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AN IMPROVED BOX-COUNTING METHOD
TO ESTIMATE FRACTAL DIMENSION OF

IMAGES
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and Xiaopeng Hu1

Abstract Fractal dimension (FD) reflects the intrinsic self-similarity of an
image and can be used in image classification, image segmentation and texture
analysis. The differential box-counting (DBC) method is a common approach
to calculating the FD values. This paper proposes an improved DBC-based
approach to optimizing the performance of the method in the following ways:
reducing fitting errors by decreasing step lengths, considering under-counting
boxes on the border of two neighboring box-blocks and making better use of
all the pixels in the blocks while not neglecting the middle parts. The experi-
mental results show that the fitting error of the new method can be decreased
to 0.012879. The average distance of the FD values is decreased by 16.0% in
the divided images and the average variance of the FD values is decreased by
30% in the scaled images, compared with other modified methods. The results
show that the new method has a better performance in the recognition of the
same type of images and the scaled images.

Keywords Ddifferential box-counting (DBC) method, fractal dimension, im-
proved DBC method.
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1. Introduction

The self-similarity plays an important role in describing the textures of images,
which is too complicated to be described by the traditional Euclidean geometry
[4, 6, 14, 19]. Mandelbrot proposed a new mathematical model of fractal dimension
(FD) to solve the problem [13]. The method has comprehensive applications in
image segmentation, texture analysis, graphic classification and so on [1, 5]. There
are three kinds of methods for calculating the FD according to the classification
by Lopes et al. [12]: the differential box-counting (DBC) method, the fractional
Brownian motion (fBm) method and the area measurement method. Sarkar et
al. proposed the DBC method which is frequently used in computing FD due
to its conciseness and automatic computability [16–18]. Many research reports
show that the method leads to better presentation in the calculation of FD for
gray images compared with other methods [3, 7, 8, 15]. However, the DBC method
shows some disadvantages. The prime drawbacks of the DBC method lies in three
aspects [9, 10, 17]: the biggish fitting errors, under-counting boxes at the border of
two neighboring box blocks and neglecting the pixels of middle part of a graph. Some
improved methods were proposed afterwards. Wang et al. proposed an improved
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DBC method by considering all the pixels of a box [20]. Li et al. optimized the DBC
method in counting boxes [10]. Liu et al. proposed an improved DBC method by
considering the border of two neighboring box blocks [11]. In this paper, we propose
an improved DBC method by considering the major drawbacks of the original DBC
method.

The paper is organized as follows. In section 2, the fundamental analysis of DBC
method is discussed. In section 3, an improved method is proposed. In Section 4,
some real texture images are used to discuss and evaluate the new approach. Section
5 presents a conclusion.

2. Related work

2.1. The DBC method

The basic principle of DBC method is derived from the self-similarity of the texture
of the images. In the classic method of DBC, the (x, y) is the pixel coordinates
of the image and the z is the gray value of the image. The plane of the image is
partitioned into non-overlapping blocks of size s × s , where 2 ≤ s ≤ M/2 and M
is the size of picture. The scale is r = M/s . In each block, there are a column of
boxes of size s× s× s′. The s′ represents the height of each box, which is computed
by the formula G/s′ = M/s. The G is the gray level of the image and it is 255
for gray image. Assign the numbers 1, 2. . . to the boxes as shown in Figure 1. The

Figure 1. Sketch of determination of the number of boxes (nr) by DBC method (quoted from Li et al.
[10]).

pixels of the minimum and maximum gray-level (written as Imin and Imax) in the
(i, j) block fall in the boxes numbered k and l, respectively. The number of boxes
covering this block are calculated as follows:

nr(i, j) = l − k + 1. (2.1)

And Nr is counted for different values of r as

Nr =
∑

nr(i, j). (2.2)

The formula of computing the FD of DBC method is as follows:

D = lim
r→0

log(Nr)

log(1/r)
, (2.3)
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where Nr denotes the least number of boxes for covering the region with radius
r. The FD of DBC method is a certain value for a rigorous self-similarity image.
But the objects in the real world do not have strict self-similarity. Therefore it is
difficult to compute an accurate value of FD. However those nature objects still
possess the self-similarity in a major extent. And the DBC method is still helpful
in exploring and recognizing the self-similarities of various objects in reality.

2.2. The discussion of the DBC method

Although the DBC method is sound in theoretical support, it still has three inherent
shortcomings. In the following we discuss in detail.

