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Abstract In this paper, we study the global topological linearization of a d-
ifferential equation with piecewise constant argument of generalized type (DE-
PCAG) when the nonlinear term is unbounded. Some sufficient conditions are
established for the topological conjugacy between a nonlinear system and its
linear system. Our work generalizes the main result of Pinto and Robledo
in [25].
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1. Introduction

The classical topological linearization theorem of autonomous differential equations
was given by Hartman and Grobman [12,13]. Palmer generalized the Hartmann-
Grobman theorem to the nonautonomous case in [20, 21], where he obtained a
version of the global topological linearization theorem.

Later, many scholars obtained a series of results on topological linearization.
Barreira and Valls [5,6], Jiang [15,16], Shi and Xiong [28], Shi [29] obtained various
results about ordinary differential equations. Castafieda and Robledo [8], Kurzweil
and Papaschinopoulos [17], Papaschinopoulos [22] considered topological lineariza-
tion of difference equations. Topological linearization of impulsive equations and
time-scale systems were studied in [18,31,33,34] and [26, 32], respectively. In 1996,
Papaschinopoulos [23] generalized the topological linearization theorem to a differ-
ential equation with piecewise constant argument (DEPCA).

Nineteen years later, Pinto and Robledo [25] generalized the work of Papaschinopou-
los to a differential equation with piecewise constant argument of generalized type
(DEPCAG). They studied the following system

2'(t) = M(t)z(t) + Mo(t)z(v(t)) + h(t, 2(t), 2(7(2))), (1.1)

where t € R, z(t) € R™, M (t) and My(t) are n X n matrices, h: R x R” x R* — R"
and y(t) : R = R.
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Under suitable conditions, they proved that the above nonlinear system is topo-
logically conjugated to its linear system

2'(t) = M(t)z(t) + Mo(t)z(v(t)). (1.2)

If the function ~(t) = [t], where [t] is the integer part of ¢, then system (1.1) is
a DEPCA, which has been well studied by Papaschinopoulos [23]. DEPCAs and
DEPCAGS have been extensively studied, readers could refer to [2,7,10,11,14,19,
27,35] for more details.

However, the results in [23] and [25] require that there exists a constant > 0
such that |h(t, z(t), z(y(t)))| < p. That is the boundness of the nonlinear term
h(t,z(t), z(v(t))). So a natural question is what happens when h(t, z(t), z(v(¢))) is
unbounded?

In this paper, we prove that even if h(t, z(t), z(7(¢))) is unbounded, system (1.1)
can also be topologically conjugated to system (1.2) as long as it has a proper
structure.

The rest of this paper is organized as follows: In Section 2, we give some defi-
nitions, notations and preliminary lemmas. Our main result is stated in Section 3.
Proofs are given in Section 4 and 5.

2. Preliminaries

2.1. General assumptions

For convenience, in this paper, we assume that system (1.1) has the following form:

o' (t) = A(t)z(t) + Ao(H)x (v (1) + £ (&, 2(t), y(t), 2(7(1)), y(v(1))),

(2.1)
y'(t) = B()y(t) + Ao()y(v(1)) + g(t, z(8), y(t), z((1)), y(v(1)))-
Thus, system (1.2) can be rewritten as
a'(t) = A()x(t) + Ao(t)z(v(1)), (2.9)
y'(t) = B(t)y(t) + Ao(t)y(v(#))
Corresponding to systems (1.1) and (
o) = x(t) A(t) 0 Mo(t) = Ao(t) 0 ’
y(t) B(t) 0 Byo(t)

(), y(8), (v (), y(v () | 4 [ @)

( z(t),y(), x(y(8), y(v(1))) 9(t)

where t € R, z(t) € R™, y(t) € R™, ny +ny = n, A(t), Ao(t) are ny X ny matrices,
B(t), By(t) are ny X ng matrices, f,g: R x R™ x R™2 x R™ x R" — R".

We suppose that A(t), Ao(t), B(t), Bo(t), f and g satisfy condition (A) as

follows:
(A1) There exist constants 5 > 0 and Sy > 0 such that

sup [A(t)] < B, sup|B(t)| < B,
teR teR

h(t7 Z(t)7 Z(’V(t)) =
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sup [Ao(t)] < Bo, sup|Bo(t)] < Bo,
teR teR

where | - | denotes a matrix norm.
(A2) There exist constants > 0 and ¢ > 0 such that for any
(t,z(t),y(t), z(v(t),y(v(t))) € R x R™ x R™ x R™ x R"2,

(82 (t), y(1), z(+(2)), y(v(D))] < g,
l9(t,2(8), y (@), 2(v(£), y(Y ()| < £(|=(B)] + [2(v(0)]) + ps

where | - | denotes a vector norm.

(A3) V(t, z1(t), y1(2), 21 (v(1)), y1 (7 (1)), (8, @2(t), y2(t), 22(7(t)),y2(7(?))) € R x
R™ x R™ x R™ x R™2, for the above £,

~
—~
S+
8
i
—
~
—
<
—=
—_
~
= =
S

1(Y(), 41 (v (1)) = [t 22(2), Y2 (B), 22 (7(2)), y2(7(2)))]

) [+ [91(8) = y2()] + |22 (v(8)) = 22 (v ()] + |91 (v (2)) — (())I),
lg (&, 21(8), y1.(8), 21 (v(2)), 91 (Y (1)) = g(t; 22(8), y2 (1), 22(7(2)), y2 (7 (1))

<€(Ix1(t)*z2(t)|+|y1(t) ya ()| + [21(v(1)) — 22(Y(O))] + |y (V) — w2(v ())I)-

v : R — R satisfies condition (B): there exist two sequences {t;}icz and {(;}iez
satisfying
(Bl) ti <tiy1 and t; < Cz < g1, Vi € Z,
(B2) t; » too as i — +o0,
(B3) ’y(t) = Cl fort € [ti,ti+1),
(B4) there exists a constant § > 0 such that t;11 — t; < 0,Vi € Z.
For any i € Z, let I; = [ti,ti+1) and L = [ti;ti+1]~
For any m x m matrix Q(t) (m = ni,ns or n), define

tit1

Ci
P (Q) = exp( / Q()lds) and  p; (Q) = exp( / 1Q(s)]ds).

Now we introduce the following condition (C).

Condition (C): There exist v+ > 0, v~ > 0 such that matrices A(t), Ao(t), B(t)
and By(t) satisfy the following properties:

sup p; (A)In pf (Ag) < vt <1, supp; (A)Inp; (4g) v~ <1,

€L €L
sup pif (B)Inp; (By) < vt <1, supp; (B)Inp; (By) <v™ <1.
‘€L €L

Note that (A1) and (B4) imply that

1< p(A) 2 sup pi(A)p; (A) <400 and 1< p(B) £ supp; (B)p; (B) < +o0.

