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THE RIEMANN PROBLEM WITH DELTA
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Abstract In this paper, we study the Riemann problem with the initial data
containing the Dirac delta function for the nonsymmetric Keyfitz-Kranzer sys-
tem with Chaplygin pressure. Under the generalized Rankine-Hugoniot con-
ditions and entropy condition, we constructively obtain the global existence of
generalized solutions including delta shock waves that explicitly exhibit four
kinds of different structures. Moreover, we obtain the stability of generalized
solutions by making use of the perturbation of the initial data.
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1. Introduction

In this paper, we consider the following hyperbolic system of conservation laws{
ρt +

(
ρ(u− p)

)
x
= 0,

(ρu)t +
(
ρu(u− p)

)
x
= 0,

(1.1)

where p = p(ρ) and ρ ≥ 0. Model (1.1) belongs to the nonsymmetric system of
Keyfitz-Kranzer type [10, 12] as{

ρt +
(
ρϕ(ρ, u1, u2, . . . , un)

)
x
= 0,

(ρui)t +
(
ρuiϕ(ρ, u1, u2, . . . , un)

)
x
= 0, i = 1, 2, . . . , n,

(1.2)

which is of interest because it arises in such areas as elasticity theory, magnetohy-
drodynamics, and enhanced oil recovery. For delta shock waves, the nonsymmetric
form is more convenient than the symmetric form. Model (1.1) is also a transforma-
tion of the traffic flow model introduced by Aw and Rascle [1], where ρ and u > 0
are the density and velocity of cars on the roadway and the function p(ρ) is smooth
and strictly increasing and it satisfies

ρp
′′
(ρ) + 2p

′
(ρ) > 0, for ρ > 0. (1.3)
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The equation of state is

p(ρ) = −1

ρ
, (1.4)

with ρ > 0. Equation (1.4) was introduced by Chaplygin [3] and Tsien [19] as
a suitable mathematical approximation for calculating the lifting force on a wing
of an airplane in aerodynamics. For a Chaplygin gas, Brenier [2] firstly studied
the 1-D Riemann problem and obtained solutions with concentration when initial
data belong to a certain domain in the phase plane. Furthermore, Guo, Sheng, and
Zhang [7] abandoned this constrain and constructively obtained the global solutions
to the 1-D Riemann problem, in which the δ-shock developed. Moreover, they
also systematically studied the 2-D Riemann problem for isentropic Chaplygin gas
equations. For the 2-D case, we can also refer to [14] in which D. Serre studied the
interaction of the pressure waves for the 2-D isentropic irrotational Chaplygin gas
and constructively proved the existence of transonic solutions for two cases, saddle
and vortex of 2-D Riemann problem. Recently, Wang and Zhang [20] studied the
Riemann problem with delta initial data for the one-dimensional Chaplygin gas
equations. However, it is noticed that few literatures contribute to system (1.1)
for a Chaplygin gas so far. Recently, Cheng and Yang [6] proved the existence
and uniqueness of delta shock solutions of Riemann problem for the relativistic
Chaplygin Euler equations.

In particular, the delta shock waves appear in the Riemann solutions of (1.1)
and (1.4). From the mathematical point of view, a delta shock wave is more com-
pressive than an ordinary shock wave in the sense that more characteristics enter
the discontinuity line of the delta shock wave. From the physical point of view, a
delta shock represents the process of concentration of the mass. As for delta shock
waves, we refer readers to [4–9,11,15–18,20–25] and the references cited therein for
more details.

In the present paper, we consider the Riemann problem (1.1) and (1.4) with
initial data (

ρ, u
)(
t = 0, x

)
=

 (ρ−, u−), x < 0,
(m0δ, u0), x = 0,
(ρ+, u+), x < 0,

(1.5)

where δ is the standard Dirac delta function (see [24]), and m0, u0, ρ± and u± are
arbitrary constants. Because the delta shocks appear in Riemann solutions of (1.1)
and (1.4), it is natural to consider system (1.1) and (1.4) with initial data (1.5)
which contains Dirac delta functions. This kind of Riemann problem, which is also
called the Randon measure initial data problem, was studied in [9,11,13,15,20–22]
for the zero-pressure flow in gas dynamics and other related equations.