(i) Lee et al. proposed that the classical method of DBC has major fitting errors
in the process of the least square method [9]. The result of the least square
method of a sample image is illustrated in Figure 2. The picture is stemmed
from the texture image of communal atlas of Brodatz[2]. The x axis represents
log(1/r) and the y axis represents log(Nr). We can see that the both ends of
points have sharp drops compared with other points. It causes a substantial
increase of variance summation of the fitting results.

Figure 2. The fitting result of the least square method

(ii) Sarkar et al. presented that the DBC method has under-counting box number
at the border of two neighboring box blocks [17]. Under-counting the number
of boxes may happen when the picture has a dramatic gray-scaled variation
at the border of two neighboring box blocks. Figures 3 show an interpretation
of this phenomenon.

(a) Wall (b) Board (c) Brick

Figure 3. Images of dramatic gray-scaled variation at the border

(iii) The boxes for covering s × s block are counted in the number l − k + 1. It
results in the pixels of middle part not being considered. As shown in Eq.
(2.1), The nr is calculated by the maximum-value pixel l and the minimum-
value pixel k. The pixels of middle part are neglected in this method. Wang
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et al. proposed that the neglecting of pixels in middle part results in a biggish
fitting error [20].

Many improved DBC methods are proposed to optimize the performance of
classical DBC method. Wang et al. proposed a DBC method counting the box
number by the maximum pixel and minimum pixel in the block [20]. It neglects the
other pixels. So they optimize the DBC method by considering all the pixels in the
block. Li et al. improved the performance of DBC method by changing the part
in counting box [10]. In fact, they optimized the DBC method by considering the
border of two neighboring block in the horizontal direction. In the comparison ex-
periments, the last rows and columns pixels are ignored because of the transforming
of the counting box means. Liu et al. modified the DBC method by considering the
border of two neighboring blocks in the horizontal and vertical directions, which
manifests that the one line is suitable for the block [11].

2.3. An improved box-counting method

According to the analysis of the DBC method, there are still much to be improved.
In this paper three modifications are proposed in the improved DBC method.

(i) Average gray level (AGL), in the block of size ss, is calculated. Then it is
compared with gray value of every pixel in the block. If the value is above
AGL, the count of max (CMA) is accumulated; if the value is inferior to AGL,
count of min (CMI) is accumulated. The equation is as follows:

nr(i, j) =
2× CMA× pa− 2× CMI × pi

s× s
, (2.4)

where pa represents the maximal pixel value of block, and pi represents the
minimum pixel value of block.

(ii) Figure 2 shows that the DBC has a better performance in the middle points
and both ends of points have sharp drops. So the step lengths of new method
are decreased. The step lengths of classical DBC method are s by which M
can be divisible. The steps length of s, less than 14, are added in the improved
method to add more points in the middle part. When M is not divisible by
s, the average pixel value is calculated by the border of block and is inserted
into the block as rest pixels. This situation is presented as the dashed part
in Figure 4. When s is greater than 14, the relative value of log(1/r) has the
same value. So the value of s less than 14 is chosen to improve the accuracy
of FD.

(iii) Shift the block in the (x, y) plane with pixels of θ to overcome the shortcoming
of under-counting boxes at the border of two neighboring box blocks. The shift
block of (i, j)(i ∈ x, j ∈ y) is as follows:

shiftblock



s(i+ θ, j + θ), i, j is not the border of the image,

(i− θ, j + θ), i is the border of the image,

(i+ θ, j − θ), j is the border of the image,

(i− θ, j − θ), i, j are both borders of the image.
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Figure 4. The shift block in method 1 Figure 5. The shift block in method 2

The shift block is to catch the border of two neighboring boxes, so θ taking 1
is the best choice. The shift block is demonstrated in Fig. 4. If M is the exact
division by r, the specific circumstance of shift is shown in Fig. 5. The number of
the shift block boxes, marked as nr shift, is the value of the new block with the Eq.
(2.4) And nr old is the value of the original block boxes. The final value of nr is
obtained by

nr(i, j) = max(nr old, nr shift). (2.5)

Table 1. The procedure of new method
Operations Annotations
Start
Load image // input the image
M = image.height ,N = image.width;

Step1 s = 2; //the orgin size of box
While(s ≤M/2)
If (s < 13||M/s == 0)
r = s/M ; //define the r

Step2 For(i < M/s;j < N/s)
nr(i, j) = (CMA× pa− CMI × pi)/s× s //use Eq. (2.4)
Shift block in (x, y) plane with σ pixels
nr(i, j) = max(nr old, nr shift) //use Eq. (2.5)
End For

End If
Nr old =

∑
(nr);

s+ +;
End While

Step3 Fit(logNr, log(1/r)) //the least square method
Obtain FD
End

The procedure of the improved method is listed in Table 1. It was implemented
on core (TM) i5 (2.40GHZ). It includes three major steps.

