
point x ∈ DK . By Proposition 2.3, x is a fixed point of A.

(P2) is obvious since ir,K(x̂0, DK) = iK(r̂(x0), DK) = iK(x̂0, DK) = 1.
(P3) and (P4) follow from the additivity and homotopy properties of the fixed

point index theory in [1, Thorem 11.1] and use of Proposition 2.3.

3. Fixed point theorems

In this section, we obtain some fixed point theorems for r-nowhere normal-outward
maps by employing the fixed point index established in section 2.

Theorem 3.1. Let D be a bounded open set in X such that DK 6= ∅. Assume that
A : DK → X is a compact map such that the following conditions hold.

(h1) There exists x0 ∈ DK such that tA + (1 − t)x̂0 is r-nowhere normal-outward
on DK relative to K for t ∈ (0, 1].

(LS) x 6= tAx+ (1− t)x0 for x ∈ ∂DK and t ∈ (0, 1).

Then A has a fixed point in DK , and if x 6= Ax for x ∈ ∂DK , then ir,K(A,DK) = 1.

Proof. We assume without loss of generality that x 6= Ax for x ∈ ∂DK . We define
H : [0, 1]×DK → X by

H(t, x) = tAx+ (1− t)x0.
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It is easy to see that H satisfies all the conditions of Theorem 2.1 (P4). Hence, by
Theorem 2.1 (P4) and (P1), we have

ir,K(A,DK) = ir,K(H(1, ·), DK) = ir,K(H(0, x), DK) = ir,K(x̂0, DK) = 1

and A has a fixed point in DK .

Remark 3.1. If A(DK) ⊂ K, then A satisfies (h1). Hence, Theorem 3.1 generalizes
[1, Lemma 12.1 (i)], where A takes values in K. The special case of Theorem 3.1
when r is a metric projection, is an improvement of [13, Theorem 3.2], where A is
a generalized inward map of contractive type.

The following result gives the conditions under which ir,K(A,DK) = 0.

Lemma 3.1. Let D be a bounded open set in X such that DK 6= ∅. Assume that
A : DK → X is a compact map such that the following conditions hold.

(h2) There exists e ∈ K \ {0} such that A + λê is r-nowhere normal-outward on
DK relative to K for λ ≥ 0.

(E) x 6= Ax+ λe for x ∈ ∂DK and λ ≥ 0.

Then ir,K(A,DK) = 0.

Proof. Let λ1 > sup{‖x−Ax‖‖e‖−1 : x ∈ DK}. Then A+λ1ê has no fixed points
in DK and by Theorem 2.1 (P1), ir,K(A+ λ1ê, DK) = 0. It follows from Theorem
2.1 (P4) that ir,K(A,DK) = ir,K(A+ λ1ê, DK) = 0.

Remark 3.2. Lemma 3.1 generalizes [1, Lemma 12.1 (ii)], where A takes values in
K, and improves [13, Theorem 4.1], where A is weakly inward.

Now, we state the following result on existence of nonzero fixed points for r-
nowhere normal-outward maps.

Theorem 3.2. Let D1, D be bounded open sets in X such that D1
K ⊂ DK and

D1
K 6= ∅. Assume that A : DK → X is a compact map such that (h1) and (LS) hold

on ∂DK and (h2) and (E) hold on ∂D1
K . Then A has a fixed point in DK \ D1

K .
The same conclusion holds if (h1) and (LS) hold on ∂D1

K and (h2) and (E) hold
on ∂DK .

The proof of Theorem 3.2 follows from Theorems 2.1 and 3.1 and Lemma 3.1
and is similar to that of [13, Theorem 4.5], so we omit it.

Recall that a closed convex set K is called a wedge if λx ∈ K for x ∈ K and
λ ≥ 0. If a wedge K satisfies K ∩ (−K) = {0}, then K is called a cone.

As a special of Theorem 3.2, we obtain the following result which requires K to
be a wedge and Ax ∈ K for x ∈ ∂D1

K .

Corollary 3.1. Let K be a wedge in X and let r : X → K be a retraction. Let
D1, D be bounded open sets in X such that D1

K ⊂ DK and D1
K 6= ∅. Assume that

A : DK \D1
K → X is compact such that the following conditions hold.

(h′1) There exists x0 ∈ DK such that tA + (1 − t)x̂0 is r-nowhere normal-outward

on DK \D1
K relative to K for t ∈ (0, 1].

(LS) x 6= tAx+ (1− t)x0 for x ∈ ∂DK and t ∈ (0, 1).

