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Abstract In this paper, we study the global topological linearization of a d-
ifferential equation with piecewise constant argument of generalized type (DE-
PCAG) when the nonlinear term is unbounded. Some sufficient conditions are
established for the topological conjugacy between a nonlinear system and its
linear system. Our work generalizes the main result of Pinto and Robledo
in [25].
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1. Introduction

The classical topological linearization theorem of autonomous differential equations
was given by Hartman and Grobman [12, 13]. Palmer generalized the Hartmann-
Grobman theorem to the nonautonomous case in [20, 21], where he obtained a
version of the global topological linearization theorem.

Later, many scholars obtained a series of results on topological linearization.
Barreira and Valls [5,6], Jiang [15,16], Shi and Xiong [28], Shi [29] obtained various
results about ordinary differential equations. Castañeda and Robledo [8], Kurzweil
and Papaschinopoulos [17], Papaschinopoulos [22] considered topological lineariza-
tion of difference equations. Topological linearization of impulsive equations and
time-scale systems were studied in [18,31,33,34] and [26,32], respectively. In 1996,
Papaschinopoulos [23] generalized the topological linearization theorem to a differ-
ential equation with piecewise constant argument (DEPCA).

Nineteen years later, Pinto and Robledo [25] generalized the work of Papaschinopou-
los to a differential equation with piecewise constant argument of generalized type
(DEPCAG). They studied the following system

z′(t) = M(t)z(t) +M0(t)z(γ(t)) + h(t, z(t), z(γ(t))), (1.1)

where t ∈ R, z(t) ∈ Rn, M(t) and M0(t) are n× n matrices, h : R×Rn ×Rn → Rn
and γ(t) : R→ R.
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Under suitable conditions, they proved that the above nonlinear system is topo-
logically conjugated to its linear system

z′(t) = M(t)z(t) +M0(t)z(γ(t)). (1.2)

If the function γ(t) = [t], where [t] is the integer part of t, then system (1.1) is
a DEPCA, which has been well studied by Papaschinopoulos [23]. DEPCAs and
DEPCAGs have been extensively studied, readers could refer to [2, 7, 10, 11, 14, 19,
27,35] for more details.

However, the results in [23] and [25] require that there exists a constant µ > 0
such that |h(t, z(t), z(γ(t)))| 6 µ. That is the boundness of the nonlinear term
h(t, z(t), z(γ(t))). So a natural question is what happens when h(t, z(t), z(γ(t))) is
unbounded?

In this paper, we prove that even if h(t, z(t), z(γ(t))) is unbounded, system (1.1)
can also be topologically conjugated to system (1.2) as long as it has a proper
structure.

The rest of this paper is organized as follows: In Section 2, we give some defi-
nitions, notations and preliminary lemmas. Our main result is stated in Section 3.
Proofs are given in Section 4 and 5.

2. Preliminaries

2.1. General assumptions

For convenience, in this paper, we assume that system (1.1) has the following form: x′(t) = A(t)x(t) +A0(t)x(γ(t)) + f(t, x(t), y(t), x(γ(t)), y(γ(t))),

y′(t) = B(t)y(t) +A0(t)y(γ(t)) + g(t, x(t), y(t), x(γ(t)), y(γ(t))).
(2.1)

Thus, system (1.2) can be rewritten as: x′(t) = A(t)x(t) +A0(t)x(γ(t)),

y′(t) = B(t)y(t) +A0(t)y(γ(t)).
(2.2)

Corresponding to systems (1.1) and (1.2),

z(t) =

x(t)

y(t)

 , M(t) =

A(t)

0

0

B(t)

 , M0(t) =

A0(t)

0

0

B0(t)

 ,

h(t, z(t), z(γ(t)) =

 f(t, x(t), y(t), x(γ(t)), y(γ(t)))

g(t, x(t), y(t), x(γ(t)), y(γ(t)))

 ,

 f̂(t)

ĝ(t)

 ,

where t ∈ R, x(t) ∈ Rn1 , y(t) ∈ Rn2 , n1 + n2 = n, A(t), A0(t) are n1 × n1 matrices,
B(t), B0(t) are n2 × n2 matrices, f, g : R× Rn1 × Rn2 × Rn1 × Rn2 → Rn.

We suppose that A(t), A0(t), B(t), B0(t), f and g satisfy condition (A) as
follows:
(A1) There exist constants β > 0 and β0 > 0 such that

sup
t∈R
|A(t)| 6 β, sup

t∈R
|B(t)| 6 β,
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sup
t∈R
|A0(t)| 6 β0, sup

t∈R
|B0(t)| 6 β0,

where | · | denotes a matrix norm.
(A2) There exist constants µ > 0 and ` > 0 such that for any
(t, x(t), y(t), x(γ(t)), y(γ(t))) ∈ R× Rn1 × Rn2 × Rn1 × Rn2 ,

|f(t, x(t), y(t), x(γ(t)), y(γ(t)))| 6 µ,

|g(t, x(t), y(t), x(γ(t)), y(γ(t))| 6 `(|x(t)|+ |x(γ(t))|) + µ,

where | · | denotes a vector norm.
(A3) ∀(t, x1(t), y1(t), x1(γ(t)), y1(γ(t))), (t, x2(t), y2(t), x2(γ(t)), y2(γ(t))) ∈ R ×
Rn1 × Rn2 × Rn1 × Rn2 , for the above `,

|f(t, x1(t), y1(t), x1(γ(t)), y1(γ(t)))− f(t, x2(t), y2(t), x2(γ(t)), y2(γ(t)))|

6`
(
|x1(t)− x2(t)|+ |y1(t)− y2(t)|+ |x1(γ(t))− x2(γ(t))|+ |y1(γ(t))− y2(γ(t))|

)
,

|g(t, x1(t), y1(t), x1(γ(t)), y1(γ(t)))− g(t, x2(t), y2(t), x2(γ(t)), y2(γ(t)))|

6`
(
|x1(t)− x2(t)|+ |y1(t)− y2(t)|+ |x1(γ(t))− x2(γ(t))|+ |y1(γ(t))− y2(γ(t))|

)
.

γ : R → R satisfies condition (B): there exist two sequences {ti}i∈Z and {ζi}i∈Z
satisfying
(B1) ti < ti+1 and ti 6 ζi 6 ti+1, ∀i ∈ Z,
(B2) ti → ±∞ as i→ ±∞,
(B3) γ(t) = ζi for t ∈ [ti, ti+1),
(B4) there exists a constant θ > 0 such that ti+1 − ti 6 θ,∀i ∈ Z.

For any i ∈ Z, let Ii = [ti, ti+1) and Īi = [ti, ti+1].
For any m×m matrix Q(t) (m = n1, n2 or n), define

ρ+i (Q) = exp(

∫ ζi

ti

|Q(s)|ds) and ρ−i (Q) = exp(

∫ ti+1

ζi

|Q(s)|ds).

Now we introduce the following condition (C).
Condition (C): There exist ν+ > 0, ν− > 0 such that matrices A(t), A0(t), B(t)

and B0(t) satisfy the following properties:

sup
i∈Z

ρ+i (A) ln ρ+i (A0) 6 ν+ < 1, sup
i∈Z

ρ−i (A) ln ρ−i (A0) 6 ν− < 1,

sup
i∈Z

ρ+i (B) ln ρ+i (B0) 6 ν+ < 1, sup
i∈Z

ρ−i (B) ln ρ−i (B0) 6 ν− < 1.

Note that (A1) and (B4) imply that

1 6 ρ(A) , sup
i∈Z

ρ+i (A)ρ−i (A) < +∞ and 1 6 ρ(B) , sup
i∈Z

ρ+i (B)ρ−i (B) < +∞.

(2.3)
Thus,

α0(A) , ρ(A)2(
1 + ν+

1− ν−
) > 1 and α0(B) , ρ(B)2(

1 + ν+

1− ν−
) > 1. (2.4)

Throughout the rest of the paper, we assume that conditions (A), (B) and (C)
hold.
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2.2. Topological conjugacy

The notion of topological equivalence and topological conjugacy can be found in
[20,21,25,29,34].

Definition 2.1 (Topological conjugacy). A continuous function H : R×Rn → Rn
is topological equivalent between system (1.1) and (1.2) if the following conditions
hold:

(i) for each t ∈ R, H(t, u) is a homeomorphism of Rn,

(ii) H(t, u)− u is bounded in R× Rn,

(iii) if z(t) is a solution of system (1.1), then H(t, z(t)) is a solution of system (1.2).

In addition, the function L(t, u) = H−1(t, u) has properties (i)–(iii) also.

