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EXACT TRAVELING WAVE SOLUTIONS AND
BIFURCATIONS FOR THE

DULLIN-GOTTWALD-HOLM EQUATION∗
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Abstract Utilizing the methods of dynamical system theory, the Dullin-
Gottwald-Holm equation is studied in this paper. The dynamical behaviors
of the traveling wave solutions and their bifurcations are presented in differ-
ent parameter regions. Furthermore, the exact explicit forms of all possible
bounded solutions, such as solitary wave solutions, periodic wave solutions and
breaking loop wave solutions are obtained.
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1. Introduction

As we know, the Dullin-Gottwald-Holm (DGH) equation

ut + c0ux + 3uux − α2(uxxt + uuxxx + 2uxuxx) + γuxxx = 0, (1.1)

was derived in [6] describing the unidirectional propagation of surface waves in
a shallow water regime. In fact, the DGH equation (1.1) is connected with two
separate equations. When α2 → 0, the DGH equation (1.1) becomes the Korteweg-
de Vries (KdV) equation. When γ → 0, the DGH equation (1.1) reduces to the
Camassa-Holm (CH) equation.

Since the work of [6], various studies were devoted to DGH system. For instance,
different kinds of wave solutions of CH-γ equation have been studied in [3, 5, 8, 9,
15]. Rehman et al. [22] employed the phase plane method to analyze the singular
traveling wave equations of some generalized CH equations and showed the traveling
wave nature of these pulse and front solutions. Ha and Liu [11] investigated the
traveling wave solutions to a class of dispersive models in terms of the parameter θ.
Dullin et al. [7] presented three types of equations for shallow water waves. Using
Exp-function method, Xiao et al. [25] discussed exact solutions of the reduction of
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DGH equation. Naz et al. [20], Biswas and Kara [2] constructed the conservation
laws for the DGH system and generalized DGH system, respectively. Meng et al. [19]
presented new exact periodic wave solutions for the DGH equation. Liu and Yin
[16,18], Yan and Yin [26] considered the local well-posedness for a generalized DGH
equation by using Kato’s theory and the Cauchy problem for the two-component
DGH system respectively. Christov and Hakkaev [4], Ai and Gui [1] presented an
algorithm for the inverse scattering problem associated to the DGH equation. Some
phenomena, such as N peakons, wave-breaking and peakon-antipeakon interaction,
have been researched in [10,17,27–29]. Shen et al [23], Sun [24] studied the problem
for optimal control of the viscous DGH equation.

To current state of our knowledge, the possible bounded exact solutions of DGH
equation in different parameter regions have not been presented entirely. Moti-
vated by this, we attempt to investigate the dynamical behaviors of all travel-
ing wave solutions of (1.1) and to find possible exact parametric representations
of the bounded traveling wave solutions of (1.1) in this paper. To this end, let
u(x, t) = φ(x− ct) = φ(ξ), where c is the wave speed. Then, system (1.1) becomes

−cφ′ + c0φ
′ + 3φφ′ − α2(−cφ′′′ + φφ′′′ + 2φ′φ′′) + γφ′′′ = 0, (1.2)

where “ ′ ” reperents the derivative with respect to ξ. Integrating (1.2) once and
setting the integration constant as 0, we obtain

α2(φ− c− γ

α2
)φ′′ +

1

2
α2φ′2 − (c0 − c)φ−

3

2
φ2 = 0. (1.3)

Denote

β = c+
γ

α2
, s = c0 − c,

for α2 6= 0. Eq. (1.3) is expressed as

α2(φ− β)φ′′ +
1

2
α2φ′2 − sφ− 3

2
φ2 = 0,

which is equivalent to the system

dφ

dξ
= y,

dy

dξ
=

3
2φ

2 + sφ− 1
2α

2y2

α2(φ− β)
. (1.4)

Obviously, this is a singular traveling wave system with the singular straight
line φ = β. The first integral of (1.4) is as follows:

H(φ, y) =
1

2
α2(φ− β)y2 − 1

2
sφ2 − 1

2
φ3 = h. (1.5)

According to the dynamical theory, the phase portraits of (1.4) determine all
possible traveling wave solution of (1.1). Therefore, we first investigate the dynam-
ical behaviors of (1.4). However, the straight line φ = β is the singular line for
system (1.4). To overcome the difficult of discontinuous of the right side of system
(1.4) at φ = β, we use the method described in [12, 21]. That is, we introduce a
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transformation of the independent variable to obtain the regular system and discuss
the dynamics of it. By using the known dynamical behaviors of regular system, we
study the wave profiles determined by all bounded solutions of the system (1.4).

