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MULTI-PEAKON SOLUTIONS TO A
FOUR-COMPONENT CAMASSA-HOLM TYPE

SYSTEM∗

Zhaqilao

Abstract A four-component Camassa-Holm type system with cubic nonlin-
earity is investigated. It allows an arbitrary function Γ(x, t) to be involved in
to include some existing integrable peakon equations as special reductions. We
obtain N -peakon solutions of the four-component Camassa-Holm type system
with two special cases of Γ(x, t). In particular, we give one- and two-peakon
solutions in an explicit formula and are graphically plotted. Further, some
interesting peaked solutions are found: some peakon waves possessing positive
and negative amplitudes while others decaying and growing amplitudes.

Keywords Peakon wave, four-component Camassa-Holm type system, inte-
grable system.
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1. Introduction

In 1993, Camassa and Holm (CH) derived a completely integrable dispersive shallow
water equation [2], which has been studied quite extensively in the past two decades.
A significant property of this equation is that the CH equation admits peaked soliton
(peakon) and multi-peakon wave solutions. As an integrable equation more diverse
studies on the CH equation have been remarkably developed in the literatures [1,
10, 17]. Recently, more integrable equations with peakon properties attract much
attention, including the Degasperis-Procesi (DP) equation [3, 11], the Fokas-Olver-
Rosenau-Qiao(FORQ) equation [4, 5, 9, 12–14], the Novikov equation [7, 15], and
other CH type equations [6,8,16,18]. The CH and the DP equations are completely
integrable peakon systems with quadratical nonlinearity, and the FORQ and the
Novikov equations are typical integrable peakon systems with cubic nonlinearity.
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Recently, Li, Liu and Popowicz studied the following 3× 3 spectral problem [8]

Φx = UΦ, U =


0 λm1 1

λn1 0 λm2

1 λn2 0

 , (1.1)

where mi = mi(x, t), ni = ni(x, t), i = 1, 2. Actually, this spectral problem is a
special case of the multi-component problem studied in [17]. The spectral problem
(1.1) is interesting because it could cover some 3× 3 spectral problems for CH type
equations as special cases, such as the three-component CH system proposed by
Geng and Xue [6], one and two-component Novikov equations [7, 15], and one and
two-component Qiao equations [12,16].

Based on the spectral problem (1.1), the authors [8] gave the following four-
component CH type system

m1t + (Γm1)x + n2(g1g2 − Γ) +m1(f2g2 + 2f1g1) = 0,

m2t + (Γm2)x − n1(g1g2 − Γ)−m2(f1g1 + 2f2g2) = 0,

n1t + (Γn1)x −m2(f1f2 − Γ)− n1(f2g2 + 2f1g1) = 0,

n2t + (Γn2)x +m1(f1f2 − Γ) + n2(f1g1 + 2f2g2) = 0,

(1.2)

where

f1 = u2 − v1x, f2 = u1 + v2x, g1 = v2 + u1x, g2 = v1 − u2x,

mi = ui − uixx, ni = vi − vixx, i = 1, 2,
(1.3)

and Γ = Γ(x, t) is an arbitrary function. The system (1.2) is integrable in the sense
of Lax pair associated with the spectral problem (1.1) and the following auxiliary
spectral problem

Φt = V Φ, V =


−f1g1 λ−1g1 − λΓm1 −g1g2

λ−1f1 − λΓn1 −λ−2 + f1g1 + f2g2 λ
−1g2 − λΓm2

−f1f2 λ−1f2 − λΓn2 −f2g2

 . (1.4)

We notice that the system (1.2) contains an arbitrary function Γ, which amazingly
leads (1.2) to some different CH type equations through certain choices of Γ. For
instance, some cubic systems could be reduced (see [8]).