If such a map H exists, then systems (1.1) and (1.2) are called topologically
conjugated.

2.3. Notation of solutions for a DEPCAG

The notion of solutions for a DEPCAG was introduced in [1, 4, 9, 10,30].

Definition 2.2 (Solutions of a DEPCAG). A function z(t) is a solution of system
(1.1) or system (1.2) on R if:

(i) The derivative z′(t) exists at each point t ∈ R with the possible exception of
points ti, i ∈ Z, where the one side derivatives exist;

(ii) The equation is satisfied for z(t) on each interval (ti, ti+1) and it holds for the
right derivative of z(t) at ti.

2.4. Transition matrices of systems

In this subsection, we introduce some notations associated with solutions of a DE-
PCAG.

For convenience, we consider the following subsystems of system (2.1):

x′(t) = A(t)x(t) +A0(t)x(γ(t)) + f(t, x(t), y(t), x(γ(t)), y(γ(t))), (2.5)

y′(t) = B(t)y(t) +B0(t)y(γ(t)) + g(t, x(t), y(t), x(γ(t)), y(γ(t))), (2.6)

and subsystems of system (2.2):

x′(t) = A(t)x(t) +A0(t)x(γ(t)), (2.7)

y′(t) = B(t)y(t) +B0(t)y(γ(t)). (2.8)

Let Φ1(t) be the fundamental matrix of system x′ = A(t)x with Φ1(0) = I, and
Φ2(t) be the fundamental matrix of system y′ = B(t)y with Φ2(0) = I.
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For any t ∈ Ij , τ ∈ Ii, s ∈ R, we introduce the following notation [10,24,25]:

Φk(t, s) = Φk(t)Φ−1k (s), k = 1, 2,

J1(t, τ) = I +

∫ t

τ

Φ1(τ, s)A0(s)ds,

J2(t, τ) = I +

∫ t

τ

Φ2(τ, s)B0(s)ds,

E1(t, τ) = Φ1(t, τ) +

∫ t

τ

Φ1(t, s)A0(s)ds = Φ1(t, τ)J1(t, τ),

and

E2(t, τ) = Φ2(t, τ) +

∫ t

τ

Φ2(t, s)B0(s)ds = Φ2(t, τ)J2(t, τ).

We define backward and forward products of a set of n×n (n1×n1 or n2×n2)
matrices Qi(i = 1, . . . ,m) as follows:

←m∏
i=1

Qi =

Qm · · · Q2Q1, if m > 1,

I, if m < 1,

and
→m∏
i=1

Qi =

Q1Q2 · · · Qm, if m > 1,

I, if m < 1.

If Jk(t, s) (k = 1, 2) are nonsingular, we could define the transition matrices
Z1(t, s) of subsystem (2.7) and Z2(t, s) of subsystem (2.8) as follows:
if t > τ ,

Zk(t, τ) =Ek(t, ζj)Ek(tj , ζj)
−1

←j∏
r=i+2

(
Ek(tr, γ(tr−1))Ek(tr−1, γ(tr−1))−1

)
Ek(ti+1, γ(τ))Ek(τ, γ(τ))−1,

if t < τ ,

Zk(t, τ) =Ek(t, ζj)Ek(tj+1, ζj)
−1
→i−1∏
r=j+1

(
Ek(tr, γ(tr))Ek(tr+1, γ(tr))

−1
)

Ek(ti, γ(τ))Ek(τ, γ(τ))−1,

where k = 1, 2.
Through simple calculations, we obtain Zk(t, τ)Zk(τ, s) = Zk(t, s) and Zk(t, s) =

Zk(s, t)−1 (k = 1, 2). Since E1(τ, τ) = I and ∂E1

∂t (t, τ) = A(t)E1(t, τ) + A0(t), we
have

∂Z1

∂t
(t, τ) = A(t)Z1(t, τ) +A0(t)Z1(γ(t), τ).

Thus, Z1(t, τ) is a solution of subsystem (2.7). Similarly, Z2(t, τ) is a solution of
subsystem (2.8).
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2.5. Formulas of solutions to DEPCAGs

To introduce the formulas of solutions, we first state the following important lemma.

Lemma 2.1 (Lemma 4.3, [24]). Assume that conditions (A),(B),(C) are fulfilled,
then Jk(t, s)(k = 1, 2) is nonsingular for any t, s ∈ Īr and the matrices Zk(t, s)(k =
1, 2) and Zk(t, s)−1(k = 1, 2) are well defined for any t, s ∈ R. If t, s ∈ Īr, then

|Φ1(t, s)| 6 ρ(A), |Φ2(t, s)| 6 ρ(B),

|Z1(t, s)| 6 α0(A), |Z2(t, s)| 6 α0(B),

where ρ(·) is defined in (2.3) and α0(·) is defined in (2.4).

We remark that Lemma 2.1 ensures the continuity of solutions of system (2.1)
in (−∞,+∞). We introduce the following formulas for DEPCAGs.

Lemma 2.2 (p.239, [24]). For any t ∈ Ij, τ ∈ Ii, the solution of subsystem (2.7)
with x(τ) = ξ is defined on R and is given by

x(t) = Z1(t, τ)ξ. (2.9)

From Lemma 2.2, the solution of (2.8) with y(τ) = η can be represented as

y(t) = Z2(t, τ)η. (2.10)

Lemma 2.3 (Theorem 3.3, [24]). For t ∈ Ij, τ ∈ Ii and t > τ , the solution of
subsystem (2.5) with x(τ) = ξ is defined on R and is given by

x(t) = Z1(t, τ)ξ +

∫ ζi

τ

Z1(t, τ)Φ1(τ, s)f̂(s)ds+

j∑
r=i+1

∫ ζr

tr

Z1(t, tr)Φ1(tr, s)f̂(s)ds

+

j−1∑
r=i

∫ tr+1

ζr

Z1(t, tr+1)Φ1(tr+1, s)f̂(s)ds+

∫ t

ζj

Φ1(t, s)f̂(s)ds

, Z1(t, τ)η +

∫ t

τ

G1(t, s)f̂(s)ds, (2.11)

where,

G1(t, s) =



Z1(t, τ)Φ1(τ, s), if s ∈ [τ, ζi] or s ∈ [ζi, τ ],

Z1(t, tr)Φ1(tr, s), if s ∈ [tr, ζr) for r = i+ 1, · · · , j,

Z1(t, tr+1)Φ1(tr+1, s), if s ∈ [ζr, tr+1) for r = i, · · · , j − 1,

Φ1(t, s), if s ∈ [ζj , t] or s ∈ [t, ζj ].

From Lemma 2.3, if t > τ , the solution of subsystem (2.6) with y(τ) = η can be
represented as

y(t) = Z2(t, τ)η +

∫ ζi

τ

Z2(t, τ)Φ2(τ, s)ĝ(s)ds+

j∑
r=i+1

∫ ζr

tr

Z2(t, tr)Φ2(tr, s)ĝ(s)ds

+

j−1∑
r=i

∫ tr+1

ζr

Z2(t, tr+1)Φ2(tr+1, s)ĝ(s)ds+

∫ t

ζj

Φ2(t, s)ĝ(s)ds

= Z2(t, τ)η +

∫ t

τ

G2(t, s)ĝ(s)ds, (2.12)
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where G2(t, s) can be defined in the same way as G1(t, s).

Remark 2.1. If t < τ , one could obtain the solution formulas by replacing
j∑

r=i+1

and
j−1∑
r=i

with
i∑

r=j+1

and
i−1∑
r=j

, respectively.

At the same time, we could obtain Gk(t, s) (k = 1, 2) for t < τ by replacing
r = i+ 1, · · · , j, and r = i, · · · , j − 1, with r = j + 1, · · · , i, and r = j, · · · , i− 1, in
the definitions of Gk(t, s) (t > s, k = 1, 2), respectively.

2.6. exponential dichotomy for a DEPCAG

Now we introduce the definition of exponential dichotomy for a DEPCAG. In this
paper, we adopt the following definition from Akhmet [3, 4].

Definition 2.3 (α-exponential dichotomy for a DEPCAG). The linear system (1.2)
admits an α-exponential dichotomy on (−∞,∞) if there exist a projection P , pos-
itive constants K > 1 and α > 0 such that the transition matrix Z(t, s) of system
(1.2) satisfies

|ZP (t, s)| 6 Ke−α|t−s|,

where ZP (t, s) is defined by

ZP (t, s) =

Z(t, 0)PZ(0, s), t > s,

−Z(t, 0)(I − P )Z(0, s), s > t.