(h′2) Ax ∈ K for x ∈ ∂D1
K .
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(E) There exists e ∈ K \ {0} such that x 6= Ax+ λe for x ∈ ∂D1
K and λ > 0.

Then A has a fixed point in DK \D1
K .

Proof. With loss of generality, we assume that x 6= Ax for x ∈ ∂DK∪∂D1
K . Since

A : DK \D1
K → X is compact, by (h′2), there exists a compact map A∗ : D1

K → K

such that A∗x = Ax for x ∈ ∂D1
K . We define a map Â : DK → X by

Âx =

Ax if x ∈ DK \D1
K ,

A∗x if x ∈ D1
K .

Since Â(D1
K) ⊂ K, Â satisfies (h2). The result follows from Theorem 3.2.

Let K be a cone in X. Then K defines a partial order ≤ in X by x ≤
y if and only if y − x ≥ 0. A cone K is said to be reproducing if X = K −K, to be
total if X = K −K and to be normal if there exists σ > 0 such that 0 ≤ x ≤ y
implies ‖x‖ ≤ σ‖y‖. We refer to [1] for other cones.

Recall that a real number λ is called an eigenvalue of a linear operator L : X →
X if there exists ϕ ∈ X \ {0} such that λϕ = Lϕ. The radius of the spectrum of L
in X, denoted by r(L), is given by r(L) = limm→∞

m
√
‖L‖m. We write

µ1(L) =
1

r(L)
. (3.1)

We denote by L(K) the set of compact linear operators L : X → X satisfying
L(K) ⊂ K and r(L) > 0. By Krein-Rutman theorem (see [1, Theorem 3.1] or [6]),
if K is a total cone and L ∈ L(K), then there exists an eigenvector ϕ ∈ K \ {0}
such that

ϕ = µ1(L)Lϕ. (3.2)

Let ρ > 0 and let Kρ = {x ∈ K : ‖x‖ < ρ}, Kρ = {x ∈ K : ‖x‖ ≤ ρ} and
∂Kρ = {x ∈ K : ‖x‖ = ρ}.

As applications of Corollary 3.1, we obtain the following new result.

Theorem 3.3. Let K be a total and normal cone in X. Assume that A : K → X
is a r-nowhere normal-outward compact map on K relative to K and satisfies the
following conditions:

(h′′1) There exists x0 ∈ K such that tA+ (1− t)x̂0 is r-nowhere normal-outward on
K relative to K for t ∈ (0, 1].

(LS)1 There exist u1 ∈ K \ {0}, L1 ∈ L(K) and ε ∈ (0, µ1(L1)) such that

Ax ≤
(
µ1(L1)− ε)L1(x) + u1 for x ∈ K.

(E)1 There exist L ∈ L(K), ρ0 > 0 and ε > 0 such that

Ax ≥ (µ1(L) + ε)L(x) for x ∈ ∂Kρ0 .

Then A has a fixed point in K \Kρ0 .

Proof. Since

r((µ1(L1)− ε)L1) = (µ1(L1)− ε)r(L1) < 1,
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(I − (µ1(L1)− ε)L1)−1 exists and is a bounded linear operator such that

(I − (µ1(L1)− ε)L1)−1(K) ⊂ K.

Let σ be the normality constant of K and

ρ∗ = max{ρ0, σ‖(I − (µ1(L1)− ε)L1)−1(u1 + x0)‖}.

Let ρ > ρ∗. We prove that

x 6= tAx+ (1− t)x0 for x ∈ ∂Kρ and t ∈ (0, 1]. (3.3)

In fact, if not, there exist x ∈ ∂Kρ and t ∈ (0, 1] such that x = tAx + (1 − t)x0.
This, together with (LS)1, implies

x = tAx+ (1− t)x0 ≤ t[µ1(L1)− ε)L1(x) + u1] + (1− t)x0
≤ (µ1(L1)− ε)L1(x) + u1 + x0

and

(I − (µ1(L1)− ε)L1)x ≤ u1 + x0.

This, together with (I − (µ1(L1)− ε)L1)−1(K) ⊂ K, implies

x ≤ (I − (µ1(L1)− ε)L1)−1(u1 + x0).

Since K is a normal cone with normality constant σ, it follows that

‖x‖ ≤ σ‖(I − (µ1(L1)− ε)L1)−1(u1 + x0)‖ ≤ ρ∗.

Hence, we have ρ = ‖x‖ ≤ ρ∗ < ρ, a contradiction.