1€ZL €L
(2.3)
Thus,
N 1+t A o, 1+vT
ap(A) £ p(A)? (1 ——)>1 and a(B) = p(B) (1 — 1/—) > 1. (2.4)

Throughout the rest of the paper, we assume that conditions (A), (B) and (C)
hold.
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2.2. Topological conjugacy

The notion of topological equivalence and topological conjugacy can be found in
[20,21,25,29, 34].

Definition 2.1 (Topological conjugacy). A continuous function H : R x R™ — R"
is topological equivalent between system (1.1) and (1.2) if the following conditions
hold:

(i) for each t € R, H(t,u) is a homeomorphism of R",

(ii) H(t,u) — u is bounded in R x R,

(iii) if z(¢) is a solution of system (1.1), then H(¢, z(t)) is a solution of system (1.2).
In addition, the function L(t,u) = H~1(t,u) has properties (i)-(iii) also.

If such a map H exists, then systems (1.1) and (1.2) are called topologically
conjugated.

2.3. Notation of solutions for a DEPCAG

The notion of solutions for a DEPCAG was introduced in [1,4,9, 10, 30].

Definition 2.2 (Solutions of a DEPCAG). A function z(t) is a solution of system
(1.1) or system (1.2) on R if:

(i) The derivative z'(t) exists at each point ¢ € R with the possible exception of
points t;,¢ € Z, where the one side derivatives exist;

(ii) The equation is satisfied for z(t) on each interval (¢;,¢;+1) and it holds for the
right derivative of z(t) at ;.

2.4. Transition matrices of systems

In this subsection, we introduce some notations associated with solutions of a DE-
PCAG.
For convenience, we consider the following subsystems of system (2.1):

2’ (t) = A(t)x(t) + Ao(t)z(y(t)) + f(t, z(t), y(t), z(v(1)), y(¥(1))), (2.5)
y'(t) = B(t)y(t) + Bo(t)y(v(t)) + g(t, z(t), y(t), (v(1)), y(¥(t))), (2.6)

and subsystems of system (2.2):

(t)

y'(t)

(t)x(t) + Ao(t
(t)y(t) + Bo(t)y(y(t)).

~—
]
—~~
2
—~
~~
~
~—
—~
[\
-3
~

A
B

Let ®4(t) be the fundamental matrix of system 2’ = A(t)z with ®;(0) = I, and
®y(t) be the fundamental matrix of system y' = B(t)y with ®2(0) = 1.
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For any t € I;, 7 € I;, s € R, we introduce the following notation [10,24, 25]:

Di(t,s) = DD (), k=12,

B, )_<1>1(t,7-)+/ B (1, 5) Ao(s)ds = By (t, 7)1 (1, 7),

and

Es(t,7) = Pao(t, 7) +/ Dy (t, 8)Bo(s)ds = Po(t, 7)Ja(t, 7).

We define backward and forward products of a set of n x n (n; X n1 or ny X ng)
matrices Q;(i =1,...,m) as follows:

Qm,"'QZQl; if m 2 13
I, if m<1,

I[2=
i=1

and
Q192+ Qp, if m2>1,

1 if m<l1

—m
H Qi =
i=1

If Ji(t,s) (k = 1,2) are nonsingular, we could define the transition matrices

Z1(t,s) of subsystem (2.7) and Zs(t, s) of subsystem (2.8) as follows:

ift >,

7

Zu(t7) =Bt ) En(ty, )™ [T (Bultr At Bultrmr, v (8-1) ™)

By (tisr,v(7)) Ex(r, (1),

ift <,
—i—1
Zi(t,7) =Er(t, ) Er(tir1, ¢) 7 [ (Ek Y (tr)) Ex(t r+17’y(tr))71)
r=j+1
Ek(tiar}/(T))Ek(Ter(T))_l7
where kK =1, 2.

Through simple calculations, we obtain Zy (¢, 7) Zk(7, s) = Zk(t, s) and Zi(t, s) =
Zi(s,t)7! (k = 1,2). Since Ey(7,7) = I and 8£1 (t,7) = A(t)E1(t,7) + Ap(t), we
have

%(t,’f) =A)Z1(t, ) + Ag() Z1(y(1), T).

Thus, Z;(t,7) is a solution of subsystem (2.7). Similarly, Zs(t,7) is a solution of
subsystem (2.8).
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2.5. Formulas of solutions to DEPCAGs
To introduce the formulas of solutions, we first state the following important lemma.

Lemma 2.1 (Lemma 4.3, [24]). Assume that conditions (A),(B),(C) are fulfilled,
then Ji.(t,s)(k = 1,2) is nonsingular for any t,s € I, and the matrices Z(t, s)(k =
1,2) and Z(t,s)"1(k = 1,2) are well defined for any t,s € R. Ift,s € I,., then

[@1(t,8)| < p(A), | D2(t; )] < p(B),
1Z1(L,8)| < ao(A), [Za(t, s)| < ao(B),

where p(-) is defined in (2.3) and ag(-) is defined in (2.4).

We remark that Lemma 2.1 ensures the continuity of solutions of system (2.1)
in (—o0, +00). We introduce the following formulas for DEPCAGs.

Lemma 2.2 (p.239, [24]). For anyt € I;, T € I;, the solution of subsystem (2.7)
with x(1) = &€ is defined on R and is given by

x(t) = Z1(t, 7)€. (2.9)
From Lemma 2.2, the solution of (2.8) with y(7) = 7 can be represented as
y(t) = Zs(t, 7). (2.10)

Lemma 2.3 (Theorem 3.3, [24]). Fort € I;, 7 € I; and t > T, the solution of
subsystem (2.5) with (1) = £ is defined on R and is given by

Gi A
x(t) = Zl(t,T)f-F/ Zi(t, 7)®1(7,5)f(s)ds + Z / Zi(t,t,)®1(tr, 5) f(s)ds
T r=i+1
JI=1 it t
+7Z_;/Cr Zl(t7t7'+1)¢’1(t7-+17S)f(S)dS+/Cj B (t,s)f(s)ds
éZl(t,TﬁH/ Gh(t,5)f(s)ds, (2.11)
where,
Zy(t, T)®1(T, 5), if selr,Gl orselG,T],
G1(t,s): Zl(t ) (tTaS)a Zf se[terr) fO'/‘?“:i+1,~'~ ajv
Zl(ta 'r+1)®1( r+1,S )7 Zf s € [C tr+1) fOT‘T - Z 7j - 17
(1, 5), if s€l¢,t] orselt, ()

From Lemma 2.3, if ¢ > 7, the solution of subsystem (2.6) with y(7) = 1 can be
represented as

Gi Cr
y(t) :ZQ(t,T)nJr/ Zs(t, 7)Do (7, 8)g(s)ds + Z /t Zo(t, t)Po(tr, s)g(s)ds

r=i4+1"°"r
J=1 it t
+Z/ ZQ(t,tr+1)®2(tr+1,S)g(S)dS+/ Dy (t, $)g(s)ds
r=q Cr Cj

= Zg(t,T)n—i-/ Ga(t, s)g(s)ds, (2.12)
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where G2(t, s) can be defined in the same way as G1(t, s).