The paper is organized as follows: In section 2, the dynamics and bifurcations of
the associated regular system of (1.4) are presented first under different parameter
conditions. In section 3, corresponding to different orbits of the associated regular
system of (1.4), the exact parametric representations for the possible bounded so-
lution φ(ξ) are studied and analyzed. Finally, conclusions of this paper are drawn
in section 4.

2. Bifurcations of the phase portraits of system

In this section, we discuss the bifurcations of the associated regular system of (1.4)
in the parameter space (s, β).

Letting dξ = α2(φ − β)dζ, we obtain the associated regular system of (1.4) as
follows:

dφ

dζ
= α2(φ− β)y,

dy

dζ
=

3

2
φ2 + sφ− 1

2
α2y2. (2.1)

It is easily to know system (2.1) has two equilibria O(0, 0) and P (− 2s
3 , 0).

System (2.1) has two equilibria Q1,2(β,±
√
Y ) in the straight line φ = β when

Y = 3β2+2sβ
α2 > 0. If and only if β = − 2s

3 , we get P (− 2s
3 , 0) = Q1,2(β,±

√
Y ).

Let M(φi, yi) be the coefficient matrix of the linearized system of (2.1) at an
equilibrium (φi, yi). We have

J(0, 0) = det(M(0, 0)) = sβα2,

J(
−2s

3
, 0) = det(M(

−2s

3
, 0)) = −sα2(

2s

3
+ β),

J(β,±
√
Y ) = det(M(β,±

√
Y )) = −α4Y = −α2(3β2 + 2sβ),

traceM(0, 0) = traceM(
−2s

3
, 0) = traceM(β,±

√
Y ) = 0. (2.2)

From the theory of planar dynamical systems, for an equilibrium of a integrable
system, if J < 0, the equilibrium is a saddle; if J > 0, the equilibrium is a center;
if J = 0, the equilibrium is a degenerated equilibrium.

Denote

h0 = H(0, 0) = 0,

h1 = H(−2s

3
, 0) = − 2

27
s3,

h2 = H(β,±
√
Y ) = −1

2
β2(s+ β). (2.3)

Through simple analysis, we obtain four bifurcation curves in (s, β) parameter
plane: s = 0, β = 0, β = −s, β = − 2

3s. These curves partition (s, β) plane into eight
regions Ia − Ih, see Fig. 1.

In different regions of the (s, β) parameter space, we obtain the bifurcations of
phase portraits of (2.1), as shown in Fig. 2.
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Figure 1. Bifurcation diagram for system (2.1).

3. Exact traveling wave solutions under different
parameter regions

In this section, based on the phase portraits of solutions of system (2.1) in different
parameter regions of the (s, β) plane in Fig. 2, we consider the corresponding
traveling wave solutions φ(ξ) of (1.1) in different parameter regions of the (s, β)
space and try to get the possible exact explicit parametric representations for all
bounded functions φ(ξ) determined by (1.1).

Suppose that φ(ξ) is a continuous solution of the partial differential equation
(1.1) for ξ ∈ (−∞,+∞) and limξ→+∞ φ(ξ) = a, limξ→−∞ φ(ξ) = b. Then, φ(x, t) is
called a solitary wave solution of (1.1) if a = b; φ(x, t) is called a kink or anti-kink
solution of (1.1) if a 6= b. Acturally, according to the theory of dynamical systems
(see [12]), a homoclinic orbit of traveling wave system (2.1) corresponds to a solitary
wave solution of the partial differential equation (1.1), and a heteroclinic orbit of
traveling wave system (2.1) corresponds to a kink (or anti-kink) wave solution of
(1.1). Furthermore, a periodic orbit of the traveling wave system (2.1) corresponds
to a periodically traveling wave solution of (1.1).