In this paper, we assume that the following condition (D) holds.
Condition (D): There exist positive constants K > 1 and α > 0 such that

|Z1(t, s)| 6 Ke−α(t−s), t > s and |Z2(t, s)| 6 Keα(t−s), s > t.

2.7. Some lemmas

Lemma 2.4. If condition (D) holds, for t ∈ R and s ∈ R, then

|G1(t, s)| 6 Kρ̃(A)e−α(t−s), t > s, |G2(t, s)| 6 Kρ̃(B)eα(t−s), t < s,

where ρ̃(·) = max(ρ(·)α0(·), ρ(·)eαθ), ρ(·) is defined in (2.3), α0(·) is defined in
(2.4), α is defined in (D) and θ is defined in (B4).

Proof. We just prove the first inequality.
Suppose that t ∈ Ij , τ ∈ Ii and t > s.
Case 1. t > τ .
Without loss of generality, we assume that ti 6 τ 6 ζi 6 ti+1 6 · · · tj 6 ζj 6 t.
If s ∈ [τ, ζi], due to (B4), we have s − τ 6 θ. It follows from (D) and Lemma

2.1 that

|G1(t, s)| = |Z1(t, τ)Φ1(τ, s)| 6 Ke−α(t−τ)ρ(A) 6 Ke−α(t−s)eαθρ(A).

If s ∈ [tr, ζr] (r = i+ 1, · · · , j), then s− tr 6 θ. In view of (D) and 2.1, we have

|G1(t, s)| = |Z1(t, tr)Φ1(tr, s)| 6 Ke−α(t−tr)ρ(A) 6 Ke−α(t−s)eαθρ(A).
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If s ∈ [ζr, tr+1] (r = i, · · · , j − 1), similar to the above inequality, we have the
same conclusion.

If s ∈ [ζj , t], owing to (B4), we have t− s 6 θ. It follows from Lemma 2.1 and
K > 1 that

|G1(t, s)| = |Φ1(t, s)| 6 ρ(A) 6 Ke−α(t−s)eαθρ(A). (2.13)

Case 2. t 6 τ .
By definition of G1(t, s) we have s ∈ [min(t, ζj),max(τ, ζi)].
If t 6 ζj , then t < s which contradicts to our assumption that t > s. Thus, we

just consider the case that ζj 6 t. We divide the discussion into two subcases.
Subcase 2.1. ζj 6 t 6 tj+1 6 τ .
For t > s, the only possibility is that s ∈ [ζj , t]. Similar to (2.13), we have

|G1(t, s)| 6 Ke−α(t−s)eαθρ(A).

Subcase 2.2. ζj 6 t 6 τ 6 tj+1.
If t > s, then s ∈ [ζj , t] or s ∈ [ζj , τ ].
When s ∈ [ζj , t], similar to (2.13), we get

|G1(t, s)| 6 Ke−α(t−s)eαθρ(A).

When s ∈ [ζj , τ ], we have s ∈ Īj . Since t > s, following (D) and Lemma 2.1, we
obtain

|G1(t, s)| = |Z1(t, τ)Φ1(τ, s)| = |Z1(t, s)Z1(s, τ)Φ1(τ, s)| 6 Ke−α(t−s)α0(A)ρ(A).

Note that ρ̃(A) = max(ρ(A)α0(A), ρ(A)eαθ), we complete the proof.

Lemma 2.5. Assume that condition (D) holds, then

lim
t→−∞

|Z1(t, τ)| = +∞, lim
t→+∞

|Z2(t, τ)| = +∞, ∀τ ∈ R.

Moreover, the unique bounded solution in (−∞,+∞) of subsystem (2.7) ( (2.8)) is
trival.

Proof. The proof is similar to that of Lemma 2.3 in [25] and so it is omitted.

3. Main result

Now we are in a position to state our main result as follows.

Theorem 3.1. If condition (D) holds, further assume that

8Kρ̃(A)` < α, 8Kρ̃(B)` < α, (3.1)

F (`, θ)(β0 + `)θ = υ < 1, (3.2)

where F (`, θ) = e(β+`)θ−1
(β+`)θ , ρ̃(·) is defined in Lemma 2.4, `, β and β0 are defined

in (A), θ is defined in (B4), K and α are defined in (D). Then system (2.1) is
topologically conjugated to system (2.2).

Remark 3.1. When the solution z(t) of system (2.2) is unbounded, the nonlinear
term h(t, z(t), z(γ(t))) is possible unbounded. For example, g(t, x(t), y(t), x(γ(t)), y(γ(t)))

in h(t, z(t), z(γ(t))) can be a polynomial of order one about x(t) sin(y(t)). In this
case, h(t, z(t), z(γ(t))) is unbounded, however the topological linearization can be
realized.
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4. Topological equivalent functions H and L

The main aim in this section is to establish the topological equivalent functions H
and L between solutions of system (2.1) and (2.2). We first give some lemmas.

For any τ ∈ Ii, t ∈ R, ξ ∈ Rn1 , η ∈ Rn2 , assume that

(i) (x(t, (τ, ξ, η)), y(t, (τ, ξ, η)))T is the solution of system (2.2) satisfying

x(τ, (τ, ξ, η)) = ξ and y(τ, (τ, ξ, η)) = η.

(ii) (X(t, (τ, ξ, η)), Y (t, (τ, ξ, η)))T is the solution of system (2.1) satisfying

X(τ, (τ, ξ, η)) = ξ and Y (τ, (τ, ξ, η)) = η.

Let

q1(ξ) = max(K|ξ|, α0(A)|ξ|),
q2(ξ) = max(K|ξ|+Kρ̃(A)α−1µ, α0(A)|ξ|+ α0(A)ρ(A)µθ).

Lemma 4.1. If t > τ , we have

|x(t, (τ, ξ, η))| 6 q1(ξ), |x(γ(t), (τ, ξ, η))| 6 q1(ξ),

|X(t, (τ, ξ, η))| 6 q2(ξ), |X(γ(t), (τ, ξ, η))| 6 q2(ξ).

Proof. If t > τ , by (2.9) and (D) we have

|x(t, (τ, ξ, η))| = |Z1(t, τ)ξ| 6 Ke−α(t−τ)|ξ| 6 K|ξ| 6 q1(ξ). (4.1)

If γ(t) > τ , then

|x(γ(t), (τ, ξ, η))| 6 q1(ξ).

If γ(t) 6 τ 6 t, then γ(t) = γ(τ) = ζi ∈ Īi. Using (2.9), (D) and Lemma 2.1, we
get

|x(γ(t), (τ, ξ, η))| = |Z1(γ(t), τ)ξ| 6 α0(A)|ξ| 6 q1(ξ). (4.2)

From (2.11), we have

X(t, (τ, ξ, η))

=Z1(t, τ)ξ +

∫ t

τ

G1(t, s) · f
(
s,X(s, (τ, ξ, η)), Y (s, (τ, ξ, η)), X(γ(s), (τ, ξ, η)),

Y (γ(s), (τ, ξ, η))
)
ds.

If t > τ , due to (4.1), (A2) and Lemma 2.4, we obtain

|X(t, (τ, ξ, η))| 6 K|ξ|+
∫ t

τ

Kρ̃(A)e−α(t−s)µds 6 K|ξ|+Kρ̃(A)α−1µ 6 q2(ξ).

If γ(t) > τ , from the above inequality, we have

|X(γ(t), (τ, ξ, η))| 6 q2(ξ).
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If γ(t) < τ 6 t, we have γ(t) = γ(τ) = ζi ∈ Īi. It follows from (2.11) that

X(γ(t), (τ, ξ, η))

=Z1(γ(t), τ)ξ +

∫ γ(t)

τ

Z1(γ(t), τ)Φ1(τ, s) · f
(
s,X(s, (τ, ξ, η)), Y (s, (τ, ξ, η)),

X(γ(s), (τ, ξ, η)), Y (γ(s), (τ, ξ, η))
)
ds.

In view of (B4), we have |γ(t)− τ | 6 θ, together with (4.2), (A2) and Lemma 2.1,
we obtain that

|X(γ(t), (τ, ξ, η))| 6 α0(A)|ξ|+ α0(A)ρ(A)µθ 6 q2(ξ).

Lemma 4.2. If τ ∈ Ii, then

I ,
+∞∑
r=i

∫ tr+1

ζr

Z2(τ, tr+1)Φ2(tr+1, s) · g
(
s, x(s, (τ, ξ, η)), y(s, (τ, ξ, η)),

x(γ(s), (τ, ξ, η)), y(γ(s), (τ, ξ, η))
)
ds

is convergent.