J
Remark 2.1. If t < 7, one could obtain the solution formulas by replacing >
r=i+1

i—1 i i—1
and JZ with > and >, respectively.
r=1 r=j+1 r=j
At the same time, we could obtain Gi(t,s) (k = 1,2) for ¢ < 7 by replacing
r=¢+1,---,j,andr=4,--- ,j—1, withr=4541,--- ;s,and r=7,--- ,2— 1, in
the definitions of Gg(t,s) (t > s,k = 1,2), respectively.

2.6. exponential dichotomy for a DEPCAG

Now we introduce the definition of exponential dichotomy for a DEPCAG. In this
paper, we adopt the following definition from Akhmet [3,4].

Definition 2.3 (a-exponential dichotomy for a DEPCAG). The linear system (1.2)
admits an a-exponential dichotomy on (—oo, 00) if there exist a projection P, pos-
itive constants K > 1 and a > 0 such that the transition matrix Z(t, s) of system
(1.2) satisfies

|Zp(t,s)| < Ke™olt=sl,

where Zp(t, s) is defined by

Z(t,0)PZ(0, s), t>s,

Zp(t,s) =
rlt2) —Z(t,0)(I — P)Z(0,s), s > t.

In this paper, we assume that the following condition (D) holds.
Condition (D): There exist positive constants K > 1 and « > 0 such that

|Z1(t, 8)| < Ke_a(t_s), t>s and |Z3(t, )| < Ke"‘(t_s), s>t

2.7. Some lemmas

Lemma 2.4. If condition (D) holds, for t € R and s € R, then
Gi(t,s)| S Kp(A)e ™9, t2s,  [Galt,s)] < Kp(B)e"™, ¢ <,

where p(-) = max(p(-)ao(-), p(-)e*?), p(-) is defined in (2.3), ag(:) is defined in
(2.4), « is defined in (D) and 0 is defined in (B4).

Proof. We just prove the first inequality.
Suppose that t € I;, 7 € I and t > s.
Case 1. t > 7.
Without loss of generality, we assume that ¢; <7< ¢ <t <-4 < (G < ¢t
If s € [1,¢;], due to (B4), we have s — 7 < 6. It follows from (D) and Lemma
2.1 that

|G1(t, )| = | Z1(t, 7)®1 (7, 8)| < Ke™*7p(A) < Kem e p(A).
Ifselt., ] (r=i+1,---,7), then s—t,. < 0. In view of (D) and 2.1, we have

|Gy (t, 8)| = | Z1(t, t,) B (tr, 5)| < Ke ) p(A) < Ke @9 p(A).



316 C. Zou & J. Shi

If s € [(r,trt1]) (r=1,---,7 — 1), similar to the above inequality, we have the
same conclusion.
If s € [(j,], owing to (B4), we have t — s < 6. It follows from Lemma 2.1 and
K > 1 that
|Ga(t,5)] = [®1(t,8)| < p(A) < Ke*72)ep(A). (2.13)

Case 2. t < 7.

By definition of G1(¢,s) we have s € [min(t, {;), max(7, (;)].

If t < (j, then t < s which contradicts to our assumption that ¢ > s. Thus, we
just consider the case that ¢; <¢. We divide the discussion into two subcases.

Subcase 2.1. (; <t <tjp1 < 7.

For t > s, the only possibility is that s € [(;,t]. Similar to (2.13), we have

G (t, 8)] < Ke ®U=*)e™ p(A).

Subcase 2.2. (; <t <7 <ty
If t > s, then s € [(;,t] or s € [¢;,T].
When s € [(;,1], similar to (2.13), we get

|G1(t,8)] < Kem (=) p(A),

When s € [(;, 7], we have s € I;. Since t > s, following (D) and Lemma 2.1, we
obtain

|G1(t, 8)| = | Z1(t, 7)B1 (T, 8)| = | Z1(t, 8) Z1 (5, 7)®1 (T, 5)| < Ke %) ag(A)p(A).
Note that p(A) = max(p(A)ag(A), p(A)e®?), we complete the proof. O
Lemma 2.5. Assume that condition (D) holds, then
tllznoo |Z1(t,T)| = 400, tilinoo |Z2(t, 7)| = +o00, VreR.
Moreover, the unique bounded solution in (—oo,+00) of subsystem (2.7) ((2.8)) is
trival.

Proof. The proof is similar to that of Lemma 2.3 in [25] and so it is omitted. O

3. Main result

Now we are in a position to state our main result as follows.

Theorem 3.1. If condition (D) holds, further assume that
S8Kp(A) <, 8Kp(B)! < a, (3.1)
F(£,0)(Bo+0)0 =v <1,

e(B+O6_1

where F(¢,0) = “Fror p(+) is defined in Lemma 2.4, ¢, B and By are defined
in (A), 0 is defined in (B4), K and « are defined in (D). Then system (2.1) is
topologically conjugated to system (2.2).

Remark 3.1. When the solution z(t) of system (2.2) is unbounded, the nonlinear
term h(t, z(t), z(y(t))) is possible unbounded. For example, g(¢,z(t), y(¢), z(v(¢¥)), y(v(t)))
in h(t,z(t), z(y(t))) can be a polynomial of order one about x(t)sin(y(t)). In this
case, h(t, z(t), z(y(t))) is unbounded, however the topological linearization can be
realized.
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4. Topological equivalent functions H and L

The main aim in this section is to establish the topological equivalent functions H
and L between solutions of system (2.1) and (2.2). We first give some lemmas.
Forany 7 € I;, t e R, £ € R™, € R"2 assume that

(i) (2(t, (1.€,0)), y(t, (r,&,1)))7 is the solution of system (2.2) satisfying
z(r, (1,€,m)) = § and y(7, (1,€,n)) = 1.

(i) (X(t,(7,&m)), Y(t,(1,6,m))7T is the solution of system (2.1) satisfying
X(r,(1,&n) = and Y(7,(7,&,n)) = n.

Let

¢1(§) = max(K[¢], ao(A)[E]),
¢2(€) = max(K ] + Kp(A)a™" i, ao(A) €] + ao(A)p(A) ).