In particular, if Γ = 0, we have
m1t + n2g1g2 +m1(f2g2 + 2f1g1) = 0,

m2t − n1g1g2 −m2(f1g1 + 2f2g2) = 0,

n1t −m2f1f2 − n1(f2g2 + 2f1g1) = 0,

n2t +m1f1f2 + n2(f1g1 + 2f2g2) = 0,

(1.5)

where fi, gi, mi and ni, i = 1, 2 are given in (1.3). The system (1.5) can be rewritten
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in the form of the following bi-Hamiltonian structure

m1

m2

n1

n2


t

= K



δH0

δm1

δH0

δm2

δH0

δn1

δH0

δn2


= (J + F )



δH1

δm1

δH1

δm2

δH1

δn1

δH1

δn2


, (1.6)

where

K =



0 −1 ∂ 0

1 0 0 ∂

∂ 0 0 1

0 ∂ −1 0


,J =



2m1∂
−1m1 −m1∂

−1m2 J13 J14

−m2∂
−1m1 2m2∂

−1m2 J23 J24

−J ∗
13 −J ∗

23 2n1∂
−1n1 −n1∂

−1n2

−J ∗
14 −J ∗

24 −n2∂
−1n1 2n2∂

−1n2


,

F = (2P + S∂)(∂3 − 4∂)−1PT − (2S + P∂)(∂3 − 4∂)−1ST ,
J13 = −2m1∂

−1n1 − n2∂
−1m2,J14 = m1∂

−1n2 + n2∂
−1m1,

J23 = m2∂
−1n1 + n1∂

−1m2,J24 = −2m2∂
−1n2 − n1∂

−1m1,

P = (m1,m2,−n1,−n2)T ,S = (−n2, n1,−m2,m1)T ,

H0 =

∫
(f1g1 + f2g2)(m2f2 + n1g1)dx,H1 =

∫
(m2f2 + n1g1)dx.

The aim of this paper is to construct multi-peakon solutions for the four-component
CH type system (1.2) with a special Γ. In the case of Γ = 0, we solve the system
(1.5) and obtain its multi-peakon solutions, which are not in the traveling wave
type. In the case of Γ = ρ (ρ is a non-zero constant), we find the four-component
CH type system (1.2) possesses the traveling wave type multi-peakon solutions.

2. Multi-peakon solutions

In the following, we will derive multi-peakon solutions to the four-component CH
type system (1.2) with Γ = ρ, where ρ is a constant.

Case 1. Let us suppose that one-peakon solution of the four-component CH
type system (1.2) with Γ = ρ is of the following form

u1 = p1e
−|x−q1|, u2 = r1e

−|x−q1|, v1 = s1e
−|x−q1|, v2 = τ1e

−|x−q1|, (2.1)

where p1, r1, s1, τ1 and q1 are functions of t to be determined. With the help of
distribution theory, we are able to write out u1x, u2x, v1x, v2x, m1, m2, n1 and n2

as follows

u1x = −p1sgn(x− q1)e−|x−q1|, m1 = 2p1δ(x− q1),

u2x = −r1sgn(x− q1)e−|x−q1|, m2 = 2r1δ(x− q1),

v1x = −s1sgn(x− q1)e−|x−q1|, n1 = 2s1δ(x− q1),

v2x = −τ1sgn(x− q1)e−|x−q1|, n2 = 2τ1δ(x− q1). (2.2)
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Substituting (2.1) and (2.2) into (1.2) with Γ = ρ, we arrive at the following
one-peakon dynamical system

q1t = ρ,

p1t = −1

3
∆11p1 + (ρ− θ11)τ1,

τ1t = (ρ− θ11)p1 −
1

3
∆11τ1,

r1t =
1

3
∆11r1 − (ρ− θ11)s1,

s1t = −(ρ− θ11)r1 +
1

3
∆11s1, (2.3)

where ∆11 = p1s1 + r1τ1, θ11 = p1r1 + s1τ1. ∆11 and θ11 taking derivative with
respect to t, and using Eqs. (2.3), we have the following relations

∆11t = 0, θ11t = 0. (2.4)

We get
∆11 = A1, θ11 = B1, (2.5)

where A1 and B1 are arbitrary integration constants. Therefore, Eqs. (2.3) becomes

q1t = ρ,(
p1

τ1

)
t

=

 −
1

3
A1ρ−B1

ρ−B1 −1

3
A1

( p1

τ1

)
,

(
r1

s1

)
t

=


1

3
A1 −(ρ−B1)

− (ρ−B1)
1

3
A1

( r1

s1

)
. (2.6)