(1) Cover the image with different size boxes;

(2) Count the number of the boxes covering the image completely;

(3) Use the least-squares linear fit of log(Nr) against log(1/r) to compute the FD
of the image.
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3. Experimental results and discussions

In this section, the experimental results of the new method are compared with other
four methods in three experiments. The test database is the Brodatz texture image
library [2]. The images can be downloaded in the web of
http : //www.cipr.rpi.edu/resource/stills/brodatz.html. For each picture in the
image library, the gray value of the image ranges from 0 to 255, namely gray level
is 256 totally.

3.1. The fitting errors for the library

The fitting error is one of the most important index for evaluating the method of
FD. It is usually used to acquire the degree of accuracy. And the FD is obtained by
the least squares linear fitting straight line of a set of point pairs [log(1/r), log(Nr)].
There are 14 Brodatz texture images with size of 640 × 640 as shown in Fig. 6.
The low fitting error means that the method has a good result.

Figure 6. Brodatz texture images

The y = kx+ b is the straight fitting line. The y represents the log(Nr) and the
x represents the log(1/r). The k denotes the result of FD. The DBC and improved
DBC methods take a different number of points pairs. So the mean value of fitting
errors for point pairs are obtained to evaluate the methods. The equation of fitting
error (FE) is as Eq. (3.1):

FE =
1

n

n∑
i=1

(kxi + d− yi)2, (3.1)
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where n is the number of point pairs. The specific results are shown in Table 2.
The vlues marking boldface are the best results of five methods.

Table 2. The results of experiment 1

Num of
DBC Liu’s method Wang’s method Li’s method New method

Image FD Fitting
error

FD Fitting
error

FD Fitting
error

FD Fitting
error

FD Fitting
error

1 2.68 0.0387 2.71 0.0697 2.73 0.0972 2.72 0.0272 2.82 0.0105
2 2.78 0.0900 2.82 0.0527 2.82 0.1126 2.82 0.0358 2.90 0.0170
3 2.78 0.0809 2.81 0.0502 2.82 0.0702 2.82 0.0185 2.89 0.0106
4 2.67 0.1393 2.71 0.0977 2.72 0.1257 2.71 0.0438 2.82 0.0169
5 2.68 0.1629 2.73 0.1066 2.73 0.0896 2.73 0.0609 2.81 0.0216
6 2.64 0.1179 2.68 0.0777 2.70 0.1203 2.67 0.0420 2.82 0.0115
7 2.50 0.0631 2.53 0.0446 2.54 0.1018 2.54 0.0787 2.72 0.0075
8 2.81 0.014 2.84 0.0348 2.84 0.0521 2.84 0.0197 2.90 0.0057
9 2.69 0.1295 2.73 0.0821 2.71 0.1982 2.74 0.0386 2.83 0.0234
10 2.72 0.0951 2.76 0.0580 2.81 0.0447 2.75 0.0270 2.87 0.0063
11 2.69 0.0666 2.73 0.0364 2.83 0.1015 2.73 0.0187 2.90 0.0182
12 2.57 0.0844 2.60 0.0573 2.61 0.0781 2.61 0.0776 2.70 0.0087
13 2.44 0.1384 2.48 0.1026 2.48 0.1654 2.49 0.0194 2.68 0.0105
14 2.52 0.1312 2.56 0.0922 2.55 0.1943 2.57 0.0477 2.73 0.0119

The average fitting errors of DBC is 0.096571 and other three modified D-
BC methods, Liu’s method, Wang’s method, Li’s method are 0.068757, 0.110836,
0.039686, respectively. The mean fitting error of new method is 0.012879. The stan-
dard deviations of five methods, DBC, Liu’s method, Wang’s method, Li’s method
and new method, are 0.040829, 0.023689, 0.045703, 0.019874 and 0.005404, respec-
tively. The results illustrate that the new method has a sharp drop in fitting error
compared with other improved DBC methods and it is steady in the aspect of fitting
error. Figure 7 shows a visualized effect for the comparison of fitting error.
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Figure 7. The comparison of fitting errors

3.2. Tests on Brodatz texture image II

Another Brodatz has 26 pictures of size with 512 × 512. It has two images in the
same type of objects, namely it has 13 groups of images in picture library as shown
in Figure 8. The FD values of the same class images should be close to each other.
The less distance in one group denotes the better accuracy in FD. Each image is
divided into 16 same size pictures of 128× 128 for better confirming the stability of
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the method. The average FD of the 16 divided pictures are used to present the FD
of the origin picture.The specific distances of FD in groups are presented in Table
3.