In our paper, we will solve the Riemann problem (1.1), (1.4) and (1.5). Under
the generalized Rankine-Hugoniot conditions and suitable entropy condition, we
constructively obtain the global existence and uniqueness of generalized solutions
including delta shocks that explicitly exhibit four kinds of different structure. How-
ever, much more different from [11, 21, 22], the δ-shock condition is not enough to
guarantee the uniqueness of generalized solutions. As in [9, 20], we construct our
solution on the basis of the stability theory of generalized solutions. Especially,
when m0 = 0, u0 = 0, our results are consistent with those in [5].

The paper is organized as follows. In Section 2, we first present some preliminary
knowledge about system (1.1) and (1.4); then display the Riemann solution of (1.1)
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and (1.4) with constant initial data. In Section 3, we construct the Riemann solution
of (1.1) and (1.4) with delta initial data case by case.

2. Riemann problem with constant initial data

In this section, we briefly review the Riemann solution of (1.1) and (1.4) with initial
data

(ρ, u)(0, x) = (ρ±, u±), ±x > 0, (2.1)

where ρ± > 0, the detailed study of which can be found in [5].
The eigenvalues of the system (1.1) and (1.4) are

λ1 = u, λ2 = u+
1

ρ
. (2.2)

Therefore, the system (1.1) and (1.4) is strictly hyperbolic for ρ > 0.
The corresponding right eigenvectors are

−→r 1 = (1, 0)T , −→r 2 =
(
1,

1

ρ2
)T

. (2.3)

By a direct calculation,
∇λi · −→r i ≡ 0, i = 1, 2.

Therefore, λ1 and λ2 are both linearly degenerate and the associated waves are both
contact discontinuities.

As usual, we seek the self-similar solution

(ρ, u)(t, x) = (ρ, u)(ξ), ξ =
x

t
. (2.4)

Then the Riemann problem (1.1), (1.4) and (2.1) is reduced to the following bound-
ary value problem of the ordinary differential equations:{

−ξρξ + (ρu+ 1)ξ = 0,
−ξ(ρu)ξ + (ρu2 + u)ξ = 0,

(2.5)

with
(ρ, u)(±∞) = (ρ±, u±). (2.6)

For any smooth solution, system (2.5) can be written as(
u− ξ ρ

−ξu+ u2 −ξρ+ 2ρu+ 1

)(
ρξ
uξ

)
= 0. (2.7)

It provides either general solutions (constant states)

(ρ, u)(ξ) = Constant (ρ > 0),

or singular solutions
ξ = u = u−,

and

ξ = u+
1

ρ
= u− +

1

ρ−
. (2.8)
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For a bounded discontinuity at ξ = σ, the Rankine-Hugoniot conditions hold:{
−σ[ρ] + [ρu+ 1] = 0,
−σ[ρu] + [ρu2 + u] = 0,

(2.9)

where [ρ] = ρ− ρ−, etc. Solving (2.9), we have

σ = u = u−,

σ = u+
1

ρ
= u− +

1

ρ−
.

(2.10)

From (2.8) and (2.10), we find that the rarefaction waves and the shock waves are
coincident in the phase plane, which correspond to contact discontinuities:

J1 : ξ = u = u−, (2.11)

J2 : ξ = u+
1

ρ
= u− +

1

ρ−
. (2.12)

In the phase plane, through the point (ρ−, u−), we draw a branch of curve (2.11) for
ρ > 0, denoted by J1. Through the point (ρ−, u−), we also draw a branch of curve
(2.12) for ρ > 0, which have two asymptotic lines u = u− + 1

ρ−
and ρ = 0, denoted

by J2. Through the point
(
ρ−, u− − 1

ρ−

)
, we draw the curve u + 1

ρ = u−, denoted

by S. It easy to know the phase plane can be divided into five regions, which is I,
II, III, IV, and V.