1. The case s > 0, β > 0, i.e., (s, β) ∈ Ia.
In this case, we have the phase portraits of (2.1) shown in Fig. 2(a). Corre-

sponding to the homoclinic orbit defined by H(φ, y) = h1 = − 2
27s

3, we have

y2 =
( s3 − φ)(φ+ 2s

3 )2

α2(β − φ)
. (3.1)

Together with the first equation of (1.4) and (3.1), we obtain the following exact
solitary traveling wave solutions for (1.1) by introducing a new variable χ:

φ(χ) =
2s(β + 2s

3 )

(β + 5s
3 ) + (β − s

3 ) cosh(
√
s(β + 2s

3 )χ)
− 2s

3
,
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(a) (s, β) ∈ Ia (b) (s, β) ∈ Ib (c) (s, β) ∈ L3

(d) (s, β) ∈ Ic (e) (s, β) ∈ L4 (f) (s, β) ∈ Id

(g) (s, β) ∈ Ie (h) (s, β) ∈ If (i) (s, β) ∈ L7

(j) (s, β) ∈ Ig (k) (s, β) ∈ L8 (l) (s, β) ∈ Ih

Figure 2. The bifurcation of phase portraits of system (2.1).

ξ(χ) = |α|[(β +
2s

3
)χ∓ ln |

6
√

(β − φ)( s3 − φ) + 6φ− (3β + s)

3β − s
|], (3.2)

for χ ∈ (−∞, 0] and χ ∈ [0,+∞), respectively. The profile of waves given by (3.2)
is shown in Fig. 3.

Corresponding to the families of periodic orbits defined by H(φ, y) = h, h ∈
(h1, 0), one can see the level curves in Fig. 4 defined by H(φ, y) = h, for a fixed
h ∈ (h1, 0). The level curves have two branches, passing through the points (r1, 0),
(r2, 0) and (r3, 0), where r3 < r2 < 0 < r1 < β.
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(a) s = 2, β = 1, α = 2 (b) s = 3, β = 2, α = 2

Figure 3. The solitary wave solution given by (3.2) with H(φ, y) = h1, corresponding to the homoclinic
orbit in Fig. 2(a).

Figure 4. The level curve defined by H(φ, y) = h for s > 0, β > 0, h ∈ (h1, 0).

We rewrite H(φ, y) = h as

y2 =
−(2h+ sφ2 + φ3)

α2(β − φ)
=

(φ− r3)(φ− r2)(r1 − φ)

α2(β − φ)
. (3.3)

From the first equation of (1.4) and (3.3), we can get the parametric representation
of the periodic waves as follows:

ξ = |α|
∫ φ

r2

√
β − φ

(r1 − φ)(φ− r2)(φ− r3)
dφ. (3.4)

Introducing a new variable χ, we get the following periodic traveling wave solutions
of (1.1):

φ(χ) = r3 +
r2 − r3

1− α2
1sn

2(χ, k1)
,

ξ(χ) =
2|α|√

(β − r2)(r1 − r3)
[(β − r3)χ− (r2 − r3)Π(arcsin(sn(χ, k1)), α2

1, k1)],

(3.5)
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where k2
1 = (r1−r2)(β−r3)

(β−r2)(r1−r3) , α2
1 = r1−r2

r1−r3 and Π(·, α2
1, k1) is the elliptic integral of the

third kind.
2. The case s < 0, β > 0, β > −s, i.e., (s, β) ∈ Ib.
In Fig. 2(b), corresponding to the homoclinic orbit defined by H(φ, y) = h0 = 0,

we have

y2 =
φ2(−φ− s)
α2(β − φ)

. (3.6)

Together with the first equation of (1.4) and (3.6), we obtain the following parameter
representation of the solitary wave of (1.1):

φ(χ) =
−2βs

(β − s) + (β + s) cosh(
√
−βsχ)

,

ξ(χ) = |α|[βχ∓ ln |
2
√

(−φ− s)(β − φ) + 2φ− (β − s)
β + s

|], (3.7)

for χ ∈ (−∞, 0] and χ ∈ [0,+∞), respectively.
Corresponding to the families of periodic orbits defined by H(φ, y) = h, h ∈

(0, h1), similar to the case 1, one can obtain the parametric representation of the
periodic wave solutions as (3.5).