Lemma 4.1. Ift > 7, we have

‘.%’(t, (7—76777)” q1(8), ‘:L‘(’y(t),(T 3 77))‘
(X (T, 6m)| < q2(8), [ X(v(), (1,€,m))]

Proof. Ift > 7, by (2.9) and (D) we have
j(t, (7,€,m)| = | Z1(t, 7)E| < Kem*UDIE] < KIE] < aa (6) (4.1)

If 4(t) > 7, then

<q(f)
<

q2(§)-

<
<

[z(y(t), (7, &) < q1(8).-

If v(t) < 7 < t, then y(t) = (1) = ¢(; € I;. Using (2.9), (D) and Lemma 2.1, we
get

[2(y(2), (7, & m)| = [Z1(7 (1), T)E] < ao(A)[€] < q1(E)- (4.2)
From (2.11), we have

X(t, (.6m))
=Za(t,T)E + / Ga(t,) - £ (5, X (s (7.€0). Y (s, (7,6, ) X (3(5), (7. ,m),
Y(w(sx(r,f,n))) s

If t > 7, due to (4.1), (A2) and Lemma 2.4, we obtain

t
Xt (&) < KIel+ [ Kp(A)e 0 uds < KIe| + Kp(A)an < aa(6).
If v(t) > 7, from the above inequality, we have
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If v(t) < 7 < t, we have ¥(¢) = v(7) = (; € ;. Tt follows from (2.11) that
X(v(®), (1,€,m))

(1)
=7 (’Y(t)7 T)f + / Z (V(t)a T)(bl(T’ 3) ’ f(S, X(Sv (T’ 3 77))) Y(57 (7-7 3 n))a
X((s). (7. &), Y (1(5). (. &,m)) ) ds

In view of (B4), we have |y(t) — 7| < 0, together with (4.2), (A2) and Lemma 2.1,
we obtain that

[X((8), (7,6, m)] < ao(A)[§] + ao(A)p(A)pf < g2(8).

Lemma 4.2. If T € I;, then

= Z/
2(1(5). (7.1, y(3(9), (7,€.m) ) ds

1§ convergent.

tr+1

(T, trg1)Pa(try1, s) - g<3ax(37 (7,6,m),y(s, (7,6,m)),

Proof. Due to 7 € I;, we have 7 < t,4; for all » > 4. It follows from (D) that
|ZQ(7'7 tr+1)| < Kea(rftprl).

If s € [G,try1], by (B4) we have e*(T—tr+1) L e(7=9)e2? Tt follows from Lemma
2.1 that

|ZQ(T, tr+1)q)2(tr+1, S)| < Kea(T_s)eaep(B) < Kea(T_s)ﬁ(B).

From (A2), we obtain
+oo
1] < : Ke* T 5(B){L(|x(s, (1, &,m))] + |2 (v(s), (7,€,m))]) + p}ds.
Since s € [(;, +o0) and 7 € I;, similar to Lemma 4.1, we get

(s, (1, &) < au(€), |z (v(s), (1, € m)| < @ (§)-

Due to (3.1), we have

1< 16 g€ + Kp(B)a e

Denote
Q= {p(t)lp € C(R, R™),|p(t)| < Kp(A)a u}.
Lemma 4.3. For any ¢ € §, the system

v'(t) =B(t)v(t) + Bo(t)v(y ())+g(t x(t, (1,6m) +¢(t),y(t, (1, €,m)) + v(t),
z(y(1), (1,6,m) + e(v (1), y(v (), (7, €, 1)) + U(W(t))) (4.3)
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has a unique solution v,(t,(7,&,n)) which is bounded for t > T and ~v(t) > 7.
Moreover, if t € I, then it has the following form

ve(t, (7,€,m))
+oo <
= - Z / ZQ(tatr)q)2(traS) '9(5795(57(775,77))+80(5)ay(5>(77§,77))JF"Uso

r=j+17tr

(s, (7:6,m), 2(7(s), (1:6,m) + ¢ (7(5)), y((s), (T, €, 1)) + v (7(5), (7€, 77))) ds

T atryg
3 [ 2ttt 9) -0 (3,25, () + 005 0G0, () 0

(s, (1, &), 2(7(s), (1,€,m) + ©(7(5)), y(7(s), (7, €, 1)) + v ((s), (7€, n)))ds
G

= [ @) (5006, 6e1) + 0l () + il (),

z(v(s), (1,€:m)) +0(1(3)), y(v(5), (T.£,m) + v, ((s), (7, &, n)))ds

+oo
—— | Galt;s) - 9525 (7.&m) + 0(3),y(s, (1.€,m) + v, (s, (7€),

t

2(y(8), (1, €:m) + 0 (7(5)), y(v(s), (7, €, m)) + vp(7(s), (7€, n)))dS-

For v, (t, (1,€,m)), the following system

u ()
= A(t)u(t) + Ao(tyu(r(1) + 1 (1,28, (r,€0) + u(), y(t, (7,6, 1) + vp(t, (7, ,m)),
£y (1), (7€) + u(r(1)), 5 (1), (7€ 1) + 0 (1), (7, €,m)) ), (4.4)

has a unique bounded solution u,(t, (7,€,m)) satisfying

Jug (t, (7,€,m)| < Kp(A)a™ pu.

Proof. Let N, = {¢|¢ : [1,+00) — R™ 4 is a continuous function with |¢(t)] <
11(&) + 1K p(A)atp+ Kp(B)a ).
For any 1 € N, define the following map

+oo
Tt =~ | Galt5) g (5,205, (7, 6m) + 0(5), (s, (1. E,m) +(5),

z(y(s), (1,€m) + o (v(3)), y((s), (.,m)) + w(v(S)))d&

Ift > 7 and v(t) > 7, then s > 7 and ~(s) > 7. From (A2), (3.1), Lemma 2.4 and
Lemma 4.1, we have

+oo
Ta(2)] </t Kp(B)e* "= {tla(s, (,€,m)) + ¢(s)]
+lz(v(s), (1:6,m) + e(v(s))| + p}ds

+oo
< / Kp(B)e=9(2£q1(€) + 20K p(A)a~ "+ pr)ds
t



320 C. Zou & J. Shi

—Kp(B)a~ QLK|€] + 2K (Ao + )
<@+ KA+ Kp(B)a (4.5)

Therefore, T} is a map from N, to IN,.
Moreover, owing to (A3) and Lemma 2.4,

—+oo

[Tahr (8) =Thepa(8)] < Kp(B)e™ " e(|ih1(s) =2(s) |+ |1 (4(s) =2 (7(s)) ) ds.

t
Define ||¢1 — o = st>1p|1/)1(s) — 12(s)], then

S2T

- _ 1
[Tan (t) — Tana(8)] < Kp(B)a™ 2691 — |, < gl =l =79 > 7).
Thus T} is a contracting map and there exists ¢y(t) € N, such that
Yo(t) =T11bo(t)

+oo
== Gao(t,s) - g(s, (s, (1,€m)) + ¢(5), y(s, (1,€,1)) + Yo (s),

z((s), (1.6,m) + o(v(s)), y(v(s), (7, €,m)) + 1/}0(7(8)))61& (4.6)

Calculating the derivative of ¥y (t), we obtain
1/}6 (t) :B(t)1/)0 (t) + BO (t)wo (’Y(t)) + g(ta (E(t, (Tv ga 77)) + Qp(t)a y(tv (Tv ga 77)) + ¢0(t)7

z(y(®), (1,€,m) + e (1)), y(v(2), (7, €, m)) + ¢0(7(t))>7 (4.7)

which implies that 1o (t) is a solution of system (4.3). It follows from (4.5) that
Yo(t) is bounded for ¢t > 7 and ~(t) > 7.