Since K is total and L ∈ L(K), it follows from the Krein-Rutman theorem that
there exists ϕ ∈ K \ {0} such that ϕ = µ1(L)L(ϕ). We prove that

x 6= Ax+ νϕ for x ∈ ∂Kρ0 and ν > 0. (3.4)

In fact, if not, there exist x ∈ ∂Kρ0 and ν > 0 such that

x = Ax+ νϕ. (3.5)

Since Ax ≥ (µ1(L) + ε)L(x) ≥ 0 for x ∈ ∂Kρ0 , by (3.5), x ≥ νϕ. Let

τ1 = sup{τ > 0 : x ≥ τϕ}. (3.6)

Then 0 < ν ≤ τ1 <∞, x ≥ τ1ϕ and L(x) ≥ τ1L(ϕ). By (3.5) and (E)1,

x ≥ A(x) ≥ (µ1(L) + ε)L(x) ≥ (µ1(L) + ε)τ1L(ϕ) = (µ1(L) + ε)τ1[µ1(L)]−1ϕ.

Hence, by (3.6) we have τ1 ≥ (µ1(L) + ε)τ1/µ1 > τ1, a contradiction.

By Corollary 3.1, A has a fixed point in Kρ \Kρ0 .
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4. Positive solutions of nonlinear equations

In this section, we study existence of positive solutions of the following nonlinear
equation

N z(x) = Fz(x) for a.e. x ∈ [0, 1] (4.1)

subject to the generalized separated boundary conditions (GSBCs):

if z(0) < 0, then z′(0) ≤ 0 and if z(1) < 0, then z′(1) ≥ 0, (4.2)

where N and F are suitable maps to be defined later. The GSBCs are new and
contain the separated BCs (see (5.2) below). In particular, if the BCs are the
Dirichlet BCs: z(0) = z(1), then (4.2) is automatically satisfied.

We denote by C[0, 1] the Banach space of continuous functions defined on [0, 1]
with the maximum norm and by P the standard positive cone in C[0, 1], that is,

P = C+[0, 1] := {z ∈ C[0, 1] : z(x) ≥ 0 for x ∈ [0, 1]}. (4.3)

It is known that P is a total and normal cone with normality constant 1. We denote
by L+(0, 1) the standard positive cone of the Banach space L(0, 1) of Lebesgue
integrable functions defined on [0, 1]. Let W be a nonempty subset of the following
set

C
′
[0, 1] = {z ∈ C[0, 1] : z is differentiable everywhere on [0, 1]}. (4.4)

Note that we denote by z′(0) and z′(1) the right-hand and left-hand derivatives
(z′+(0) and z′−(1)) of z, respectively.

Definition 4.1. A map N : W → L(0, 1) is said to be right-invertible if there
exists a map T : L(0, 1)→W satisfying

N (Tz) = z for z ∈ L(0, 1).

The map T is called a right inverse of N .

Definition 4.2. A map N : W → L(0, 1) is said to be a semi-negative operator if
N satisfies the following two conditions:

(N1) Let z ∈W and ς, b ∈ [0, 1) with ς < b. If z′(ς) = 0, z(b) = 0 and z(x) < 0 for

x ∈ [ς, b), then
∫ t0
ς

(N z)(s) ds < 0 for some t0 ∈ (ς, b).

(N2) Let z ∈W and a, ς ∈ (0, 1] with a < ς. If z(a) = 0, z(x) < 0 for x ∈ (a, ς] and
z′(ς) = 0, then

∫ ς
t0

(N z)(s) ds < 0 for some t0 ∈ (a, ς).

Definition 4.3. A map F : Ω ⊂ P → L(0, 1) is said to be strongly positive at 0 if
for a, b ∈ [0, 1] with a < b and z ∈ P with z(x) = 0 for x ∈ [a, b],

(Fz)(x) ≥ 0 for a.e. x ∈ [a, b].

We make the following conditions.

(A1) N : W → L(0, 1) is a right-invertible and semi-negative operator with right
inverse T : L(0, 1)→W .

(A2) T satisfies T (L+(0, 1)) ⊂ P and Tz satisfies the GSBC for z ∈ L(0, 1).

(A3) F : Ω ⊂ P → L(0, 1) is strongly positive at 0.
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We define a map r : C[0, 1]→ P by

r(y)(x) = max{y(x), 0} for x ∈ [0, 1]. (4.5)

By [13, Example 2.8], r is a continuous metric projection from X to P . Hence,
r : C[0, 1]→ P is a retraction and r−1(P ) = C[0, 1].

We first provide the criteria for the composite map TF to be a r-nowhere normal-
outward map.