We arrive at the following general solution of Eq. (2.6)

q1 = ρt+ ω1,

p1 = C1e
λ
(1)
1 t + C2e

λ
(1)
2 t, τ1 = C1e

λ
(1)
1 t − C2e

λ
(1)
2 t,

r1 = C3e
λ
(1)
3 t + C4e

λ
(1)
4 t, s1 = −C3e

λ
(1)
3 t + C4e

λ
(1)
4 t, (2.7)

where

λ
(1)
1 =

1

3
(3ρ−A1 − 3B1), λ

(1)
2 =

1

3
(−3ρ−A1 + 3B1),

λ
(1)
3 =

1

3
(3ρ+A1 − 3B1), λ

(1)
4 =

1

3
(−3ρ+A1 + 3B1), (2.8)

A1 = −2(C2C3−C1C4),B1 = 2(C2C3 +C1C4) and C1, C2, C3, C4, ω1 are arbitrary
integration constants. From (2.1) and (2.7), we obtain one-peakon solution of (1.2)
with Γ = ρ:

u1 = (C1e
λ
(1)
1 t + C2e

λ
(1)
2 t)e−|ξ1|, u2 = (C3e

λ
(1)
3 t + C4e

λ
(1)
4 t)e−|ξ1|,

v1 = (−C3e
λ
(1)
3 t + C4e

λ
(1)
4 t)e−|ξ1|, v2 = (C1e

λ
(1)
1 t − C2e

λ
(1)
2 t)e−|ξ1|, (2.9)
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where ξ1 = x−ρt−ω1 and λ
(1)
i (i = 1, 2, 3, 4) are given in (2.8). See Figs. 1-2 for the

profile of the one-peakon dynamics for the potentials ui and vi (i = 1, 2) in (2.9). In
Fig. 1, (a),(d) and (b),(c) show that the one-peakon with amplitudes exponentially
decaying and growing with time t, respectively. And an interesting phenomenon is
shown in Fig. 2: the amplitude of u1 ( or u2) is changed from positive to negative
(or negative to positive ) while v1 (or v2) has positive amplitude which is changed
from decaying to growing along the t axis.
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Figure 1. The one-peakon wave (2.9) with ρ = 1, C1 = 1, C2 = C3 = 0, C4 = 2
3 and ω1 = −2.

Case 2. A two-peakon solution is given in the form of

u1 = p1e
−|x−q1| + p2e

−|x−q2|, u2 = r1e
−|x−q1| + r2e

−|x−q2|,

v1 = s1e
−|x−q1| + s2e

−|x−q2|, v2 = τ1e
−|x−q1| + τ2e

−|x−q2|, (2.10)

where pi, ri, si, τi and qi (i = 1, 2) are functions of t to be determined. In a similar
process as case 1, we can find the two-peakon dynamical system, which consists of
ten equations. Let us start from the first two equations: q1t = ρ and q2t = ρ, which
yield

q1 = ρt+ ω1, q2 = ρt+ ω2, (2.11)

where ω1 and ω2 are constants. Without loss of generality, we suppose ω2 > ω1.
With the help of (2.11), the two-peakon dynamical system can be rewritten as

pit = ρτi +
2

3
∆iipi − E(i)

1 E
(i)
2 τi − (E

(i)
3 E

(i)
2 + 2E

(i)
1 E

(i)
4 )pi,

τit = ρpi +
2

3
∆iiτi − E(i)

3 E
(i)
4 pi − (E

(i)
1 E

(i)
4 + 2E

(i)
3 E

(i)
2 )τi,

rit = −ρsi −
2

3
∆iiri + E

(1)
1 E

(1)
2 si + (E

(i)
1 E

(i)
4 + 2E

(i)
3 E

(1)
2 )ri,

sit = −ρri −
2

3
∆iisi + E

(i)
3 E

(i)
4 ri + (E

(i)
3 E

(i)
2 + 2E

(i)
1 E

(i)
4 )si, (i = 1, 2). (2.12)
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Figure 2. The one-peakon wave (2.9) with ρ = −4, C1 = −C2 = 1, C3 = −2, C4 = 2
3 and ω1 = −2.

where

E
(1)
1 = τ1 + (τ2 + p2)Ω12, E

(1)
2 = s1 − (r2 − s2)Ω12,

E
(1)
3 = p1 + (τ2 + p2)Ω12, E

(1)
4 = r1 + (r2 − s2)Ω12,

E
(2)
1 = τ2 + (τ1 − p1)Ω12, E

(2)
2 = s2 + (r1 + s1)Ω12,

E
(2)
3 = p2 − (τ1 − p1)Ω12, E

(2)
4 = r2 + (r1 + s1)Ω12,

and Ω12 = eω1−ω2 . Apparently, (2.12) implies the following relations

∆iit = (pisi + riτi)t = 0, (i = 1, 2). (2.13)

Therefore, we obtain

∆ii = Ai, (i = 1, 2), (2.14)

where Ai (i = 1, 2) are the integration constants.