Proof. Due to τ ∈ Ii, we have τ < tr+1 for all r > i. It follows from (D) that

|Z2(τ, tr+1)| 6 Keα(τ−tr+1).

If s ∈ [ζr, tr+1], by (B4) we have eα(τ−tr+1) 6 eα(τ−s)eαθ. It follows from Lemma
2.1 that

|Z2(τ, tr+1)Φ2(tr+1, s)| 6 Keα(τ−s)eαθρ(B) 6 Keα(τ−s)ρ̃(B).

From (A2), we obtain

|I| 6
∫ +∞

ζi

Keα(τ−s)ρ̃(B){`(|x(s, (τ, ξ, η))|+ |x(γ(s), (τ, ξ, η))|) + µ}ds.

Since s ∈ [ζi,+∞) and τ ∈ Ii, similar to Lemma 4.1, we get

|x(s, (τ, ξ, η))| 6 q1(ξ), |x(γ(s), (τ, ξ, η))| 6 q1(ξ).

Due to (3.1), we have

|I| 6 1

4
eα(τ−ζi)q1(ξ) +Kρ̃(B)α−1eα(τ−ζi)µ.

Denote
Ω = {ϕ(t)|ϕ ∈ C(R,Rn1), |ϕ(t)| 6 Kρ̃(A)α−1µ}.

Lemma 4.3. For any ϕ ∈ Ω, the system

v′(t) =B(t)v(t) +B0(t)v(γ(t)) + g
(
t, x(t, (τ, ξ, η)) + ϕ(t), y(t, (τ, ξ, η)) + v(t),

x(γ(t), (τ, ξ, η)) + ϕ(γ(t)), y(γ(t), (τ, ξ, η)) + v(γ(t))
)

(4.3)
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has a unique solution vϕ(t, (τ, ξ, η)) which is bounded for t > τ and γ(t) > τ .
Moreover, if t ∈ Ij, then it has the following form

vϕ(t, (τ, ξ, η))

=−
+∞∑
r=j+1

∫ ζr

tr

Z2(t, tr)Φ2(tr, s) · g
(
s, x(s, (τ, ξ, η)) + ϕ(s), y(s, (τ, ξ, η)) + vϕ

(s, (τ, ξ, η)), x(γ(s), (τ, ξ, η)) + ϕ(γ(s)), y(γ(s), (τ, ξ, η)) + vϕ(γ(s), (τ, ξ, η))
)
ds

−
+∞∑
r=j

∫ tr+1

ζr

Z2(t, tr)Φ2(tr, s) · g
(
s, x(s, (τ, ξ, η)) + ϕ(s), y(s, (τ, ξ, η)) + vϕ

(s, (τ, ξ, η)), x(γ(s), (τ, ξ, η)) + ϕ(γ(s)), y(γ(s), (τ, ξ, η)) + vϕ(γ(s), (τ, ξ, η))
)
ds

−
∫ ζj

t

Φ2(t, s) · g
(
s, x(s, (τ, ξ, η)) + ϕ(s), y(s, (τ, ξ, η)) + vϕ(s, (τ, ξ, η)),

x(γ(s), (τ, ξ, η)) + ϕ(γ(s)), y(γ(s), (τ, ξ, η)) + vϕ(γ(s), (τ, ξ, η))
)
ds

=−
∫ +∞

t

G2(t, s) · g
(
s, x(s, (τ, ξ, η)) + ϕ(s), y(s, (τ, ξ, η)) + vϕ(s, (τ, ξ, η)),

x(γ(s), (τ, ξ, η)) + ϕ(γ(s)), y(γ(s), (τ, ξ, η)) + vϕ(γ(s), (τ, ξ, η))
)
ds.

For vϕ(t, (τ, ξ, η)), the following system

u′(t)

=A(t)u(t) +A0(t)u(γ(t)) + f
(
t, x(t, (τ, ξ, η)) + u(t), y(t, (τ, ξ, η)) + vϕ(t, (τ, ξ, η)),

x(γ(t), (τ, ξ, η)) + u(γ(t)), y(γ(t), (τ, ξ, η)) + vϕ(γ(t), (τ, ξ, η))
)
, (4.4)

has a unique bounded solution uϕ(t, (τ, ξ, η)) satisfying

|uϕ(t, (τ, ξ, η))| 6 Kρ̃(A)α−1µ.

Proof. Let Nτ = {ψ|ψ : [τ,+∞)→ Rn2 , ψ is a continuous function with |ψ(t)| 6
1
4q1(ξ) + 1

4Kρ̃(A)α−1µ+Kρ̃(B)α−1µ}.
For any ψ ∈ Nτ , define the following map

T1ψ(t) =−
∫ +∞

t

G2(t, s) · g
(
s, x(s, (τ, ξ, η)) + ϕ(s), y(s, (τ, ξ, η)) + ψ(s),

x(γ(s), (τ, ξ, η)) + ϕ(γ(s)), y(γ(s), (τ, ξ, η)) + ψ(γ(s))
)
ds.

If t > τ and γ(t) > τ , then s > τ and γ(s) > τ . From (A2), (3.1), Lemma 2.4 and
Lemma 4.1, we have

|T1ψ(t)| 6
∫ +∞

t

Kρ̃(B)eα(t−s){`|x(s, (τ, ξ, η)) + ϕ(s)|

+ `|x(γ(s), (τ, ξ, η)) + ϕ(γ(s))|+ µ}ds

6
∫ +∞

t

Kρ̃(B)eα(t−s)(2`q1(ξ) + 2`Kρ̃(A)α−1µ+ µ)ds
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=Kρ̃(B)α−1(2`K|ξ|+ 2`Kρ̃(A)α−1µ+ µ)

6
1

4
q1(ξ) +

1

4
Kρ̃(A)α−1µ+Kρ̃(B)α−1µ. (4.5)

Therefore, T1 is a map from Nτ to Nτ .
Moreover, owing to (A3) and Lemma 2.4,

|T1ψ1(t)−T1ψ2(t)| 6
∫ +∞

t

Kρ̃(B)eα(t−s)`(|ψ1(s)−ψ2(s)|+|ψ1(γ(s))−ψ2(γ(s))|)ds.

Define ‖ψ1 − ψ2‖τ = sup
s>τ
|ψ1(s)− ψ2(s)|, then

|T1ψ1(t)− T1ψ2(t)| 6 Kρ̃(B)α−12`‖ψ1 − ψ2‖τ <
1

4
‖ψ1 − ψ2‖τ (t > τ, γ(t) > τ).

Thus T1 is a contracting map and there exists ψ0(t) ∈ Nτ such that

ψ0(t) =T1ψ0(t)

=−
∫ +∞

t

G2(t, s) · g
(
s, x(s, (τ, ξ, η)) + ϕ(s), y(s, (τ, ξ, η)) + ψ0(s),

x(γ(s), (τ, ξ, η)) + ϕ(γ(s)), y(γ(s), (τ, ξ, η)) + ψ0(γ(s))
)
ds. (4.6)

Calculating the derivative of ψ0(t), we obtain

ψ′0(t) =B(t)ψ0(t) +B0(t)ψ0(γ(t)) + g
(
t, x(t, (τ, ξ, η)) + ϕ(t), y(t, (τ, ξ, η)) + ψ0(t),

x(γ(t), (τ, ξ, η)) + ϕ(γ(t)), y(γ(t), (τ, ξ, η)) + ψ0(γ(t))
)
, (4.7)

which implies that ψ0(t) is a solution of system (4.3). It follows from (4.5) that
ψ0(t) is bounded for t > τ and γ(t) > τ .