3. The case β > 0, β = −s, i.e., (s, β) ∈ L3.
From Fig. 2(c), two straight line orbits connecting to the equilibrium (0, 0) and

(β,±
√
Y ) defined by H(φ, y) = h0 = 0 have the expression

y2 =
φ2

α2
. (3.8)

Thus, we have

φ = −se
|ξ|
|α| , 0 ≤ |ξ| < +∞. (3.9)

For h ∈ (0, h1), corresponding to the family of periodic orbits defined byH(φ, y) =
h, we have the same periodic wave families as (3.5). It is indicated that system (1.1)
has infinitely periodic traveling wave solutions. As h → 0, these periodic traveling
wave solutions will gradually lose their smoothness to become periodic cusp travel-
ing wave solutions, finally, to converge to the cusp wave solution given by (3.9), see
Fig. 5.

4. The case β > 0,− 2s
3 < β < −s, i.e., (s, β) ∈ Ic.

In Fig. 2(d), corresponding to the arch orbit of system (2.1) passing through
the straight line φ = β, which is defined by H(φ, y) = h2 = − 1

2β
2(s+ β), we have

y2 =
φ3 + sφ2 − β2(s+ β)

α2(φ− β)
=
φ2 + (β + s)φ+ β(β + s)

α2
, (3.10)

which implies that

φ(ξ) =− β + s

2
+

1

2

√
(s− 3β)(s+ β) cosh(

ξ

|α|
),

0 ≤ |ξ| ≤ |α|arccosh
3β + s√

(β + s)(s− 3β)
. (3.11)
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(a) (b)

(c) (d)

Figure 5. Solitary cusp wave and periodic wave solutions for s = −1, β = 1, α = 2. (a) φ(0) = 0.8; (b)
φ(0) = 0.9; (c) φ(0) = 0.99; (d) H(φ, y) = 0. The periodic wave solutions in (a), (b) and (c) correspond
to the periodic orbits in Fig. 2(b) and the solitary cusp wave corresponds to the two straight line orbits
connecting to the equilibrium (0, 0).

Corresponding to the curves defined by H(φ, y) = h, h ∈ (0, h2), we obtain the
level curves defined by H(φ, y) = h, for a fixed h ∈ (0, h2) in Fig. 6. The level
curves have three open branches, passing through the points (r1, 0), (r2, 0) and
(r3, 0), where r3 < 0 < r2 < β < r1.

Figure 6. The level curve defined by H(φ, y) = h for β > 0,− 2
3 s < β < −s, h ∈ (0, h2).

To have a parametric representation of the open orbit passing through the point
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(r2, 0), we begin with

y2 =
2h+ sφ2 + φ3

α2(φ− β)
=

(φ− r3)(φ− r2)(r1 − φ)

α2(β − φ)
. (3.12)

From the first equation of (1.4) and (3.12), we get

ξ = |α|
∫ φ

r2

√
β − φ

(φ− r3)(φ− r2)(r1 − φ)
dφ. (3.13)

Similarly, introducing a variable χ, we obtain

φ(χ) = r3 +
r2 − r3

1− α2
2sn

2(χ, k2)
, χ ∈ (−χ20, χ20),

ξ(χ) =
2|α|√

(β − r3)(r1 − r2)
[(r1 − r3)χ− (r2 − r3)Π(arcsin(sn(χ, k2)), α2

2, k2)],

(3.14)

where k2
2 = (r1−r3)(β−r2)

(β−r3)(r1−r2) , α2
2 = β−r2

β−r3 and Π(·, α2
2, k2) is the elliptic integral of the

third kind. χ20 satisfies r3 + r2−r3
1−α2

2sn
2(χ20,k2)

= β.