Suppose that 7 € I;. If ¢*(¢) is another solution of system (4.3) such that it is
bounded for ¢ > 7 and ~(¢) > 7, by Lemma 2.3 we have

Y*(t)
&
=Zo(t, T)Y" (1) + / Zo(t, 7)Po(T, 5) - g(s, (s, (1,€,m)) + ¢(s),y(s, (7,6, 1))
+9*(s), z(v(s), (1,6,m) + 0(7(5)), y(7(s8), (7,€,m)) + w*(v(S)))ds

J I
+ Z /t ZQ(tvtr)(I)Q(trv 5) : 9(5; 1'(5’ (7_35777)) + 90(5)3 y(S, (7_35777)) + 1/)*(5)7

r=i+1 s

z(y(s), (1.6,m) + e(v(s)), y(v(s), (7, €,m)) + W(V(S)))ds

+ 2_: /<+ Za(t tr+1)Pa(trs1, s) .9(57 x(s, (1,6,0) + o(s),y(s, (1, €,1))

+9"(s), z(v(s), (1,6,m) + 0(7(5)), y(7(s), (7,€,m)) + w*(v(S)))ds
G5

—/t Do(t, ) ~9<8,w(s, (1,6,m) + ¢(5),y(s, (1,6, m)) + " (s),

z(v(s), (1,&,m) + o (v(s), y(v(s), (7,6, m) + w*(’v(S)))d&
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Similar to Lemma 4.2, we could prove that

+oo <
>, [ zelrt)alte,s) - g(svn(s, (7. 60) + 009). ol ()

r=i+17/tr
+¥7(s),2(v(s), (1.&m) + ¢(v(s)),y(v(s), (1, €,m) + w*(v(S)))ds,

and

+00 Lty
Z/ ZQ(Tv tr+1)q)2(t7“+17 5) : g(s,x(s, (7,5777)) + (p(S),y(S, (7,5,77))

r=1 Cv'

+97(s), 2(v(s), (1, &, m) + ¢(v(s)), y(v(5), (7,§,m)) + w*(v(S)))dS

are convergent.
Recalling that Zs(t,t,) = Za(t, 7) Z2(7, t,), we have

v (1)
Gi
~2a(t ) {07 (1)+ [ @a(ri5) g (5,005, (r6.m) + (5), s, (7. 6:)
+ 7 (s), 2(v(s), (1,€,m)) + 0(7(s)), y(¥(s), (7, €, 1)) + @b*(v(S)))dS

oo ¢,
> [ Zalrt)@atrs) o (s, (. m) + 0(). (s ()

r=i+1 tr

+ 97 (s), x((s), (1, §,m) + ¢(v(5)), y(v(s), (T, €, m)) + W(W(S)))dé‘

oo by
+ Z/C Zo (T, try1)Po(try1, ) .g<s,x(s, (1,6,m) + ©(s),y(s, (1,6,1))

07 (),2(1(5), (7,6 m) + 9 (1(5)), y(3(5), (7, €,m) + 9 (7(5)) ) ds |

400 ¢r
- Z / ZQ(tvtT’)(I)Q(tMS) ’9(571'(53 (7,5777))+90(5)ay(5a (7_;5777))

r=j+171tr

+¥7(s), 2(v(s), (1,&m)) + ¢(v(s)), y(7(5), (1, §,m)) +¢*(V(5)))d$
T atyg
- Z/C Za(tstr1)P2(trt1,8) - g<57 z(s, (1,€,m)) + (), y(s, (1,6, m))

FU7(5), 201 (), (. €m) + 9(1(5)), 91 (9), (7:6,m) + 47 (1(5)) ) s
G
= [ @t o (5000 () + (o) () + 07 ),

2(y(5), (1,€,m) + o (7(5)), y(v(s), (1:€,m)) + ¢*(7(S)))ds
éZQ(t, T)a + 1.

If t > 7 and ~(¢) > 7, similar to calculation in (4.5), we obtain

11 < (€ + KA+ Kp(B)a~p. (4.8)
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On the other hand, |*(t)| < o0 for t > 7 and v(¢) > 7. It follows from (4.8) that
Z5(t,T)a is a bounded solution of subsystem (2.8). By Lemma 2.5 we get a = 0.
Thus

+oo

() =~ Ga(t, ) - 9(87 (s, (1,6,m) + ¢(5), y(s, (7, €,m)) + ¢ (s),

2(y(s), (1,€:m) + o (v(5)), y(y(s), (7, €,m)) + w*(W(S)))d&
From (A3), (3.1) and Lemma 2.4, we have

+oo
|tho(t) — ™ (8)] < /f Kp(B)e™ ™4[ (s) — 9" (s)] + [o(4(s)) — &7 ((s)) )dds

< pouplvn(s) — 0 (s)| (> 7a(0) > 7).

Thus ¢*(t) = ¢o(t) for t > 7 and y(t) > 7
From Lemma 2.3, there exists a unique solution of system (4.3) satisfying the
given initial value. Therefore,

V(1) = dolt), WtER.
Denote o (t)=v,(t, (7,£,m)). By (4.6) we have

’U@ (t, (T7 ga 77))

+o0o
= [ Gatt. st (5.0 (r6em) + 0l () + vl (),
z(y(s), (1,€,m) + p(7(5)), y(7(5), (7,€,m)) + v (v(s), (1, &, n)))ds. (4.9)

Now we prove that there exists a unique bounded solution u (¢, (7,£,n)) of system
(4.4) for v, (t, (1,€,m)). Moreover, |u,(t, (1,€,1))] < Kp(A)a™ p.
For any w(t) € 2, we define map T» as follows:

Tyt
—Z / Z1(t, )1t 9)f (5,25, (7. €.1)) + (5), (s, (7€) + 05, (7, 6,1)
z(y(s), (1, €m) +w(v(s)), y(v(s), (7,€,m)) +%(7(8),(T»€,n)))ds
+Z / 1ty )®1 (b, )1 (5,005, (7,6m) + (), 505, (1, 6,m) + v,

(5, (7, &), 23(5), (7, 6,1)) +w(2(5)), 5 (9), (7,6,0)) + 00(5(9), (7, ,1)) ) ds
+ [ @t (5.5, (7. m) + (), (s (7€) + 05 (),
G
23 (s), (1, €1) + (1)), 50 (5), (7,6 1) + 00 (2(5), (7,6, ) ) s
= [ Giltes)f (ssnls. (r&em) + (s)as, (7€) + s (6o,

2(1(5), (1.&m) + w(1(9)),9(1(5), (1.&m) + v, (3(5), (7, ) ) ds
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In view of (A2) and Lemma 2.4, we obtain

t
Taolt) < [ Kp(a)e ™ pds = Kp(A)a

So T3 is a map from € to Q.
Due to (A3), (3.1) and Lemma 2.4, we have

|Town (t) — Towa(t)|
</_ Kp(A)e™ T 0(Jwy (s) — wa(s)] + |wi(v(s)) — wa(v(s))])ds

1
Sisup|w1 (8) — wa(s)].
sER

Therefore there exists a unique function wq(t) € Q such that

wo (t) :TQUJO (t)
= [ Gt (sl (r&em) + wols)us, (7. ) + 0, (7€)