Suppose that τ ∈ Ii. If ψ∗(t) is another solution of system (4.3) such that it is
bounded for t > τ and γ(t) > τ , by Lemma 2.3 we have

ψ∗(t)

=Z2(t, τ)ψ∗(τ) +

∫ ξi

τ

Z2(t, τ)Φ2(τ, s) · g
(
s, x(s, (τ, ξ, η)) + ϕ(s), y(s, (τ, ξ, η))

+ ψ∗(s), x(γ(s), (τ, ξ, η)) + ϕ(γ(s)), y(γ(s), (τ, ξ, η)) + ψ∗(γ(s))
)
ds

+

j∑
r=i+1

∫ ζr

tr

Z2(t, tr)Φ2(tr, s) · g
(
s, x(s, (τ, ξ, η)) + ϕ(s), y(s, (τ, ξ, η)) + ψ∗(s),

x(γ(s), (τ, ξ, η)) + ϕ(γ(s)), y(γ(s), (τ, ξ, η)) + ψ∗(γ(s))
)
ds

+

j−1∑
r=i

∫ tr+1

ζr

Z2(t, tr+1)Φ2(tr+1, s) · g
(
s, x(s, (τ, ξ, η)) + ϕ(s), y(s, (τ, ξ, η))

+ ψ∗(s), x(γ(s), (τ, ξ, η)) + ϕ(γ(s)), y(γ(s), (τ, ξ, η)) + ψ∗(γ(s))
)
ds

−
∫ ζj

t

Φ2(t, s) · g
(
s, x(s, (τ, ξ, η)) + ϕ(s), y(s, (τ, ξ, η)) + ψ∗(s),

x(γ(s), (τ, ξ, η)) + ϕ(γ(s)), y(γ(s), (τ, ξ, η)) + ψ∗(γ(s))
)
ds.
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Similar to Lemma 4.2, we could prove that

+∞∑
r=i+1

∫ ζr

tr

Z2(τ, tr)Φ2(tr, s) · g
(
s, x(s, (τ, ξ, η)) + ϕ(s), y(s, (τ, ξ, η))

+ ψ∗(s), x(γ(s), (τ, ξ, η)) + ϕ(γ(s)), y(γ(s), (τ, ξ, η)) + ψ∗(γ(s))
)
ds,

and

+∞∑
r=i

∫ tr+1

ζr

Z2(τ, tr+1)Φ2(tr+1, s) · g
(
s, x(s, (τ, ξ, η)) + ϕ(s), y(s, (τ, ξ, η))

+ ψ∗(s), x(γ(s), (τ, ξ, η)) + ϕ(γ(s)), y(γ(s), (τ, ξ, η)) + ψ∗(γ(s))
)
ds

are convergent.
Recalling that Z2(t, tr) = Z2(t, τ)Z2(τ, tr), we have

ψ∗(t)

=Z2(t, τ)
{
ψ∗(τ) +

∫ ζi

τ

Φ2(τ, s) · g
(
s, x(s, (τ, ξ, η)) + ϕ(s), y(s, (τ, ξ, η))

+ ψ∗(s), x(γ(s), (τ, ξ, η)) + ϕ(γ(s)), y(γ(s), (τ, ξ, η)) + ψ∗(γ(s))
)
ds

+∞∑
r=i+1

∫ ζr

tr

Z2(τ, tr)Φ2(tr, s) · g
(
s, x(s, (τ, ξ, η)) + ϕ(s), y(s, (τ, ξ, η))

+ ψ∗(s), x(γ(s), (τ, ξ, η)) + ϕ(γ(s)), y(γ(s), (τ, ξ, η)) + ψ∗(γ(s))
)
ds

+

+∞∑
r=i

∫ tr+1

ζr

Z2(τ, tr+1)Φ2(tr+1, s) · g
(
s, x(s, (τ, ξ, η)) + ϕ(s), y(s, (τ, ξ, η))

+ ψ∗(s), x(γ(s), (τ, ξ, η)) + ϕ(γ(s)), y(γ(s), (τ, ξ, η)) + ψ∗(γ(s))
)
ds
}

−
+∞∑
r=j+1

∫ ζr

tr

Z2(t, tr)Φ2(tr, s) · g
(
s, x(s, (τ, ξ, η)) + ϕ(s), y(s, (τ, ξ, η))

+ ψ∗(s), x(γ(s), (τ, ξ, η)) + ϕ(γ(s)), y(γ(s), (τ, ξ, η)) + ψ∗(γ(s))
)
ds

−
+∞∑
r=j

∫ tr+1

ζr

Z2(t, tr+1)Φ2(tr+1, s) · g
(
s, x(s, (τ, ξ, η)) + ϕ(s), y(s, (τ, ξ, η))

+ ψ∗(s), x(γ(s), (τ, ξ, η)) + ϕ(γ(s)), y(γ(s), (τ, ξ, η)) + ψ∗(γ(s))
)
ds

−
∫ ζj

t

Φ2(t, s) · g
(
s, x(s, (τ, ξ, η)) + ϕ(s), y(s, (τ, ξ, η)) + ψ∗(s),

x(γ(s), (τ, ξ, η)) + ϕ(γ(s)), y(γ(s), (τ, ξ, η)) + ψ∗(γ(s))
)
ds

,Z2(t, τ)a+ I.

If t > τ and γ(t) > τ , similar to calculation in (4.5), we obtain

|I| 6 1

4
q1(ξ) +

1

4
Kρ̃(A)α−1µ+Kρ̃(B)α−1µ. (4.8)
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On the other hand, |ψ∗(t)| < +∞ for t > τ and γ(t) > τ . It follows from (4.8) that
Z2(t, τ)a is a bounded solution of subsystem (2.8). By Lemma 2.5 we get a = 0.
Thus

ψ∗(t) =−
∫ +∞

t

G2(t, s) · g
(
s, x(s, (τ, ξ, η)) + ϕ(s), y(s, (τ, ξ, η)) + ψ∗(s),

x(γ(s), (τ, ξ, η)) + ϕ(γ(s)), y(γ(s), (τ, ξ, η)) + ψ∗(γ(s))
)
ds.

From (A3), (3.1) and Lemma 2.4, we have

|ψ0(t)− ψ∗(t)| 6
∫ +∞

t

Kρ̃(B)eα(t−s)`(|ψ0(s)− ψ∗(s)|+ |ψ0(γ(s))− ψ∗(γ(s))|)ds

6
1

4
sup
s>τ
|ψ0(s)− ψ∗(s)| (t > τ, γ(t) > τ).

Thus ψ∗(t) ≡ ψ0(t) for t > τ and γ(t) > τ .
From Lemma 2.3, there exists a unique solution of system (4.3) satisfying the

given initial value. Therefore,

ψ∗(t) ≡ ψ0(t), ∀t ∈ R.

Denote ψ0(t)=vϕ(t, (τ, ξ, η)). By (4.6) we have

vϕ(t, (τ, ξ, η))

=−
∫ +∞

t

G2(t, s)g
(
s, x(s, (τ, ξ, η)) + ϕ(s), y(s, (τ, ξ, η)) + vϕ(s, (τ, ξ, η)),

x(γ(s), (τ, ξ, η)) + ϕ(γ(s)), y(γ(s), (τ, ξ, η)) + vϕ(γ(s), (τ, ξ, η))
)
ds. (4.9)

Now we prove that there exists a unique bounded solution uϕ(t, (τ, ξ, η)) of system
(4.4) for vϕ(t, (τ, ξ, η)). Moreover, |uϕ(t, (τ, ξ, η))| 6 Kρ̃(A)α−1µ.

For any ω(t) ∈ Ω, we define map T2 as follows:

T2ω(t)

=

j∑
−∞

∫ ζr

tr

Z1(t, tr)Φ1(tr, s)f
(
s, x(s, (τ, ξ, η)) + ω(s), y(s, (τ, ξ, η)) + vϕ(s, (τ, ξ, η)),

x(γ(s), (τ, ξ, η)) + ω(γ(s)), y(γ(s), (τ, ξ, η)) + vϕ(γ(s), (τ, ξ, η))
)
ds

+

j−1∑
−∞

∫ tr+1

ζr

Z1(t, tr+1)Φ1(tr+1, s)f
(
s, x(s, (τ, ξ, η)) + ω(s), y(s, (τ, ξ, η)) + vϕ

(s, (τ, ξ, η)), x(γ(s), (τ, ξ, η)) + ω(γ(s)), y(γ(s), (τ, ξ, η)) + vϕ(γ(s), (τ, ξ, η))
)
ds

+

∫ t

ζj

Φ1(t, s)f
(
s, x(s, (τ, ξ, η)) + ω(s), y(s, (τ, ξ, η)) + vϕ(s, (τ, ξ, η)),

x(γ(s), (τ, ξ, η)) + ω(γ(s)), y(γ(s), (τ, ξ, η)) + vϕ(γ(s), (τ, ξ, η))
)
ds

=

∫ t

−∞
G1(t, s)f

(
s, x(s, (τ, ξ, η)) + ω(s), y(s, (τ, ξ, η)) + vϕ(s, (τ, ξ, η)),

x(γ(s), (τ, ξ, η)) + ω(γ(s)), y(γ(s), (τ, ξ, η)) + vϕ(γ(s), (τ, ξ, η))
)
ds.
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In view of (A2) and Lemma 2.4, we obtain

|T2ω(t)| 6
∫ t

−∞
Kρ̃(A)e−α(t−s)µds = Kρ̃(A)α−1µ.