For any given right state (ρ+, u+), we can construct Riemann solutions of (1.1)
and (2.1). when (ρ+, u+) ∈ I ∪ II ∪ III ∪ IV, the Riemann solution contains a 1-
contact discontinuity, a 2-contact discontinuity, a nonvacuum intermediate constant
state (ρ∗, u∗), where

u∗ = u−,
1

ρ∗
= u+ +

1

ρ+
− u−. (2.13)

When (ρ+, u+) ∈ V, the characteristics originating from the origin will overlap
in the domain Ω =

{
(x, t) : u+ + 1

ρ+
< x

t < u−
}
. So, singularity must happen in

Ω. It is easy to know that the singularity is impossible to be a jump with finite
amplitude because the Rankine-Hugoniot condition is not satisfied on the bounded
jump. In other words, there is no solutions which is piecewise smooth and bounded.
Motivated by [18], we seek solutions with delta distribution at the jump. In fact,
the appearance of delta shock wave is due to the overlap of linear degenerate char-
acteristic lines.

For system (1.1) and (1.4), the definition of solutions in the sense of distributions
can be given as follows.

Definition 2.1. A pair (ρ, u) constitutes a solution of (1.1) and (1.4) in the sense
of distributions if it satisfies{∫ +∞

0

∫ +∞
−∞ (ρφt +

(
ρ(u− p)

)
φx)dxdt = 0,∫ +∞

0

∫ +∞
−∞ ((ρu)φt + (ρu(u− p))φx)dxdt = 0,

(2.14)

for all test functions φ ∈ C∞
0 (R+ ×R1).

Moreover, we define a two-dimensional weighted delta function in the following
way.
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Figure 1. (ρ, u)-plane.
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Definition 2.2. A two-dimensional weighted delta function w(s)δS supported on
a smooth curve S = {(t(s), x(s)) : a < s < b} is defined by

⟨w(s)δS , φ⟩ =
∫ b

a

w(s)φ(t(s), x(s))ds,

for all test functions φ ∈ C∞
0 (R2).

Let us consider a solution of (1.1) and (1.4) of the form

(ρ, u)(t, x) =


(ρ−, u−), x < σt,

(w(t)δ(x− σt), σ), x = σt,

(ρ+, u+), x > σt,

(2.15)

where σ is a constant, w(t) ∈ C1[0,+∞), and δ(·) is the standard Dirac measure.
x(t), w(t) and σ are the location, weight and velocity of the delta shock respectively.
Then the following generalized Rankine-Hugoniot conditions hold:

dx(t)

dt
= σ,

dw(t)

dt
= σ[ρ]− [ρu+ 1],

d(w(t)σ)

dt
= σ[ρu]− [ρu2 + u],

(2.16)
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where [ρ] = ρ+ − ρ−, with initial data

(x,w)(0) = (0, 0).

By solving (2.16), we have, when ρ+ ̸= ρ−,

w(t) =
√
[ρu]2 − [ρ][ρu2 + u]t,

x(t) =
[ρu] +

√
[ρu]2 − [ρ][ρu2 + u]

[ρ]
t, σ =

[ρu] +
√
[ρu]2 − [ρ][ρu2 + u]

[ρ]
;

(2.17)

when ρ+ = ρ−,

w(t) = (ρ−u− − ρ+u+)t, x(t) =
u− + u+ + 1

ρ−

2
t,

σ =
u− + u+ + 1

ρ−

2
.

(2.18)

We also can justify the delta shock wave satisfies the entropy condition:

u+ +
1

ρ+
< σ < u−, (2.19)

which means that all the characteristics on both sides of the delta shock are com-
ing. Thus, we obtain the global solutions to the 1-D Riemann problem for the
nonsymmetric Keyfitz-Kranzer system with Chaplygin pressure.

3. Riemann problem with delta initial data

In this section, we construct Riemann solutions of the system (1.1) and (1.4) with
initial data (1.5). According to the relations among u−, u0 and u++ 1

ρ+
, we discuss

the Riemann problem case by case.
Case 3.1. u− ≤ u0 ≤ u+ + 1

ρ+
.