Theorem 4.1. Under the hypotheses (A1), (A2), (A3) the composite map TF :
Ω ⊂ P → C[0, 1] is a r-nowhere normal-outward map on Ω relative to P , where r
is the same as in (4.5).

Proof. Assume that there exists y ∈ r−1(Ω) ⊂ X such that

y(x) = TF (r(y))(x) for x ∈ [0, 1]. (4.6)

By Proposition 2.1 (H1) and (H3), we need to prove y ∈ P . We first prove that
there exists t∗ ∈ (0, 1) such that y(t∗) ≥ 0. In fact, if not, then

y(x) < 0 for x ∈ (0, 1). (4.7)

Since y is continuous on [0, 1], y(x) ≤ 0 for x ∈ [0, 1], by (4.5) and (A3), F (r(y)) =
F (0) ∈ L+(0, 1). By (A2), (4.6) and (4.7) we have

0 ≤ TF (r(y))(x) = y(x) < 0 for x ∈ [0, 1],

a contradiction.
Next, we prove y ∈ P . Since y is continuous on [0, 1], it suffices to show that

y(x) ≥ 0 for each x ∈ (0, 1). In fact, if not, then there exists t∗ ∈ (0, 1) such that
y(t∗) < 0. Since y(t∗) ≥ 0, t∗ 6= t∗. We consider the following two cases: t∗ < t∗ or
t∗ < t∗.

Case 1. If t∗ < t∗, then let

t1 = inf{t ∈ [0, t∗) : y(x) < 0 for x ∈ (t, t∗)}

and
b = sup{t ∈ (t∗, t

∗] : y(x) < 0 for x ∈ (t∗, t)}.

Since y(t∗) < 0, both t1 and b exist. For this t1, we have t1 ∈ [0, t∗), y(t1) = 0 if
t1 > 0 and y(t1) = y(0) ≤ 0 if t1 = 0. For this b, we have b ∈ (t∗, t

∗), y(b) = 0 and
y(x) < 0 for x ∈ (t1, b). Let ς ∈ [t1, b] be such that

y(ς) = min{y(x) : x ∈ [t1, b]}. (4.8)

Then y(ς) ≤ y(t∗) < 0, ς ∈ [t1, b) and y(x) < 0 for x ∈ [ς, b). Note that y ∈ W and
y′(x) exists for x ∈ [0, 1]. By (4.8), y′(ς) = 0 if ς ∈ (t1, b) or ς = t1. If ς = t1, then
y(t1) = y(ς) < 0. By the definition of t1, ς = t1 = 0 and y(0) = y(ς) < 0. By (4.8),
y(0) ≤ y(x) for x ∈ [0, b]. It follows that

y′+(ς) = y′+(0) = lim
x→0+

y(x)− y(0)

x
≥ 0. (4.9)

On the other hand, by (A2), Tz satisfies the GSBC, where z = F (r(y)). Since
TF (r(y))(0) = y(0) < 0, y′+(0) = (TF (r(y)))′(0) ≤ 0. By (4.9), y′+(ς) = y′+(0) = 0.
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Hence, we have showed that y′(ς) = 0, y(b) = 0 and y(x) < 0 for x ∈ [ς, b). By
(N1), there exists t0 ∈ (ς, b) such that∫ t0

ς

(N y)(s) ds < 0. (4.10)

Since N is a right-invertible operator and F (r(y))(x) = F (0)(x) for x ∈ [ς, b], it
follows from (4.6) and strong positivity of F that

(N y)(x) = N (TF (r(y)))(x) = F (r(y))(x) = F (0)(x) ≥ 0 for a.e. x ∈ [ς, b].

Integrating the above inequality and applying (4.10), we have

0 ≤
∫ t0

ς

(N y)(s) ds < 0,

a contradiction.

Case 2. If t∗ < t∗, then the proof is similar to that of Case 1. We sketch the
proof. Let

a = inf{t ∈ [t∗, t∗) : y(x) < 0 for x ∈ (t, t∗)}

and

t2 = sup{t ∈ (t∗, 1] : y(x) < 0 for x ∈ (t∗, t)}.

Let ς ∈ [a, t2] be such that

y(ς) = min{y(x) : x ∈ [a, t2]}. (4.11)

Then y(a) = 0, y(x) < 0 for x ∈ (a, ς] and y′(ς) = 0. By (N2), there exists t0 ∈ (a, ς)
such that ∫ ς

t0

(N y)(s) ds < 0. (4.12)

It can be shown that

(N y)(x) = N (TF (r(y)))(x) = F (r(y))(x) = F (0)(x) ≥ 0 for a.e. x ∈ [a, ς].