In particular, as τ1 = p1 and τ2 = −p2, (2.12) is reduced to(
p1

p2

)
t

=

 1
3 (−4A1 + 3ρ) 0

0 − 1
3 (4A2 + 3ρ)

( p1

p2

)
,


r1

r2

s1

s2


t

=


1
3A1 −A1Ω12 A1 − ρ A1Ω12

−A2Ω12
1
3A2 −A2Ω12 −A2 − ρ

A1 − ρ A1Ω12
1
3A1 −A1Ω12

−A2Ω12 −A2 − ρ −A2Ω12
1
3A2



r1

r2

s1

s2

 , (2.15)
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where Ω12 = eω1−ω2 . Solving (2.15), we obtain

p1 = τ1 = C1e
λ
(2)
1 t, p2 = −τ2 = C2e

λ
(2)
2 t,

r1 = − (2A1 +A2)C3

3A2Ω12
eλ

(2)
3 t − C5e

λ
(2)
5 t +

3A1Ω12C6

A1 + 2A2
eλ

(2)
6 t,

r2 = C3e
λ
(2)
3 t + C4e

λ
(2)
4 t − C6e

λ
(2)
6 t,

s1 = − (2A1 +A2)C3

3A2Ω12
eλ

(2)
3 t + C5e

λ
(2)
5 t − 3A1Ω12C6

A1 + 2A2
eλ

(2)
6 t,

s2 = C3e
λ
(2)
3 t + C4e

λ
(2)
4 t + C6e

λ
(2)
6 t, (2.16)

where

λ
(2)
1 =

1

3
(−4A1 + 3ρ), λ

(2)
2 = −1

3
(4A2 + 3ρ), λ

(2)
3 =

1

3
(4A1 − 3ρ),

λ
(2)
4 = −1

3
(2A2 + 3ρ), λ

(2)
5 =

1

3
(−2A1 + 3ρ), λ

(2)
6 =

1

3
(4A2 + 3ρ),

(2.17)

with Ω12 = eω1−ω2 ,A1 = − 2C1C2C3C6

2C1C3+3C2C6Ω12
, A2 = 2C2C6, and ωk (k = 1, 2), Ci

(i = 1, 2, 3, 4, 5, 6) are the integration constants.

Substituting (2.16) into (2.10), we obtain the two-peakon solution of (1.2)

u1 =C1e
λ
(2)
1 te−|ξ1| + C2e

λ
(2)
2 te−|ξ2|,

u2 =

(
− (2A1 +A2)C3

3A2Ω12
eλ

(2)
3 t − C5e

λ
(2)
5 t +

3A1Ω12C6

A1 + 2A2
eλ

(2)
6 t

)
e−|ξ1|

+
(
C3e

λ
(2)
3 t + C4e

λ
(2)
4 t − C6e

λ
(2)
6 t
)
e−|ξ2|,

v1 =

(
− (2A1 +A2)C3

3A2Ω12
eλ

(2)
3 t + C5e

λ
(2)
5 t − 3A1Ω12C6

A1 + 2A2
eλ

(2)
6 t

)
e−|ξ1|

+
(
C3e

λ
(2)
3 t + C4e

λ
(2)
4 t + C6e

λ
(2)
6 t
)
e−|ξ2|,

v2 =C1e
λ
(2)
1 te−|ξ1| − C2e

λ
(2)
2 te−|ξ2|,

(2.18)

where ξj = x − ρt − ωj (j = 1, 2) and λ
(2)
i (i = 1, 2, 3, 4, 5, 6) are given in (2.17).

See Figs. 3-4 for the graph of the two-peakon solution (2.18), which are of traveling
wave type. Fig. 3 and Fig. 4 show the right-traveling and left-traveling waves,
respectively. The amplitudes of the peakons to equation (2.18) grow/decay expo-
nentially with time t. All two-peakon waves have the same velocity ρ. Namely, the
collision between the two-peakon waves will never happen.