Figure 8. The sample of Brodatz texture image

Table 3. The results of experiment 2

Num of Distance of Distance of Distance of Distance of Distance of
Image DBC Liu’s method Wang’s method Li’s method New method

1 0.151843 0.155604 0.12887 0.1139 0.114188
2 0.093774 0.098036 0.118218 0.0897 0.091924
3 0.071703 0.074569 0.075336 0.1007 0.060466
4 0.076414 0.075468 0.052885 0.0425 0.042106
5 0.057246 0.060133 0.067739 0.0688 0.039661
6 0.06895 0.069316 0.049395 0.0077 0.035297
7 0.092138 0.095552 0.073189 0.0603 0.040109
8 0.156938 0.160444 0.118951 0.0897 0.110483
9 0.157617 0.164806 0.16099 0.1293 0.107626
10 0.166894 0.170603 0.159434 0.1014 0.101147
11 0.12937 0.135551 0.088273 0.0702 0.005824
12 0.128676 0.128322 0.093669 0.1107 0.064489
13 0.12917 0.135687 0.124886 0.0947 0.092973
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Figure 9. The comparison diagram of distances of FD in every group

The bold part represents the best result of DBC and improved DBC methods.
And the comparison diagram is shown in Figure 9. The average distances in groups
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of DBC, Liu’s method, Wang’s method, Li’s method are 0.1139, 0.1172, 0.1009,
0.0830. And the mean distance in groups of new method is 0.0697. The variances
of four methods are 0.0387, 0.0373, 0.0400, 0.0354. The results illustrate that the
new method have a better behavior in the recognition the same type of images
compared with other three modified methods.

3.3. Experiments in the Shrunken image

In this experiment, the sizes of sixty-seven 640× 640 images from Brodatz texture
library are reduced to the size of 600× 600, 512× 512, 450× 450 and 400× 400 to
observe the variances of FD. The origin image is abandoned for fair.

The less variance in one group denotes better accuracy since the reduced images
are from the same image and have the similar textures. The variance results of FD
in groups are presented in Appendix. The comparison diagram is shown in Figure
10. The number of the new method variance in groups which are inferior to the
other method are 53, which means 79.1% of the results are superior to the other
methods. And the results of the DBC, Liu’s method, Wang’s method, Li’s method
are 0.0147, 0.0130, 0.0158. 0.0148. And the mean variance of FD of the new method
in reduced image is 0.0091. The results indicate that the new method have a better
performance in identifying the same class of images with different scales compared
with other improved DBC methods.

0 10 20 30 40 50 60 70
0

0.01

0.02

0.03

0.04

0.05

0.06

Image Number

T
he

 D
is

ta
nc

e 
of

 F
D

 in
 G

ro
up

 

 
DBC
liu’method
wang’method
li’method
New method

Figure 10. The comparison diagram of variances of FD in the scaled image

4. Conclusions

In this study, we propose a modified DBC method, which is improved in the fol-
lowing aspects: changing the means of the number of counting boxes in the block,
shifting the block in (x, y) plane and decreasing the step length. Three experiments
were carried out to test the new method and the experimental results are compared
with other improved DBC methods. The results of the first experiment shows that
the new method has a good fitting and it is steady in the fitting error, which is
decreased to 0.012879. The average variance of FD values, compared with the best
result of other improved methods, 0.083046 of Li’s method, is decreased by 16.0%
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in the second experiment. The result illustrates that the new method has a better
performance in the recognition of the same type of images. The third experiment
shows the new method has a better performance in identifying the scaled images.
And the average variance of FD values in each group is decreased by 30% compared
with the Lius method.
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Appendix