Integrating the above inequality and applying (4.12), we have

0 ≤
∫ ς

t0

(N y)(s) ds < 0,

a contradiction.

By Proposition 2.1 (H1) and (H3), we see that A : Ω → C[0, 1] is a r-nowhere
normal-outward map on Ω relative to P .

Note that in Theorem 4.1, the right inverse T of N is not required to be linear.
However, if it is linear, we obtain the following more general result.

Corollary 4.1. Assume that (A1), (A2), (A3) hold and T is linear. Assume that
G : Ω ⊂ P → L(0, 1) is strongly positive at 0. Then αTF + βTG is a r-nowhere
normal-outward map on Ω relative to P for α, β ∈ R+.
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Proof. Since F and G are strongly positive at 0, so is αF +βG for α, β ∈ R+. By
Theorem 4.1 and linearity of T , we have αTF +βTG = T (αF +βG) is a r-nowhere
normal-outward map on Ω relative to P for α, β ∈ R+

The following result shows that if N is a right-invertible operator with right
inverse T , then (4.1) can be changed into the fixed point equation:

z = TF (z(x)) := Az(x) for x ∈ [0, 1]. (4.13)

Proposition 4.1. Assume that N : W → L(0, 1) is right-invertible with a right
inverse operator T and F : Ω ⊂ P → L(0, 1) is a map. Then if z ∈ Ω satisfies
(4.13), then z satisfies (4.1).

Proof. Assume that z ∈ Ω satisfies z = TF (z). Since N : W → L(0, 1) is right-
invertible with a linear right inverse T , N z = NT (F (z)) = T (F (z)). The result
follows.

Theorem 4.2. Assume that (A1) and (A2) hold and T : L(0, 1) → C[0, 1] is a
linear compact operator. Assume that F : P → L(0, 1) is bounded, continuous and
strongly positive at 0, and the following conditions hold.

(LS)2 There exist u1 ∈ P \ {0}, S1 ∈ L(P ) and ε ∈ (0, µ1(S1)) such that

TF (z) ≤ (µ1(S1)− ε)S1(z) + u1 for z ∈ P.

(E)2 There exist S ∈ L(P ), ρ0 > 0 and ε > 0 such that

TF (z) ≥ (µ1(S) + ε)S(z) for z ∈ ∂Pρ0 .

Then (4.1)-(4.2) has a solution in P \ Pρ0 .

Proof. Since T : L(0, 1) → C[0, 1] is compact and F : P → L(0, 1) is bounded
and continuous, the map A := TF : P → C[0, 1] is compact. By Theorem 4.1 and
the hypotheses (A1) and (A2), we see that A : P → C[0, 1] is a r-nowhere normal-
outward map on P relative to P . Let x0 = 0 and define a map G : P → L(0, 1) by
Gz = 0. By Corollary 4.1,

tA = tA+ (1− t)G = tA+ (1− t)x̂0
is r-nowhere normal-outward on P relative to P for t ∈ (0, 1]. Note that (E)2 and
(LS)2 imply (E)1 and (LS)1 of Theorem 3.3. It follows from Theorem 3.3 that
(4.13) has a solution z in P \Pρ0 . By Proposition 4.1, z is a solution of (4.1)-(4.2).

We show that equation (4.1) contains the following nonlinear equation

−
(
ω(x)|z′(x)|p−2z′(x)

)′
= f(x, z(x)) for a.e. x ∈ [0, 1]. (4.14)

We always assume the following conditions:
(i) p ∈ (1,∞).
(ii) ω : [0, 1]→ (0,∞) is a continuous function.
We denote by AC[0, 1] the space of all the absolutely continuous functions de-

fined on [0, 1]. We define a set

Wp = {z ∈ C ′[0, 1] : ω|z′|p−2z′ ∈ AC[0, 1]} (4.15)

and a map N : Wp → L(0, 1) by

N z(x) = −
(
ω(x)|z′(x)|p−2z′(x)

)′
. (4.16)
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Proposition 4.2. The map N : Wp → L(0, 1) defined in (4.16) is a semi-negative
operator.