So T2 is a map from Ω to Ω.
Due to (A3), (3.1) and Lemma 2.4, we have

|T2ω1(t)− T2ω2(t)|

6
∫ t

−∞
Kρ̃(A)e−α(t−s)`(|ω1(s)− ω2(s)|+ |ω1(γ(s))− ω2(γ(s))|)ds

6
1

4
sup
s∈R
|ω1(s)− ω2(s)|.

Therefore there exists a unique function ω0(t) ∈ Ω such that

ω0(t) =T2ω0(t)

=

∫ t

−∞
G1(t, s)f

(
s, x(s, (τ, ξ, η)) + ω0(s), y(s, (τ, ξ, η)) + vϕ(s, (τ, ξ, η)),

x(γ(s), (τ, ξ, η)) + ω0(γ(s), y(γ(s), (τ, ξ, η)) + vϕ(γ(s), (τ, ξ, η))
)
ds

and |ω0(t)| 6 Kρ̃(A)α−1µ.
Similar to (4.7), we could check that ω0(t) is a solution of system (4.4). Moreover,

we could verify that the bounded solution of system (4.4) is unique. Denote

uϕ(t, (τ, ξ, η)) = ω0(t)

=

∫ t

−∞
G1(t, s)f

(
s, x(s, (τ, ξ, η)) + uϕ(s, (τ, ξ, η)), y(s, (τ, ξ, η)) + vϕ(s, (τ, ξ, η)),

x(γ(s), (τ, ξ, η)) + uϕ(γ(s), (τ, ξ, η)), y(γ(s), (τ, ξ, η)) + vϕ(γ(s), (τ, ξ, η))
)
ds.

(4.10)

The proof is complete.
For ϕ(t) ∈ Ω, there exists a unique uϕ(t, (τ, ξ, η)) ∈ Ω. Thus, for any fixed

τ ∈ R, ξ ∈ Rn1 and η ∈ Rn2 , we could define operator T : Ω→ Ω as follows:

Tϕ(t) = uϕ(t, (τ, ξ, η)). (4.11)

Lemma 4.4. For any fixed τ ∈ R, ξ ∈ Rn1 and η ∈ Rn2 , the operator T has a
unique fixed point in Ω.

Proof. For any ϕ1, ϕ2 ∈ Ω, by (A3), (4.10) and Lemma 2.4, we obtain

|Tϕ1(t)− Tϕ2(t)|

6
∫ t

−∞
Kρ̃(A)e−α(t−s)`

{
|uϕ1(s, (τ, ξ, η))− uϕ2(s, (τ, ξ, η))|+ |vϕ1(s, (τ, ξ, η))

− vϕ2(s, (τ, ξ, η))|+ |uϕ1(γ(s), (τ, ξ, η))− uϕ2(γ(s), (τ, ξ, η))|
+ |vϕ1(γ(s), (τ, ξ, η))− vϕ2(γ(s), (τ, ξ, η))|

}
ds. (4.12)
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Since both vϕ1
and vϕ2

are bounded for t > τ and γ(t) > τ , we could define

‖ vϕ1 − vϕ2 ‖[t,+∞)= sup
s∈[t,+∞)

|vϕ1(s, (τ, ξ, η))− vϕ2(s, (τ, ξ, η))|,

‖ uϕ1
− uϕ2

‖= sup
s∈R
|uϕ1

(s, (τ, ξ, η))− uϕ2
(s, (τ, ξ, η))|.

From (A3), (4.9), (3.1) and Lemma 2.4, for any mixed t0, if t > t0 and γ(t) > t0,
then

|vϕ1(t, (τ, ξ, η))− vϕ2(t, (τ, ξ, η))|

6
∫ +∞

t

Kρ̃(B)eα(t−s)`
{
|ϕ1(s)− ϕ2(s)|+ |ϕ1(γ(s))− ϕ2(γ(s))|+ |vϕ1

(s, (τ, ξ, η))

− vϕ2(s, (τ, ξ, η))|+ |vϕ1(γ(s), (τ, ξ, η))− vϕ2(γ(s), (τ, ξ, η))|
}
ds

6Kρ̃(B)α−1`
(
2 ‖ ϕ1 − ϕ2 ‖ +2 ‖ vϕ1

− vϕ2
‖[min(t,γ(t)),+∞)

)
6

1

4
‖ ϕ1 − ϕ2 ‖ +

1

4
‖ vϕ1 − vϕ2 ‖[t0,+∞),

which gives rise to

‖ vϕ1
− vϕ2

‖[t0,+∞)6
1

4
‖ ϕ1 − ϕ2 ‖ +

1

4
‖ vϕ1

− vϕ2
‖[t0,+∞) .

Thus,

‖ vϕ1
− vϕ2

‖[t0,+∞)6
1

3
‖ ϕ1 − ϕ2 ‖ .

Since the right-hand side of the above inequality is independent of t0, the above
inequality is valid for all t0 ∈ R. Therefore, sup

s∈R
|vϕ1

(s, (τ, ξ, η)) − vϕ2
(s, (τ, ξ, η))|

exists and we denote

‖ vϕ1
− vϕ2

‖= sup
s∈R
|vϕ1

(s, (τ, ξ, η))− vϕ2
(s, (τ, ξ, η))|.

Thus,

‖ vϕ1
− vϕ2

‖6 1

3
‖ ϕ1 − ϕ2 ‖ . (4.13)

From (A3), (3.1), (4.11), (4.12) and (4.13), we obtain

|Tϕ1(t)− Tϕ2(t)| 6
∫ t

−∞
Kρ̃(A)e−α(t−s)2`(‖ Tϕ1 − Tϕ2 ‖ + ‖ vϕ1 − vϕ2 ‖)ds

6
1

4
(‖ Tϕ1 − Tϕ2 ‖ +

1

3
‖ ϕ1 − ϕ2 ‖),

which gives rise to

‖ Tϕ1 − Tϕ2 ‖6
4

9
‖ ϕ1 − ϕ2 ‖ .

Therefore, the operator T has a unique fixed point ϕ in Ω satisfying that

ϕ(t) = Tϕ(t) = uϕ(t, (τ, ξ, η)). (4.14)

The proof is completed.



Topological linearization of DEPCAGs 325

Denote

uϕ(t, (τ, ξ, η)) = u(t, (τ, ξ, η)), vϕ(t, (τ, ξ, η)) = v(t, (τ, ξ, η)).

In view of (4.9), (4.10) and (4.14), we get

u(t, (τ, ξ, η))

=

∫ t

−∞
G1(t, s)f

(
s, x(s, (τ, ξ, η)) + u(s, (τ, ξ, η)), y(s, (τ, ξ, η)) + v(s, (τ, ξ, η)),

x(γ(s), (τ, ξ, η)) + u(γ(s), (τ, ξ, η)), y(γ(s), (τ, ξ, η)) + v(γ(s), (τ, ξ, η))
)
ds

and

v(t, (τ, ξ, η))

=−
∫ ∞
t

G2(t, s)g
(
s, x(s, (τ, ξ, η)) + u(s, (τ, ξ, η)), y(s, (τ, ξ, η)) + v(s, (τ, ξ, η)),

x(γ(s), (τ, ξ, η)) + u(γ(s), (τ, ξ, η)), y(γ(s), (τ, ξ, η)) + v(γ(s), (τ, ξ, η))
)
ds.

Lemma 4.5. For any ξ ∈ Rn1 , η ∈ Rn2, τ ∈ R, t ∈ R and ω ∈ R,

u(ω, (t, x(t, (τ, ξ, η)), y(t, (τ, ξ, η)))) = u(ω, (τ, ξ, η)),

v(ω, (t, x(t, (τ, ξ, η)), y(t, (τ, ξ, η)))) = v(ω, (τ, ξ, η)).

In particular, if ω = t, then

u(t, (t, x(t, (τ, ξ, η)), y(t, (τ, ξ, η)))) ≡ u(t, (τ, ξ, η))

and
v(t, (t, x(t, (τ, ξ, η)), y(t, (τ, ξ, η)))) ≡ v(t, (τ, ξ, η)).

Proof. Denote

u1(ω) = u(ω, (t, x(t, (τ, ξ, η)), y(t, (τ, ξ, η)))), u2(ω) = u(ω, (τ, ξ, η)),

v1(ω) = v(ω, (t, x(t, (τ, ξ, η)), y(t, (τ, ξ, η)))), v2(ω) = v(ω, (τ, ξ, η)),

x1(s) = x(s, (t, x(t, (τ, ξ, η)), y(t, (t, (τ, ξ, η)))))

and
y1(s) = y(s, (t, x(t, (τ, ξ, η)), y(t, (t, (τ, ξ, η))))).