2(7(s), (7, €:m) + w0 (1(), y(1(5), (7.&,m) + vp(1(5), (7. &,m)) ) ds

and |wo ()] < Kp(A)a™p.
Similar to (4.7), we could check that wp(t) is a solution of system (4.4). Moreover,
we could verify that the bounded solution of system (4.4) is unique. Denote

utp(ta (T’ 3 77)) = Wo(f')

— [ Gut.9) (5005 (7:60) + o (1 Ee1) (s, (7.6 + s, 60

oo

z(y(s), (1,€,m)) + up(v(8), (1,6,1m)), y(7(s), (1,€,1)) + vu(v(s), (7, &, n)))d8~
(4.10)

The proof is complete. O

For ¢(t) € , there exists a unique u,(t,(7,&,1)) € Q. Thus, for any fixed
TR, £ €R™ and n € R™, we could define operator T": 2 — Q as follows:

Tp(t) = up(t, (1,€,1)). (4.11)

Lemma 4.4. For any fixed T € R, £ € R™ and n € R"2, the operator T has a
unique fized point in ).

Proof. For any 1,02 € Q, by (A3), (4.10) and Lemma 2.4, we obtain
I Te1(t) — Tepa(t)]
t
< / Kﬁ(A)eia(tis)g{hl“Pl (S, (7—757 77)) - utpz (37 (Ta 57 7)))| + |U<P1 (Sa (Ta 57 77))

— Vs (Sa (7_757 77))' + ‘uwl (7(8)7 (Ta §&m)) — U, (’7(5)7 (1,¢€, 77))|
+ [V, (7(8), (1,€,m)) = V5 (V(5), (7, €, m)) |} ds. (4.12)
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Since both v,, and v, are bounded for ¢t > 7 and (t) > 7, we could define

|| Vpy = Vpy ||[t,+oo): [Sup )|’UAP1 (87 (T’ §7 77)) — Ups (8, (Ta 57 ’rl))|a

se(t,+oco

” Up; — Upy H: Slel]%usal (57 (7—75’77)) = Ugp, (Sv (7;5777)”'

From (A3), (4.9), (3.1) and Lemma 2.4, for any mixed tq, if ¢ > to and y(t) > to,
then

[V, (&, (75.€,m)) = g, (L, (7, €, 1))
/ Kp(B)e™ = {|p1(5) = p2(s)| + |01((5)) = w2 (3(s))] + [0, (5. (7,€,7m))

- U«sz( 7(7—753 ))‘ + |U991( ( )7 (7_75777)) - ULP2(7(S)7 (Tafvn))|}d5
<Kp(B)a (2] <P1 — @2 || +2 | v, = Vg, lmin(t (), +00) )

1
gz ” P1— P2 H + ” Vo — Vg ||[t0,+oo)v

which gives rise to

1
| Vg1 — Vs ||[to,+oo)< 1 | o1 — 2 || + | Vo, — Vg, H[to,+oo) .
Thus,

I 001 = Vs llito,+00) < || 1 =2 ||

Since the right-hand side of the above 1nequahty is independent of g, the above
inequality is valid for all ¢ty € R. Therefore, sup|vy, (s, (7,£,1)) — Vg, (s, (1,€,7))]
seR

exists and we denote
| ver — v, ||I= Sl€1£|vw(s, (1,6,m)) — v, (s, (1,€,m)|-

Thus,
| v, = v, H< o1 =2 |- (4.13)
From (A3), (3.1), (4.11), (4.12) and (4.13), we obtain

Ter(t) — Tipa(t) / Kp(A)e™ 20| Tor = Tpa || + || vgy — vy, [1)ds

< Z(H Typ1—Tepo | +§ o1 =2 ),

which gives rise to
| Te1 — Tpo ||< o1 =2 |-

Therefore, the operator T has a unique ﬁxed point ¢ in §2 satisfying that

p(t) = To(t) = up(t, (.€,m))- (4.14)

The proof is completed. O
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Denote

Uw(t, (7—7 3 77)) - u(tv (Ta 3 77))» USO(ta (Ta 3 7’)) - ’U(t, (7—757 77))
In view of (4.9), (4.10) and (4.14), we get

(t,(r,€,m)
/ Gr(t, ) (s,2(5, (7,€,m) + uls, (7, € ), (s, (7. &) + 0(s, (7, €,m),
£(1(). (7€) + u(x(5). (7. &), y(2(5). (7. 1) + 0(3(5). (7. 1) ) s

and
o(t, (1,€,m))

~ [ Gatt 91 (s, () + o (7. ). s . 6m) 00 (760
£(1(9), (7. 6) + w2 (5), (7 Em). 2 (5), (&) + w(3(s), (. €.m)) ) s

Lemma 4.5. Forany E €R™, n e R"2, 1€ R, t€R and w € R,

u(w, (t,z(t, (1,€,n)),y(¢, (1,€,0)))) = wlw, (1,£,1)),
'U(w’ (t’ x(tv (7, &, 77)); y(t7 (Ta & 77)))) = 'U(w’ (77 3 77))

In particular, if w =t, then

u(t7 (t, ‘T(t7 (1., 77)), y(tv (1., 77))))

u(tv (7., 77))

and
o(t, (t,z(t, (1,6,m)), y(t, (7,€,m)))) = v(t, (1,6,m))-

Proof. Denote

ur(w) = u(w, (& 2(t, (7,€m)), 9t (1,6,1)), va(w) = u(w, (7,€,n)),
vi(w) = v(w, (¢ z(t, (1,.€,m)),y(t, (1.€,1)))),  v2(w) = v(w, (T,€, 1)),
w1(s) = x(s, (¢, (4, (7, €,m)), y (L, (¢ (1,€,m)))))

and

Y1 (5 = y(S, (tv I(t7 T, 5’
Observing that z1(s) = (s, (1,£,7)) and
(

£ (s:21(8) +a(5). 1 () + va(5). 21 (+(5)) 4w (1), 1 ((5)) +v1(v(8)))
:f (57 ‘T(S’ (Ta 57 77)) + u1(5)7 y(S, (Tv 5’ 7])) + v (5)’ IE(")/(S), (T’ 67 77)) + ul(’}/(s))v
y(y(s), (1. 6m) + 01 (1(5)) ).