According to the value of u0, we divide our discussion into the following three
subcases.

Subcase 3.1.1. u− < u0 < u+ + 1
ρ+

.

To construct the solution of (1.1), (1.4) and (1.5), here we first consider the
initial value problem (1.1) and (1.4) with the following initial data:

(ρ, u)(0, x) =


(ρ−, u−), x < −ε,

(
m0

2ε
, u0), −ε < x < ε,

(ρ+, u+), x > ε,

(3.1)

where ε > 0 is sufficiently small. On the basis of the stability theory of weak
solutions, if we obtain a solution of (1.1), (1.4) and (3.1), then by letting ε → 0, we
can get a solution of (1.1), (1.4) and (1.5).

Because u− < u0 < u0 +
m0

2ϵ , u0 < u+ + 1
ρ+

, when t is small, the solution of the

initial value problem (1.1), (1.4) and (3.1) can be expressed briefly as follows (see
Fig. 3):

(ρ−, u−) + Ĵ−
1 + (ρ̂1, û1) + Ĵ−

2 + (
m0

2ε
, u0) + Ĵ+

1 + (ρ̂2, û2) + Ĵ+
2 + (ρ+, u+), (3.2)
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where “+” means “followed by”, Ĵ±
1 and Ĵ±

2 denote a 1-contact discontinuity and
a 2-contact discontinuity, respectively.
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Figure 3.

Furthermore, (ρ̂1, û1) and (ρ̂2, û2) are given by
û1 = u−,

ρ̂1 =
m0

(u0 − u−)m0 + 2ε
,

(3.3)

and 
û2 = u0,

ρ̂2 =
ρ+

(u+ − u0)ρ+ + 1
,

(3.4)

respectively. The propagation speed of Ĵ−
2 is u0 +

2ε
m0

, and that of Ĵ+
1 is u0. Since

u0 +
2ε
m0

> u0, the contact discontinuity Ĵ−
2 will overtake the contact discontinuity

Ĵ+
1 in a finite time. The intersection point (x0, t0) is determined byx0 + ε =

(
u0 +

2ε

m0

)
t0,

x0 − ε = u0t0.

(3.5)

A simple calculation leads to

(x0, t0) = (u0m0 + ε,m0). (3.6)

It is clear that a new Riemann problem is formed when two elementary waves
intersect at a finite time. At the time t = t0, we again have a Riemann problem
with initial data:

(ρ, u)(t0, x) =

{
(ρ̂1, û1), x < x0,

(ρ̂2, û2), x > x0.
(3.7)

Since û1 = u− < u+ + 1
ρ+

= û2 +
1
ρ̂2
, the Riemann solution contains a 1-contact

discontinuity Ĵ1, a 2-contact discontinuity Ĵ2 and an intermediate state (ρ̂3, û3),
where (ρ̂3, û3) is given by 

û3 = u−,

ρ̂3 =
ρ+

(u+ − u−)ρ+ + 1
.

(3.8)



688 H. Li and Z. Shao

Therefore, when t > t0, the solution of (1.1), (1.4) and (3.1) can be expressed as

(ρ−, u−) + Ĵ−
1 + (ρ̂1, û1) + Ĵ1 + (ρ̂3, û3) + Ĵ2 + (ρ̂2, û2) + Ĵ+

2 + (ρ+, u+).

So far, we have completely constructed a solution of (1.1), (1.4) and (3.1). Letting
ε → 0, we obtain a solution of (1.1), (1.4) and (1.5), which is shown in Fig. 4.
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In Fig. 4, we have
u1 = u−,

1

ρ1
= u0 − u−,


u2 = u0,

1

ρ2
= u+ +

1

ρ+
− u0,

u3 = u−,

1

ρ3
= u+ +

1

ρ+
− u−,

(x0, t0) = (u0m0,m0),

(3.9)

and a δ-shock wave δS with

x(t) = u0t, w(t) = m0 − t, uδ(t) = u0, for 0 ≤ t ≤ m0,

where x(t), w(t) and uδ(t) respectively denote the location, weight and propagation
speed of the δ-shock.