Observing that x1(s) = x(s, (τ, ξ, η)) and y1(s) = y(s, (τ, ξ, η)), we have

f
(
s, x1(s) + u1(s), y1(s) + v1(s), x1(γ(s)) + u1(γ(s)), y1(γ(s)) + v1(γ(s))

)
=f
(
s, x(s, (τ, ξ, η)) + u1(s), y(s, (τ, ξ, η)) + v1(s), x(γ(s), (τ, ξ, η)) + u1(γ(s)),

y(γ(s), (τ, ξ, η)) + v1(γ(s))
)
.

Similarly,

g
(
s, x1(s) + u1(s), y1(s) + v1(s), x1(γ(s)) + u1(γ(s)), y1(γ(s)) + v1(γ(s))

)
=g
(
s, x(s, (τ, ξ, η)) + u1(s), y(s, (τ, ξ, η)) + v1(s), x(γ(s), (τ, ξ, η)) + u1(γ(s)),

y(γ(s), (τ, ξ, η)) + v1(γ(s))
)
.
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From (A3), (3.1) and Lemma 2.4, for any mixed t0, if ω > t0 and γ(ω) > t0, then

|v1(ω)− v2(ω)| 6
∫ +∞

ω

Kρ̃(B)eα(ω−s)`
{
|u1(s)− u2(s)|+ |v1(s)− v2(s)|

+ |u1(γ(s))− u2(γ(s))|+ |v1(γ(s))− v2(γ(s))|
}
ds

6
1

4
sup
s∈R
|u1(s)− u2(s)|+ 1

4
sup

s∈[min(ω,γ(ω)),+∞)

|v1(s)− v2(s)|

6
1

4
sup
s∈R
|u1(s)− u2(s)|+ 1

4
sup

s∈[t0,+∞)

|v1(s)− v2(s)|.

Therefore,

sup
s∈[t0,+∞)

|v1(s)− v2(s)| 6 1

4
sup
s∈R
|u1(s)− u2(s)|+ 1

4
sup

s∈[t0,+∞)

|v1(s)− v2(s)|.

Consequently,

sup
s∈[t0,+∞)

|v1(s)− v2(s)| 6 1

3
sup
s∈R
|u1(s)− u2(s)|.

Since the right-hand side of the above inequality is independent of t0,

sup
s∈R
|v1(s)− v2(s)| 6 1

3
sup
s∈R
|u1(s)− u2(s)|. (4.15)

Similarly, by (A3), (3.1), (4.15) and Lemma 2.4, we get

|u1(ω)− u2(ω)| 6
∫ ω

−∞
Kρ̃(A)e−α(ω−s)`

{
|u1(s)− u2(s)|+ |v1(s)− v2(s)|

+ |u1(γ(s))− u2(γ(s))|+ |v1(γ(s))− v2(γ(s))|
}
ds

6
1

4
sup
s∈R
|u1(s)− u2(s)|+ 1

4
sup
s∈R
|v1(s)− v2(s)|

6
1

3
sup
s∈R
|u1(s)− u2(s)|.

Therefore, u1(ω) ≡ u2(ω). That is

u(ω, (t, x(t, (τ, ξ, η)), y(t, (τ, ξ, η)))) ≡ u(ω, (τ, ξ, η)).

Moreover, by (4.15),

v(ω, (t, x(t, (τ, ξ, η)), y(t, (τ, ξ, η)))) ≡ v(ω, (τ, ξ, η)).

Now, we are in a position to define topological equivalent functions H and L. In
the next section, we will prove that H and L are homeomorphisms and L = H−1.

Let (X(t, (τ, x, y)), Y (t, (τ, x, y)))T be the solution of the nonlinear system (2.1)
with X(τ) = x and Y (τ) = y.
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Define

L1(t, ξ, η) =ξ + u(t, (t, ξ, η)), L2(t, ξ, η) = η + v(t, (t, ξ, η)),

H1(t, x, y) =x−
∫ t

−∞
G1(t, s)f

(
s,X(s, (t, x, y)), Y (s, (t, x, y)),

X(γ(s), (t, x, y)), Y (γ(s), (t, x, y))
)
ds,

H2(t, x, y) =y +

∫ +∞

t

G2(t, s)g
(
s,X(s, (t, x, y)), Y (s, (t, x, y)),

X(γ(s), (t, x, y)), Y (γ(s), (t, x, y))
)
ds,

H(t, x, y) =

H1(t, x, y)

H2(t, x, y)

 and L(t, x, y) =

L1(t, ξ, η)

L2(t, ξ, η)

 .

5. Proof of Theorem 3.1

This section is devoted to proving Theorem 3.1. We divide the proof into several
lemmas.

Lemma 5.1. H sends solutions of the nonlinear system (2.1) onto those of its
linear system (2.2), and L sends solutions of system (2.2) onto those of system
(2.1).

Proof. Denote

X(s, (t,X(t, (τ, x, y)), Y (t, (τ, x, y)))) , X1(s),

and

Y (s, (t,X(t, (τ, x, y)), Y (t, (τ, x, y)))) , Y1(s).

Observe that X1(s) = X(s, (τ, x, y)) and Y1(s) = Y (s, (τ, x, y)), we get

H1(t,X(t, (τ, x, y)), Y (t, (τ, x, y)))

=X(t, (τ, x, y))−
∫ t

−∞
G1(t, s)f

(
s,X1(s), Y1(s), X1(γ(s)), Y1(γ(s))

)
ds

=X(t, (τ, x, y))−
∫ t

−∞
G1(t, s) · f

(
s,X(s, (τ, x, y)), Y (s, (τ, x, y)),

X(γ(s), (τ, x, y)), Y (γ(s), (τ, x, y))
)
ds.

Denote H1(t,X(t, (τ, x, y)), Y (t, (τ, x, y))) by H1(t). By simple calculation, the
derivative of H1(t) is

H ′1(t) = A(t)H1(t) +A0(t)H1(γ(t)). (5.1)
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Similarly,

H2(t,X(t, (τ, x, y)), Y (t, (τ, x, y)))

=Y (t, (τ, x, y)) +

∫ +∞

t

G2(t, s)g
(
s,X1(s), Y1(s), X1(γ(s)), Y1(γ(s))

)
ds

=Y (t, (τ, x, y)) +

∫ +∞

t

G2(t, s) · g
(
s,X(s, (τ, x, y)), Y (s, (τ, x, y)),

X(γ(s), (τ, x, y)), Y (γ(s), (τ, x, y))
)
ds.

Denote H2(t,X(t, (τ, x, y)), Y (t, (τ, x, y))) by H2(t), we have

H ′2(t) = B(t)H2(t) +B0(t)H2(γ(t)),

together with (5.1), we get that H(t) is a solution of system (2.2). Therefore, H(t)
sends the solutions of system (2.1) onto those of system (2.2).

The second assertion follows by similar arguments.

Lemma 5.2. For any x ∈ Rn1 , y ∈ Rn2 , ξ ∈ Rn1 , η ∈ Rn2 , and t ∈ R, we have

|H1(t, x, y)− x| 6 Kρ̃(A)α−1µ,

|H2(t, x, y)− y| 6 1

4
q2(x) +Kρ̃(B)α−1µ,

|L1(t, ξ, η)− ξ| 6 Kρ̃(A)α−1µ,

|L2(t, ξ, η)− η| 6 1

4
q1(ξ) +

1

4
Kρ̃(A)α−1µ+Kρ̃(B)α−1µ.

Proof. From (A2), (3.1) and Lemma 2.4, we have

|H1(t, x, y)− x| =|
∫ t

−∞
G1(t, s)f

(
s,X(s, (t, x, y)), Y (s, (t, x, y)), X(γ(s), (t, x, y)),

Y (γ(s), (t, x, y))
)
ds|

6
∫ t

−∞
Kρ̃(A)e−α(t−s)µds

=Kρ̃(A)α−1µ,

and

|H2(t, x, y)− y|

=
∣∣∣ ∫ +∞

t

G2(t, s)g
(
s,X(s, (t, x, y)), Y (s, (s, x, y)), X(γ(s), (t, x, y)),

Y (γ(s), (s, x, y))
)
ds
∣∣∣

6
∫ +∞

t

Kρ̃(B)eα(t−s){`(|X(s, (t, x, y))|+ |X(γ(s), (t, x, y))|) + µ}ds. (5.2)

Since s > t holds in (5.2), it follows from Lemma 4.1 that

|H2(t, x, y)− y| 6
∫ +∞

t

Kρ̃(B)eα(t−s){`(q2(x) + q2(x)) + µ}

6
1

4
q2(x) +Kρ̃(B)α−1µ.
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The other inequalities can be proved in a similar way.