It seems that (3.14) gives the loop solutions of system (1.1). In fact, the expres-
sion (3.14) corresponds to the bifurcation branch passing through the point (r2, 0)
in Fig. 6. The time interval of existence of the traveling wave solution φ(ξ) with
respect to ξ is finite. From the analysis in Li [13, 14], we know the solution (3.14)
gives the breaking loop wave solutions of system (1.1). Fig. 7 indicates the breaking
loop solutions of (1.1) with h is varied.

For h ∈ (h2, h1), corresponding to the family of periodic orbits defined by
H(φ, y) = h, we have the same periodic wave families as (3.5).

5. The case β > 0, β = − 2s
3 , i.e., (s, β) ∈ L4.

Due to β = − 2s
3 , we have h1 = h2. In Fig. 2(e), corresponding to the curves

defined by H(φ, y) = h, h ∈ (0, h1), we get a parametric representation of the open
orbit passing through the point (r2, 0) as (3.14).

6. The case β > 0, β < − 2s
3 , i.e., (s, β) ∈ Id.

In Fig. 2(f), corresponding to the curves defined by H(φ, y) = h, h ∈ (0, h2), we
also obtain a parametric representation of the open orbit passing through the point
(r2, 0) as (3.14).

Corresponding to the curves defined by H(φ, y) = h, h ∈ (h2, h1), we can see
the level curves defined by H(φ, y) = h, for a fixed h ∈ (h2, h1) in Fig. 8. The
level curves have three open branches, passing through the points (r1, 0), (r2, 0)
and (r3, 0), where r3 < 0 < β < r2 < r1.

Similar to the case 4, we get the parametric representation of the open orbit
passing through the point (r2, 0) as follows:

φ(χ) = r1 +
r2 − r1

1− α2
3sn

2(χ, k3)
, χ ∈ (−χ30, χ30),

ξ(χ) = − 2|α|√
(r1 − β)(r2 − r3)

[(r1 − β)χ− (r1 − r2)Π(arcsin(sn(χ, k3)), α2
3, k3)],

(3.15)
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(a) (b)

(c) (d)

Figure 7. Breaking loop waves corresponding to an open branch of H(φ, y) = h, h ∈ (0, h2) in Fig. 6

for s = − 5
4 , β = 1, α = 2. (a) h = 0.02; (b) h = 0.05; (c) h = 0.08; (d) h = 0.1.

Figure 8. The level curve defined by H(φ, y) = h for β > 0, β < − 2
3 s, h ∈ (h2, h1).

where k2
3 = (r2−β)(r1−r3)

(r1−β)(r2−r3) , α2
3 = r2−β

r1−β and Π(·, α2
3, k3) is the elliptic integral of the

third kind. χ30 satisfies r1 + r2−r1
1−α2

3sn
2(χ30,k3)

= β.

Also, the expression (3.15) corresponds to the breaking loop wave of system
(1.1), see Fig. 9.

From Fig. 2, we easily find the last six figures are similar to the first six figures,
respectively. Therefore, the further discussion of the last six cases is similar and
omitted here for the limited place.
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(a) (b)

Figure 9. Breaking loop waves corresponding to an open branch of H(φ, y) = h, h ∈ (h2, h1) in Fig .8
for s = −2, β = 1, α = 2. (a) h = 0.52; (b) h = 0.54.

4. Conclusions

In this paper, we consider the dynamical behaviors and bifurcations of the DGH
equation. Due to the singularity of the equivalent system of DGH equation, we
introduce a transformation of the independent variable to obtain the regular system
and discuss the dynamics of it. By using the known dynamical behaviors of regular
system, we study the wave profiles determined by the bounded solutions of the
DGH system. We obtain some new exact explicit solutions of DGH system, such as
solitary wave solutions, periodic wave solutions and breaking loop wave solutions
analytically and numerically. The results obtained in this paper enrich the analysis
of DGH equation.
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