Proof. Let ς, b ∈ [0, 1) with ς < b and let z ∈ Wp satisfy z′(ς) = 0, z(b) = 0 and
z(x) < 0 for x ∈ [ς, b). We prove that there exists t0 ∈ (ς, b) such that∫ t0

ς

(N z)(s) ds < 0. (4.17)

In fact, if not, then we have for x ∈ [ς, b),∫ x

ς

(N z)(s) ds = −ω(x)|z′(x)|p−2z′(x) + ω(ς)|z′(ς)|p−2z′(ς)

= −ω(x)|z′(x)|p−2z′(x) ≥ 0

and z′(x) ≤ 0 for x ∈ [ς, b). Hence, z is decreasing on [ς, b) and we have 0 = z(b) ≤
z(x) < 0 for x ∈ [ς, b), a contradiction. It follows that (4.17) holds and N satisfies
(N1). A similar proof shows that N satisfies (N2).

By Proposition 4.2 and Theorem 4.1, we see that if the map N defined in (4.16)
has a right inverse T which maps L(0, 1) to W and satisfies the condition (A2),
then under suitable assumptions on f , TF is a r-nowhere normal-outward map on
P relative to P , where Fz(x) = f(x, z(x)), and the fixed point theorems in section 3
can be applied to treat existence of nonzero nonnegative solutions of (4.14) subject
to the GSBCs. In the following section, we apply Theorem 4.2 to study existence
of nonzero nonnegative solutions of the Sturm-Liouville boundary value problem
(4.14) with p = 2.

5. Sturm-Liouville boundary value problems

In this section, we consider the existence of nonzero nonnegative solutions for the
Sturm-Liouville differential equations of the form

− (ω(x)z′(x))′ = f(x, z(x)) a.e. on [0, 1] (5.1)

subject to the separated boundary condition (BCs)αz(0)− βω(0)z′(0) = 0

γz(1) + δω(1)z′(1) = 0,
(5.2)

where α, β, γ, δ ≥ 0 and Γ := γβ + αγ
∫ 1

0
1

ω(µ) dµ+ αδ > 0.

We make the following assumptions on ω and f .

(C0) ω : [0, 1]→ (0,∞) is continuous.

(C1) f : [0, 1] × R+ → R satisfies Carathéodory conditions, that is, f(·, u) is mea-
surable for u ∈ R+ and f(x, ·) is continuous for almost every (a.e.) x ∈ [0, 1],
and for each r > 0, there exists gr ∈ L(0, 1) such that

|f(x, u)| ≤ gr(x) for a.e x ∈ [0, 1] and all u ∈ [0, r].

(C2) (Positivity condition at 0) f(x, 0) ≥ 0 for a.e. x ∈ [0, 1].
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Note that (C2) only requires f to be positive at (x, 0) and allows f to take negative
values. The function f is not required to have a lower bound, so it may not satisfy
the semi-positone condition: f(x, u) ≥ −η for some η > 0.

Existence of solutions of(5.1)-(5.2) has been widely studied. For example, under
(C2), (5.1)-(5.2) was studied in [20] by using the topological degree theory, where
the nonlinearity is of the form g(x)f(x, u) with g ∈ L+(0, 1) ∩ C(0, 1) and ω, f are
continuous, and in [2, 9], where f satisfies the semi-pontone condition, and in [18],
where f is allowed to change signs.

A function z : [0, 1]→ R is said to be a solution of (5.1)-(5.2) if z ∈ W2, where
W2 is same as in (4.15) with p = 2, namely,

W2 = {z ∈ C ′[0, 1] : ωz′ ∈ AC[0, 1]}.

A solution z of (5.1)-(5.2) is said to be nonnegative if z ∈ P , where P be same as
in (4.3).

Let k be the Green’s function for the equation −(ω(x)z′(x))′ = 0 subject to the
BC (5.2). It is well known that k : [0, 1]× [0, 1]→ R+ is given by

k(x, s) =
1

Γ

 (δ + γ
∫ 1

x
1

ω(µ) dµ)(β + α
∫ s
0

1
ω(µ) dµ) if s ≤ x,

(β + α
∫ x
0

1
ω(µ) dµ)(δ + γ

∫ 1

s
1

ω(µ) dµ) if x < s.
(5.3)

We consider the Hammerstein integral equation

z(x) =

∫ 1

0

k(x, s)f(s, z(s)) ds = (LF )z(x) :≡ Az(x) for x ∈ [0, 1], (5.4)

where

Lu(x) =

∫ 1

0

k(x, s)u(s) ds for x ∈ [0, 1] (5.5)

and the Nemytskii operator F : P → L(0, 1) is defined by

(Fz)(x) = f(x, z(x)). (5.6)

Note that for each y ∈ L(0, 1),

Ly(s) :=

∫ 1

0

k(x, s)y(s) ds <∞ for x ∈ [0, 1]

and Ly ∈ W2. Hence, the operator L maps L(0, 1) to W2. It is easy to verify that
if z ∈ P is a solution of (5.4), then z is a solution of (5.1)-(5.2).