Case N. Following the procedure in cases 1 and 2, the N -peakon solutions of
the four-component Camassa-Holm type system (1.2) are just linear superpositions

u1 =

N∑
j=1

pje
−|x−qj |, u2 =

N∑
j=1

rje
−|x−qj |, v1 =

N∑
j=1

sje
−|x−qj |, v2 =

N∑
j=1

τje
−|x−qj |,

(2.19)
where pj , rj , sj and τj (j = 1, 2, . . . , N) are N amplitudes of the potentials u1, u2,
v1 and v2, respectively, and qj (j = 1, 2, . . . , N) are N -peak positions. Functions
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Figure 3. The two-peakon wave (2.18) with ρ = 1, C1 = 1, C2 = 1
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pj , rj , sj , τj and qj (j = 1, 2, . . . , N) evolve according to the following system:

qjt = ρ,

pjt = ρτj + 2
3∆jjpj −

∑N
l,k=1[τj(τl − pl%jl)(sk + rk%jk) + pj(pl − τl%jl)(sk + rk%jk)

+2pj(rl + sl%jl)(τk − pk%jk)]Λ,

rjt = −ρsj − 2
3∆jjrj −

∑N
l,k=1[−sj(τl − pl%jl)(sk + rk%jk)− rj(rl + sl%jl)

×(τk − pk%jk)− 2rj(pl − τl%jl)(sk + rk%jk)]Λ,

sjt = −ρrj − 2
3∆jjsj −

∑N
l,k=1[−rj(rl + sl%jl)(pk − τk%jk)

−sj(pl − τl%jl)(sk + rk%jk)− 2sj(rl + sl%jl)(τk − pk%jk)]Λ,

τjt = ρpj + 2
3∆jjτj −

∑N
l,k=1[pj(rl + sl%jl)(pk − τk%jk) + kj(rl + sl%jl)(τk − pk%jk)

+2τj(pl − τl%jl)(sk + rk%jk)]Λ,

(2.20)
where %jl = sgn(qj−ql), %jk = sgn(qj−qk), Λ = e−|qj−ql|−|qj−qk|, ∆jj = pjsj+rjτj ,
(1 ≤ j; k; l ≤ N). In the above formula, qjt = ρ (ρ 6= 0) implies that N -peakon
waves move at the same velocity ρ in the traveling wave type whereas ρ = 0 implies
that all peak positions do not change along with the time t.

3. Conclusions

In this paper, we study a generalized four-component CH system (1.2) with an
arbitrary function Γ(x, t). This model provides a large class of peakon dynamical
systems and covers several well-known integrable peakon equations associated with
3 × 3 spectral problems. We obtain two kinds of multi-peakon solutions to the
system (1.2) with Γ = ρ: 1) for ρ = 0, the multi-peakon solutions are not in the
traveling wave type, and 2) if ρ 6= 0, the multi-peakon solutions are in the traveling
wave type. Furthermore, the peakon solutions (2.9) and (2.18) can be reduced to
the solutions of the model (1.5) if ρ = 0.

We believe that some generalizations and reduction of the model (1.2) deserve
a further investigation. For example, we can get the one-peakon solution to (1.2)
with Γ(x, t) = ρ+ α(u1v1 + u2v2) + β(u1u2 + v1v2):

u1 = (C1e
λ1t + C2e

λ2t)e−|ζ1|, u2 = (C3e
λ3t + C4e

λ4t)e−|ζ1|,

v1 = (C3e
λ3t − C4e

λ4t)e−|ζ1|, v2 = (−C1e
λ1t + C2e

λ2t)e−|ζ1|,

where ζ1 = x− (ρ+ αA1 + βB1)t− ω1, λ1 = 1
3 (−3ρ−A1 − 3αA1 + 3B1 − 3βB1),

λ2 = 1
3 (3ρ−A1+3αA1−3B1+3βB1), λ3 = 1

3 (−3ρ+A1−3αA1+3B1−3βB1), λ4 =
1
3 (3ρ+A1+3αA1−3B1+3βB1), A1 = 2(C2C3−C1C4), B1 = 2(C2C3+C1C4) and α,
β, ρ, ω1, and Ci (i = 1, 2, 3, 4) are constants. The question arises: how to construct
multi-peakon ( for N ≥ 2) solutions to (1.2) with Γ(x, t) = ρ + α(u1v1 + u2v2) +
β(u1u2 + v1v2)? This question is still under investigation.
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