The variances of FD in 67 images
Num of Distance of Distance of Distance of Distance of Distance of
Image DBC Liu’s method Wang’s method Li’s method New method
1 0.026015 0.024941 0.025035 0.021145 0.016697
2 0.024636 0.02347 0.019996 0.017829 0.01295
3 0.016838 0.019123 0.017364 0.013903 0.00998
4 0.027226 0.024578 0.021121 0.019078 0.01238
5 0.026041 0.023458 0.015683 0.019845 0.009328
6 0.023815 0.023447 0.023797 0.01862 0.014184
7 0.02427 0.022824 0.020878 0.017346 0.00551
8 0.019458 0.019419 0.021168 0.014705 0.013252
9 0.010392 0.007774 0.011133 0.014158 0.004981
10 0.027002 0.026338 0.041266 0.023328 0.021053
11 0.027189 0.026961 0.028058 0.02595 0.02374
12 0.01646 0.012629 0.013664 0.014914 0.007123
13 0.052136 0.047642 0.057117 0.044211 0.047975
14 0.052804 0.048762 0.049194 0.043828 0.036193
15 0.013143 0.010703 0.012103 0.014115 0.005534
16 0.01004 0.008786 0.020586 0.011871 0.010857
17 0.011531 0.008794 0.011348 0.014524 0.009716
18 0.011903 0.008986 0.015693 0.014436 0.006252
19 0.010928 0.008898 0.010595 0.013174 0.004415
20 0.007731 0.005441 0.011292 0.01105 0.005185
21 0.012839 0.011072 0.012629 0.014518 0.007507
22 0.014608 0.010862 0.016174 0.013052 0.00593
23 0.013789 0.012548 0.01427 0.014866 0.008714
24 0.011449 0.007979 0.012745 0.016017 0.004025
25 0.009 0.008139 0.010853 0.01206 0.006183
26 0.011782 0.009735 0.012836 0.014715 0.004172
27 0.005937 0.003371 0.012092 0.010002 0.004832
28 0.012647 0.010207 0.015083 0.010229 0.009674
29 0.009132 0.006549 0.01327 0.01183 0.003918
30 0.008146 0.005125 0.004967 0.00803 0.003868
31 0.012306 0.01433 0.020731 0.013793 0.011941
32 0.007093 0.004599 0.011837 0.007116 0.003247
33 0.012433 0.008753 0.015442 0.012691 0.011945
34 0.010084 0.009717 0.010416 0.013117 0.005409
35 0.014457 0.016183 0.007752 0.014943 0.005331
36 0.020265 0.019191 0.017689 0.018943 0.01014
37 0.010073 0.00622 0.012163 0.00941 0.009063
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38 0.01246 0.010181 0.010577 0.010889 0.004225
39 0.015364 0.012774 0.011706 0.011664 0.008844
40 0.017601 0.014882 0.01581 0.0016417 0.007
41 0.007456 0.00547 0.012819 0.009085 0.003373
42 0.016836 0.01652 0.025646 0.017533 0.016635
43 0.018509 0.020582 0.026277 0.017488 0.014663
44 0.010341 0.007271 0.014662 0.0010759 0.011279
45 0.012337 0.010832 0.011045 0.013364 0.003631
46 0.02467 0.023688 0.020855 0.022071 0.016177
47 0.014253 0.012367 0.012455 0.014415 0.008498
48 0.011263 0.00861 0.010999 0.013816 0.003236
49 0.010541 0.007647 0.010217 0.01315 0.001938
50 0.010465 0.008167 0.012799 0.014544 0.005703
51 0.014667 0.012784 0.010105 0.016473 0.005732
52 0.013831 0.010745 0.015423 0.013738 0.006094
53 0.012588 0.010101 0.01281 0.014506 0.003743
54 0.009751 0.007401 0.01057 0.0013024 0.015549
55 0.017322 0.014668 0.012253 0.015814 0.005891
56 0.001385 0.002779 0.007703 0.0004458 0.004104
57 0.004357 0.00435 0.016594 0.007497 0.007273
58 0.006255 0.005455 0.017705 0.010003 0.008892
59 0.010427 0.00841 0.002944 0.004719 0.012165
60 0.010396 0.007906 0.009637 0.01308 0.001938
61 0.017068 0.015453 0.014543 0.020468 0.005003
62 0.012118 0.008282 0.007937 0.0112 0.002708
63 0.00885 0.008658 0.019226 0.013923 0.013646
64 0.012348 0.008907 0.00817 0.011988 0.007003
65 0.009966 0.007267 0.01072 0.0013698 0.002999
66 0.004721 0.005057 0.008771 0.007918 0.004611
67 0.00338 0.003763 0.007744 0.00722 0.00155
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