We define a map N : W2 → L(0, 1) by

N z(x) = −(ω(t)z′(t))′. (5.7)

Proposition 5.1. (i) The map N : W2 → L(0, 1) is a right-invertible and semi-
negative operator with right inverse L.

(ii) The linear operator L : L(0, 1) → W2 satisfies L(L+(0, 1)) ⊂ P , L :
L(0, 1)→ C[0, 1] is compact, and Lz satisfies the GSBC for each z ∈ L(0, 1).

(iii) Under (C1) and (C2), F : P → L(0, 1) is bounded, continuous and strongly
positive at 0.
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Proof. (i) It is known (or directly verified) that N (Lz) = z for z ∈ L(0, 1), so
N : W2 → L(0, 1) is a right-invertible operator with right inverse L defined in (5.5).
By Proposition 4.2, N : W2 → L(0, 1) is a semi-negative operator.

(ii) It is obvious that L(L+(0, 1)) ⊂ P since k(x, s) ≥ 0 for x, s ∈ [0, 1]. By a
similar proof to those of [8, Theorem 2.1] or [12, Lemma 3.3] or [16, Proposition
3.4, p. 167], L : L(0, 1)→ C[0, 1] is compact. By the equivalence of (5.1)-(5.2) and
(5.4) (or a direct verification), for z ∈ (0, 1), Lz satisfies the BCs (5.2), that is,{

α(Lz)(0)− βω(0)(Lz)′(0) = 0,

γ(Lz)(1) + δω(1)(Lz)′(1) = 0.
(5.8)

This implies that Lz satisfies the GSBC for each z ∈ L(0, 1).
(iii) Under (C1), F : P → L(0, 1) is bounded and continuous. Let a, b ∈ [0, 1]

with a < b, z ∈ P with z(x) = 0 for x ∈ [a, b]. By (C2),

(Fz)(x) = f(x, z(x)) = f(x, 0) ≥ 0 for a.e. x ∈ [a, b].

By Definition 4.3, F : P → L(0, 1) is strongly positive at 0.
By Proposition 5.1 and Theorem 4.1, we obtain

Corollary 5.1. Under (C0), (C1) and (C2), the operator A defined in (5.4) maps
P to C[0, 1] and is r-nowhere normal-outward on P relative to P .

Remark 5.1. We remark that under the hypotheses (C0), (C1) and (C2), it is
not clear whether the integral operator A defined in (5.4) is a weakly inward or
generalized inward map. Hence, the index theories established in [13] have not been
yet applied to treat boundary value problems like (5.1)-(5.2).

Lemma 5.1. Assume that g ∈ L(0, 1) with
∫ 1

0
g(s) ds > 0. Then there exists

ϕg ∈ P \ {0} such that
ϕg = µ1(Lg)Lg(ϕg),

where Lg : C[0, 1]→W2 ⊂ C[0, 1] is defined by

Lgu(x) =

∫ 1

0

k(x, s)g(s)u(s) ds for x ∈ [0, 1].

Proof. By
∫ 1

0
g(s) ds > 0, there exist a, b ∈ (0, 1) with a < b such that

∫ b
a
g(s) ds >

0. Let Φ(s) = k(s, s) for s ∈ [0, 1]. since Φ(s) > 0 for s ∈ (0, 1),
∫ b
a

Φ(s)g(s) ds > 0.
The result follows from [19, Theorem 2.6].

Theorem 5.1. Assume that (C0), (C1) and the following conditions hold.

(i) There exist r0 > 0, φr0 ∈ L+(0, 1) with
∫ 1

0
φr0(s) ds > 0 and ε ∈ (0, µ1(Lφr0 ))

such that

f(x, u) ≤
(
µ1(Lφr0 )− ε

)
φr0(x)u for a.e. x ∈ [0, 1] and u ∈ [r0,∞). (5.9)

(ii) There exist ρ0, ε > 0 and ψρ0 ∈ L1
+(0, 1) with

∫ 1

0
ψρ0(s) ds > 0 such that

f(x, u) ≥
(
µ1(Lψρ0 ) + ε

)
ψρ0(x)u for a.e. x ∈ [0, 1] and u ∈ [0, ρ0]. (5.10)

Then (5.1)-(5.2) has a solution in P \ Pρ0 .
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Proof. By (C1), there exists gr0 ∈ L1
+(0, 1) such that

|f(x, u)| ≤ gr0(x) for a.e. x ∈ [0, 1] and all u ∈ [0, r0].