Similarly,
9(5,1() + 0a(5), 11 (5) + 01 () 21 (1) + 11 (7)), 32 (1)) + 0 ((5))
=9 (57 1‘(5, (T7 E’ 7])) + ul(s)v y(57 (Tv 55 77)) + 1)1(5), "E(’Y(S)a (Ta g? 77)) +uy (’7(5»7
y(1(s), (7.&m) + 01 (37(5)) ).
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From (A3), (3.1) and Lemma 2.4, for any mixed tg, if w > ¢o and y(w) > to, then

+oo

[v1(w) — v2(w)] < Kp(B)e* ™ e{|uy () — ua(s)] + [v1(s) — va(s)]
+ Jur ((5)) = ua((s))| + [v1(7(s)) — v2((5))| } ds
1 1
giilelgtu(S) - UQ(S)| M ZSE[min(ef,lil()w))Hroo)Wl (S) - v2(5)|

1 1
<gsuplun () —wa(s)| + 3 sup Joa(s) — was)]

seER s€[tg,+o0)
Therefore,
1 1
sup  |vi(s) — va(s)] < =suplui(s) —ua(s)|+ = sup |vi(s) — va(s)].
s€[to,+00) 4seR 4s€[t0,+oo)

Consequently,

1
sup  |v1(s) — va(s)| < Zsuplui(s) — uz(s)|.
s€E[tg,+00) SSGR

Since the right-hand side of the above inequality is independent of t,

1
sup|vy(s) — va(s)| < gsup|u1(s) — uy(8)]. (4.15)
seR seER

Similarly, by (A3), (3.1), (4.15) and Lemma 2.4, we get

ur(w) = ua(w)] < /f Kp(A)e™ @™ e{Jur(s) — uz(s)| + [v1(s) — va(s)]
+ur(y(s)) = u2(y(s)) + [v1(7(5)) — v2(7(s))| }ds

1 1
<—suplug(s) — uz(s)| + —suplvi(s) — va(s)]
4SE]R 4SE]R

1
égsup|u1(s) — uy(s)|.
seR

Therefore, u;(w) = ug(w). That is

w(w, (t,2(t, (1, €,m)), y(t, (1,€,m)))) = w(w, (7,€,1)).

Moreover, by (4.15),

’U(OJ, (tv .%‘(t, (Tv 3 77))7 y(t7 (7,6, 77)))) = ’U(OJ, (T7 £m))-

O

Now, we are in a position to define topological equivalent functions H and L. In

the next section, we will prove that H and L are homeomorphisms and L = H~!.

Let (X(t,(7,2,v)),Y(t, (7,2,y)))T be the solution of the nonlinear system (2.1)
with X(7) =z and Y (7) = .
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Define

Ly(t,&,m) =€+ ult, (t,€,n),  La(t,&,m) =n+v(t, (,€,1)),
e R s)f(s X(s, (12,9)), Y (5, (t,2,9)),
X(y(s), (t,2,9)), Y (t,z,y)) )ds,

“+o0

Halt,20) =y + | Gz<t,s>g(s,x<s7<t,w,y>>,Y<s,(t,x,y>>7

X((s), (b2,9), Y ((s), (t2,)) ) ds,
H(t,x,y) = H(tzy) and L(t,z,y) = Lu(t,&m) )
H2(t’x’y) L2(ta€777)
5. Proof of Theorem 3.1

This section is devoted to proving Theorem 3.1. We divide the proof into several
lemmas.

Lemma 5.1. H sends solutions of the nonlinear system (2.1) onto those of its
linear system (2.2), and L sends solutions of system (2.2) onto those of system
(2.1).

Proof. Denote

X(Sv (t’X(t’ (Tvm>y))7 Y(t7 (T7 €, y)))) £ Xl(s)a

and

Y(s, (6 X (8 (r,2.)), Y (& (r.2,9))) 2 ()
Observe that X1 (s) = X (s, (r,2,y)) and Yi(s) = Y (s, (1,2, 7)), we get
H(t, X (1, (7,2,9),Y (¢ (7,2,1)))
—X(t, (o) - [ ; G (1) (. X1(3), Ya(5). X1 (7()). Vi (1(5)) ) ds
X0~ [ Grlt:5) (5 X6, (1), Y (5 (7,00,
X(3(s). (7,2,9)). Y (1(5), (r.2.9)) ) ds.

Denote Hi(t, X (t,(r,z,y)), Y (t,(7,z,y))) by Hi(t). By simple calculation, the
derivative of Hy(t) is

Hi(t) = A(t) Hq(t) + Ao(t) H1 (y(1)). (5.1)
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Similarly,
H2(t7X(t7 (T,x,y)),Y(t, (T,I,y)))
+oo
:Y(tv (’T,.’E, y)) + ] G2(t7 s)g(s,Xl(s), Y1(8)7X1(’)/(8)), Yl(’y(s))>d8
+oo
=Y (t, (1,2,9)) + Ga(t,s) g(s X(s,(1,2,9)),Y (s, (1,2,9)),

X(9(5), (1.2,)), Y (3(5), (7, ,9) ) ds.
Denote Hy(t, X (t, (1,2,y)), Y (¢, (1,2,y))) by Ha(t), we have
Hy(t) = B(t)Ha(t) + Bo(t) H2(v(t)),

together with (5.1), we get that H(¢) is a solution of system (2.2). Therefore, H (t)
sends the solutions of system (2.1) onto those of system (2.2).
The second assertion follows by similar arguments. O

y)
)

Lemma 5.2. Foranyx € R™, yeR™ £ cR™, ne R, andt € R, we have
|H1(t,1‘7y) - 13| < K/a(A)aillu’v

Ha(t,0,9) 3] < Ja(0) + Ki(B)a~
La(t,6m) — € < Kp(A)a™ p,
[La(t,&m) 1l < 7 (6) + KA Aot Kp(B)a

Proof. From (A2), (3.1) and Lemma 2.4, we have
|Hl(t7 €T, y) - l“ :| [ Gl(ta S)f(s7 X(Sv (tv T, y))7 Y(Sv (t, T, y))v X(7(8)7 (tv €, y))a
Y (1(s), (t,2,)) ) ds|

/ Kp —oc(t s) d

=Kp(A)a™ p,
and

|H2(t,l‘,y) - y|
“+oo

t Gz(t,S)g(&X(s,(t,x,y))vY(S,(S,w,y)),X(V(SL(t,z,y)),

Y(3(s). (5,,9)) ) ds|
+oo
<[ KB TIHUIX s, (tay)) |+ IX (). (b)) + pdds. (5:2)

t

Since s > ¢ holds in (5.2), it follows from Lemma 4.1 that

+oo
[Hs(t,2,y) —y| < Kp(B)e™" ™) {l(ga () + q2(x)) + i}

t

1 - _
< ZQQ(Z) + Kp(B)a "
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The other inequalities can be proved in a similar way. O

Lemma 5.3. For anyt € R, £ € R™ and n € R™, we have

H(t, L(t,&m) = (&n)".

n(t))T is a solution of the linear system (2.2). It follows

Proof. Suppose that (£(¢
t,£(t),n(t)) is a solution of system (2.1) and H (¢, L(¢, £(t), n(t)))

from Lemma 5.1 that L(¢, &
is a solution of system (2.2
Therefore, (J1(t), J2(t))
of system (2.2).
Moreover,

[J1(0)] = H1(t, L1 (2, €(2), n()), L2(t, £(2), n(t)) — £(2)]
S[HL(E, La (8, 6(2), n(t)), La(t,€(2), n(t))) — La(t,£(2), n(t))]
+ [ La(t,€(8),n(t) — £@)]-

From Lemma 5.2, we obtain

):
)
T = H(t, L(t,£(t),n(t))) — (£(t),n(t))T is also a solution

[J1(2)] < 2Kp(A)a" .