Lemma 5.3. For any t ∈ R, ξ ∈ Rn1 and η ∈ Rn2 , we have

H(t, L(t, ξ, η)) = (ξ, η)T .

Proof. Suppose that (ξ(t), η(t))T is a solution of the linear system (2.2). It follows
from Lemma 5.1 that L(t, ξ(t), η(t)) is a solution of system (2.1) and H(t, L(t, ξ(t), η(t)))

is a solution of system (2.2).
Therefore, (J1(t), J2(t))T = H(t, L(t, ξ(t), η(t)))− (ξ(t), η(t))T is also a solution

of system (2.2).
Moreover,

|J1(t)| =|H1(t, L1(t, ξ(t), η(t)), L2(t, ξ(t), η(t)))− ξ(t)|
6|H1(t, L1(t, ξ(t), η(t)), L2(t, ξ(t), η(t)))− L1(t, ξ(t), η(t))|

+ |L1(t, ξ(t), η(t))− ξ(t)|.

From Lemma 5.2, we obtain

|J1(t)| 6 2Kρ̃(A)α−1µ.

Therefore, J1(t) is a bounded solution of subsystem (2.7). Due to Lemma 2.5, we
have J1(t) ≡ 0. That is,

H1(t, L1(t, ξ(t), η(t)), L2(t, ξ(t), η(t))) ≡ ξ(t).

Similarly, by Lemma 5.2, we get

|J2(t)| =|H2(t, L1(t, ξ(t), η(t)), L2(t, ξ(t), η(t)))− η(t)|
6|H2(t, L1(t, ξ(t), η(t)), L2(t, ξ(t), η(t)))− L2(t, (ξ(t), η(t)))|

+ |L2(t, (ξ(t), η(t)))− η(t)|

6
1

4
q2(L1(t, ξ(t), η(t))) +

1

4
q1(ξ(t)) +

1

4
Kρ̃(A)α−1µ+ 2Kρ̃(B)α−1µ.

It follows from Lemma 5.1 that L1(t, ξ(t), η(t)) is a solution of subsystem (2.5).
Moreover, in view of Lemma 4.1, for t > 0 we have

|ξ(t)| 6 q1(ξ(0)),

and
|L1(t, ξ(t), η(t))| 6 q2(L1(0, ξ(0), η(0))).

Thus, for t > 0 we have

|J2(t)| 6 1

4
q2(q2(L1(0, ξ(0), η(0))))+

1

4
q1(q1(ξ(0)))+

1

4
Kρ̃(A)α−1µ+2Kρ̃(B)α−1µ,

which implies that |J2(t)| is bounded for t > 0. Noting that J2(t) is a solution of
subsystem (2.8), from Lemma 2.5 we obtain J2(t) ≡ 0. Therefore,

H2(t, L1(t, ξ(t), η(t)), L2(t, ξ(t), η(t))) ≡ η(t).
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Lemma 5.4. Suppose that (X(t), Y (t))T is a solution of the nonlinear system (2.1)
and (%0(t), ω0(t))T is a solution of the system

%′(t) =A(t)%(t) +A0(t)%(γ(t)) + f
(
t,X(t) + %(t), Y (t) + ω(t), X(γ(t))

+ %(γ(t)), Y (γ(t)) + ω(γ(t))
)
− f

(
t,X(t), Y (t), X(γ(t)), Y (γ(t))

)
,

ω′(t) =B(t)ω(t) +B0(t)ω(γ(t)) + g
(
t,X(t) + %(t), Y (t) + ω(t), X(γ(t))

+ %(γ(t)), Y (γ(t)) + ω(γ(t))
)
− g
(
t,X(t), X(γ(t)), Y (t), Y (γ(t))

)
,

(5.3)
satisfying

|%0(t)| < +∞, t ∈ R, (5.4)

|ω0(t)| < +∞, t > 0. (5.5)

Then (%0(t), ω0(t))T ≡ 0.

Proof. It is clear that (%0(t), ω0(t))T ≡ 0 is a solution of system (5.3) satisfying
(5.4) and (5.5). Arguments similar to those in Lemmas 4.3 and 4.4 show that
(%0(t), ω0(t))T ≡ 0 is the unique solution satisfying (5.4) and (5.5).

Lemma 5.5. For any t ∈ R, x ∈ Rn1 and y ∈ Rn2 , we have

L(t,H(t, x, y)) = (x, y)T .

Proof. Suppose that (X(t), Y (t))T is a solution of the nonlinear system (2.1). It
follows from Lemma 5.1 that H(t,X(t), Y (t)) is a solution of the linear system (2.2)
and L(t,H(t,X(t), Y (t))) is also a solution of system (2.1). Denote

J1(t) = L1(t,H1(t,X(t), Y (t)), H2(t,X(t), Y (t)))−X(t) , L1(t)−X(t),

J2(t) = L2(t,H1(t,X(t), Y (t)), H2(t,X(t), Y (t)))− Y (t) , L2(t)− Y (t).

Moreover, we could verify that (J1(t), J2(t))T is a solution of system (5.3).
By Lemma 5.2, we have

|J1(t)| =|L1(t,H1(t,X(t), Y (t)), H2(t,X(t), Y (t)))−H1(t,X(t), Y (t))|
+ |H1(t,X(t), Y (t))−X(t)| 6 2Kρ̃(A)α−1µ

and

|J2(t)| =|L2(t,H1(t,X(t), Y (t)), H2(t,X(t), Y (t)))−H2(t,X(t), Y (t))|
+ |H2(t,X(t), Y (t))−X(t)|

6
1

4
q1(H1(t,X(t), Y (t))) +

1

4
q2(X(t)) +

1

4
Kρ̃(A)α−1µ+ 2Kρ̃(B)α−1µ.

Since H1(t,X(t), Y (t)) is a solution of subsystem (2.7) and X(t) is a solution of
subsystem (2.5), for t > 0, it follows from Lemma 4.1 that

|H1(t,X(t), Y (t))| 6 q1(H1(0, X(0), Y (0))) and |X(t)| 6 q2(X(0)).
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Thus, for t > 0 we get

|J2(t)| 61

4
q1(q1(H1(0, X(0), Y (0)))) +

1

4
q2(q2(X(0))) +

1

4
Kρ̃(A)α−1µ

+ 2Kρ̃(B)α−1µ.

Owing to Lemma 5.4, we have J1(t) ≡ 0 and J2(t) ≡ 0. That is

L(t,H(t,X(t), Y (t))) = (X(t), Y (t))T .

Therefore, for any t ∈ R, x ∈ Rn1 and y ∈ Rn2 , we have

L(t,H(t, x, y)) = (x, y)T .

Lemma 5.6 (Lemma 5.1, [25]). Let t 7→ z(t, τ, ξ) and t 7→ z(t, τ, ξ′) be the solutions
of (2.1) passing respectively through ξ and ξ′ at t = τ . If (3.2) is valid, then it
follows that

|z(t, τ, ξ′)− z(t, τ, ξ)| 6 |ξ − ξ′|ep(`)|t−τ |,

where p(`) is defined by

p(`) = η1 +
η2e

η1θ

1− υ
with η1 = M + `, η2 = M0 + `,

and υ ∈ [0, 1) is defined by (3.2).

Remark 5.1. If h(t, z(t), z(γ(t))) = 0, take ` = 0, Lemma 5.6 reduces to Lemma
5.2 in [25]. Moreover, since p(`) > p(0) and F (`, θ) > F (0, θ) in (3.2), Lemma 5.6
is also valid for system (2.2).

Proof of Theorem 3.1. For any t ∈ R, it follows from Lemmas 5.3 and 5.5 that
H(t, ·) is a bijection of Rn and H−1(t, ·) = L(t, ·).

According to Lemma 5.6 and Remark 3, solutions of systems (2.1) and (2.2)
are continuous with respect to initial values. Moreover, similar to Lemma 5.6, we
obtain solutions of systems (4.3) and (4.4) are continuous with respect to initial
values.

By definitions of H(t, ·) and L(t, ·), both H(t, ·) and L(t, ·) are continuous. Thus
H(t, ·) and L(t, ·) are homeomorephisms of Rn.

Moreover, Lemma 5.1 implies that H(t, ·) sends the solutions of system (2.1)
onto those of system (2.2) and L(t, ·) sends the solutions of system (2.2) onto those
of system (2.1). It follows from Lemma 5.2 that H and L are topological equivalent
functions. Therefore, system (2.1) and system (2.2) are topologically conjugated.
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