This, together with (5.9), implies

f(x, u) ≤ gr0(x) +
(
µ1(Lφr0 )− ε

)
φr0(x)u for a.e. x ∈ [0, 1] and all u ∈ R+.

Let u1(x) =
∫ 1

0
k(x, s)gr0(s) ds for x ∈ [0, 1]. Then

Az(x) ≤ u1(x) +
(
µ1(Lφr0 )− ε

)
Lφr0 z(x) for x ∈ [0, 1].

By (5.10), we have for z ∈ ∂Pρ0 and x ∈ [0, 1],

Az(x) ≥
(
µ1(Lψρ0 ) + ε

) ∫ 1

0

k(t, s)ψρ0(s)z(s) ds =
(
µ1(Lψρ0 ) + ε

)
Lψρ0 z(x).

Note that the condition (ii) implies that f satisfies the condition (C2). By Propo-
sition 5.1 and Theorem 4.2, (5.1)-(5.2) has a solution z in P \ Pρ0 .

Let E be a fixed subset of [0, 1] of measure zero. Let

f(u) = inf
x∈[0,1]\E

f(x, u), (f)0 = lim inf
u→0+

f(u)/u,

f(u) = sup
x∈[0,1]\E

f(x, u), f∞ = lim sup
u→∞

f(u)/u.

Corollary 5.2. Assume that (C0), (C1) and the following condition holds.

−∞ ≤ f∞ < µ1(L) < (f)0 ≤ ∞. (5.11)

Then (5.1)-(5.2) has a solution in P \ {0}.

Proof. It is easy to see that by (5.11), (5.9) with φr0 ≡ 1 and (5.10) with ψρ0 ≡ 1
hold for some ε > 0 and ρ0, r0 with 0 < ρ0 < r0 < ∞. The result follows from
Theorem 5.1.

Corollary 5.2 improves Theorem 3.2 in [20], where the nonlinearity is a product
of g ∈ L1

+(0, 1)∩C(0, 1) and a continuous function f , and the Leray-Schauder degree
theory is used.

As an application of Corollary 5.2, we study existence of nonzero nonnegative
solutions of the following Sturm-Liouville boundary value problem

− (ω(x)z′(x))′ = µ
[
z(x)(1− z(x))− a(x)z2(x)

1 + z2(x)

]
for x ∈ (0, 1) (5.12)

subject to (5.2).
Equation (5.12) with ω(x) ≡ 1 is the steady-state equation of the reaction

diffusion population models of spruce budworm [14, p.235, (6.1)] under suitable
changes of variables.

By Corollary 5.2, we obtain the following result.

Theorem 5.2. Assume that a ∈ L∞+ (0, 1) with a∗ := infx∈[0,1]\E{a(x) : x ∈
[0, 1]} > 0 for a fixed subset E of [0, 1] of measure zero and µ ∈ (µ1(L),∞). Then
(5.12) has a solution in P \ {0}.
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Proof. Let µ ∈ (µ1(L),∞) and define a function f : [0, 1]× R+ → R by

f(x, u) = µ
[
u(1− u)− a(x)u2

1 + u2
]
. (5.13)

Then
f(u) = sup

x∈[0,1]\E
f(x, u) = µu

[
1− u− a∗u

1 + u2
]
,

and

f∞ = lim sup
u→∞

f(u)

u
= µ lim sup

u→∞

[
1− u− a∗u

1 + u2
]

= −∞.

Moreover,

f(u) = inf
x∈[0,1]\E

f(x, u) = µu
[
1− u− ‖a‖∞u

1 + u2
]
,

and

f0 = lim sup
u→0+

f(u)

u
= µ lim sup

u→0+

[
1− u− ‖a‖∞u

1 + u2
]

= µ > µ1(L).

It follows that −∞ ≤ f∞ < µ1(L) < (f)0 ≤ ∞. The result follows from Corollary
5.2.

We remark that since limu→∞ f(x, u) = −∞ for x ∈ [0, 1], the function f
defined in (5.13) has no lower bounds. Hence, f does not satisfies the semi-position
condition and the results obtained in [2,9] can not be applied to treat Theorem 5.2.
Also, if a(x) is not a continuous function, then Theorem 5.2 can not be treated by
Theorem 3.1 in [20], where f is continuous. Our method is different from that used
in [20], where the topological degree theory is used and the nonlinearity is of the
form g(x)f(x, u) with g ∈ L+(0, 1) ∩ C(0, 1) and ω, f are continuous.
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