Therefore, J;(t) is a bounded solution of subsystem (2.7). Due to Lemma 2.5, we
have Ji(t) = 0. That is,

Hl (t7 Ll(t7 f(t), ﬁ(t)), LQ(t’ §(t), U(t))) = f(t)

Similarly, by Lemma 5.2, we get

|2 ()| =[Ha(t, Ly (2, £(), n(t)), La(t, £(E),n())) — n(?)]
<[Ha(t, La(t,6(2), (1)), La(t, £(8),n())) — La(t, (£(£),n(2)))]
+ [La(t, (§(1), n(t)) — n(t)|

q(§(t)) + Kp(A)a_1u+2Kﬁ(B)a_1,u.

)
<o (Li (1. E(1). (1) + :

4

/—\Hk

It follows from Lemma 5.1 that Li(¢,£(¢),n(t)) is a solution of subsystem (2.5).
Moreover, in view of Lemma 4.1, for ¢ > 0 we have

1§()] < a1(£(0)),

and
|La(t,&(t),n(t)] < q2(L1(0,£(0),7(0))).

Thus, for ¢t > 0 we have

|J2(t)] < i%(%(h(oa £(0),1(0)))) + i(h((h (€(0) + iKﬁ(A)Oé_lu +2Kp(B)a " p,

which implies that |J2(t)| is bounded for ¢ > 0. Noting that J5(¢) is a solution of
subsystem (2.8), from Lemma 2.5 we obtain J(t) = 0. Therefore,

Hy(t, L (t,€(t), n(t)), La(t, £(1),n(t))) = n(t).
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Lemma 5.4. Suppose that (X (t),Y (t))T is a solution of the nonlinear system (2.1)
and (0o(t),wo(t))T is a solution of the system

o' (t) =A(t)e(t) + Ao(t)o(v(t)) + f (t, X(#) + 0(t), Y () + w(t), X (v(2))
+o(v(1), Y(v(#) + w(v(t))) — (6 X(@),Y (1), X(v(t)), Y (v(1))),
w'(t) =B(t)w(t) + Bo(t)w(y(t)) + g(t, X(8) + 0(t), Y () + w(t), X (v(2))

+o(v(®), Y (v(1) + w(v(t))) —g(t; X (), X(7(1)), Y (1), Y (7(1))),

(5.3)

satisfying
loo(t)] < +o0, teER, (5.4)
lwo(t)] < 400, t=0. (5.5)

Then (0o(t),wo(t))T = 0.

Proof. Tt is clear that (go(t),wo(t))T = 0 is a solution of system (5.3) satisfying
(5.4) and (5.5). Arguments similar to those in Lemmas 4.3 and 4.4 show that
(00(t),wo(t))T = 0 is the unique solution satisfying (5.4) and (5.5). O

Lemma 5.5. For anyt € R, x € R™ and y € R™, we have
L(t, H(t,z,y)) = (z,y)".

Proof. Suppose that (X(¢),Y()) is a solution of the nonlinear system (2.1). Tt
follows from Lemma 5.1 that H (¢, X (t), Y (t)) is a solution of the linear system (2.2)
and L(t, H(t, X (t),Y (t))) is also a solution of system (2.1). Denote

Ji(t) = La(t, Hi(t, X (8), Y (t)), Ha(t, X (£), Y (1)) — X (t)
Jo(t) = La(t, Hi(t, X (1), Y1), Ha(t, X (1), Y (1)) = Y(?)

Ly(t) — X (1),
La(t) — Y (1).

> >

Moreover, we could verify that (J1(t), Jo(t))” is a solution of system (5.3).
By Lemma 5.2, we have

|J1 ()] =[La(t, Hi(t, X(¢),Y (), Ha2(t, X (1), Y (1)) — Hi(t, X (1), Y (1))
+ Hi(t, X (1), Y () = X(1)| < 2Kp(A)a
and

| J2(8)| =|La(t, Hi(t, X (1), Y (t)), Ha(t, X (1), Y (2))) — Ha(t, X (1), Y (1))]
+ [Ha(t, X (1), Y (t)) — X (1))

D (F (1, X (), Y () + 7a2(X (1) + TKp(A)a~ p+ 2Kp(B)a .

Since Hi(t, X (t),Y(t)) is a solution of subsystem (2.7) and X (¢) is a solution of
subsystem (2.5), for ¢ > 0, it follows from Lemma 4.1 that

[Hy(t, X (1), Y (1)) < ¢ (H1(0,X(0),Y(0))) and | X(#)] < ¢2(X(0)).
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Thus, for t > 0 we get

1

<@ (H1 (0, X(0), Y(0)))) + Jax(ax(X(0))) + { K(A)a~n

+2Kp(B)a .

| T2(1)]

Owing to Lemma 5.4, we have J;(t) = 0 and Jo(¢t) = 0. That is
L(t, H(t, X (1), Y (1)) = (X(1),Y(t)".
Therefore, for any ¢t € R, x € R™ and y € R™?, we have

L(t,H(t,:E,y)) = (xvy)T'
O

Lemma 5.6 (Lemma 5.1, [25]). Lett — z(t,7,€) and t — z(t,7,£') be the solutions
of (2.1) passing respectively through & and & at t = 7. If (3.2) is valid, then it
follows that

[#(t, 7€) = 2(t, 7, )] < € — 'le” O,

where p(£) is defined by

fr’ 67719

with m =M+4€, ny=DMy+¢,

and v € [0,1) is defined by (3.2).
(t

Remark 5.1. If h(t, z(t), z(v(t))) = 0, take £ = 0, Lemma 5.6 reduces to Lemma
5.2 in [25]. Moreover, since p(¢) > p(0) and F(¢,0) > F(0,0) in (3.2), Lemma 5.6
is also valid for system (2.2).

Proof of Theorem 3.1. For any ¢ € R, it follows from Lemmas 5.3 and 5.5 that
H(t,-) is a bijection of R® and H~1(t,-) = L(t, ).

According to Lemma 5.6 and Remark 3, solutions of systems (2.1) and (2.2)
are continuous with respect to initial values. Moreover, similar to Lemma 5.6, we
obtain solutions of systems (4.3) and (4.4) are continuous with respect to initial
values.

By definitions of H(t,-) and L(¢,-), both H(t,-) and L(¢,-) are continuous. Thus
H(t,-) and L(t,-) are homeomorephisms of R™.

Moreover, Lemma 5.1 implies that H(t,-) sends the solutions of system (2.1)
onto those of system (2.2) and L(t, -) sends the solutions of system (2.2) onto those
of system (2.1). Tt follows from Lemma 5.2 that H and L are topological equivalent
functions. Therefore, system (2.1) and system (2.2) are topologically conjugated.

O
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