The δS satisfies the following generalized Rankine-Hugoniot conditions

dx(t)

dt
= uδ(t),

dw(t)

dt
= uδ(t)[ρ]− [ρu+ 1],

d(w(t)uδ(t))

dt
= uδ(t)[ρu]− [ρu2 + u],

(3.10)

where [ρ] = ρ2 − ρ1, with initial data

(x,w, uδ)(0) = (0,m0, u0).
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From (3.9) and (3.10), we can calculate that

dw(t)

dt
= uδ(t)[ρ]− [ρu+ 1] = u0(ρ2 − ρ1)− (ρ2u2 − ρ1u1)

= ρ2(u0 − u2) + ρ1(u1 − u0) =
1

u0 − u1
(u1 − u0) = −1.

(3.11)

Solving (3.11) with w(0) = m0, we obtain

w(t) = w(0)− t = m0 − t.

Subcase 3.1.2. u− = u0 < u+ + 1
ρ+

.

Similar to Subcase 3.1.1, we have the Riemann solution of (1.1), (1.4) and (1.5)
as shown in Fig. 5.
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Figure 5.

In Fig. 5, (ρ∗, u∗) is given by
u∗ = u0,

1

ρ∗
= u+ +

1

ρ+
− u0,

(3.12)

and the δ-shock wave δS has the following expression:

x(t) = u0t, w(t) = m0, uδ(t) = u0, for t ≥ 0. (3.13)

From (3.12) and (3.13), we can calculate that

dw(t)

dt
=uδ(t)[ρ]− [ρu+ 1] = u0(ρ∗ − ρ−)− (ρ∗u∗ − ρ−u−)

=ρ∗(u0 − u∗) + ρ−(u− − u0) = 0,
(3.14)

which implies

w(t) = w(0) = m0.

Subcase 3.1.3. u− < u0 = u+ + 1
ρ+

.

Similar to Subcase 3.1.2, we have the Riemann solution of (1.1), (1.4) and (1.5)
as shown in Fig. 6.
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In Fig. 6, (ρ∗, u∗) is given by
u∗ = u−,

1

ρ∗
= u0 − u−,

and the δ-shock wave δS has the following expression:

x(t) = u0t, w(t) = m0, uδ(t) = u0, for t ≥ 0.

Case 3.2. u0 < u− < u+ + 1
ρ+

. (If u− < u+ + 1
ρ+

< u0, then the structure of

the solution is similar.)

It is seen that the particles x0 < 0 collide with the particles x0 = 0 at the start,
while the particles x0 ≤ 0 never collide with the particles x0 > 0. Thus the solution
can be expressed as (see Fig. 7)

(ρ, u)(t, x) =



(ρ−, u−), x < x(t),

(w(t)δ(x− x(t)), uδ(t)), x = x(t),

(ρ, u)(t, x), x(t) < x <
(
u+ +

1

ρ+

)
t,

(ρ+, u+), x >
(
u+ +

1

ρ+

)
t,

(3.15)

where (ρ, u)(t, x) = (ρ∗, u∗)(t) along the straight line

(
u+ +

1

ρ+

)
t− x =

(
u+ +

1

ρ+

)
t− x(t), for t ≥ 0.

Here, (ρ∗, u∗)(t) is the right state of the δ-shock wave δS defined by
u∗ = uδ,

u∗ +
1

ρ∗
= u+ +

1

ρ+
.

(3.16)

The δ-shock wave δS satisfies the following generalized Rankine-Hugoniot condi-
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tions: 

dx(t)

dt
= uδ(t),

dw(t)

dt
= uδ(t)[ρ]− [ρu+ 1],

d(w(t)uδ(t))

dt
= uδ(t)[ρu]− [ρu2 + u],

(3.17)

where [ρ] = ρ∗(t)− ρ−, with initial data

(x,w, uδ)(0) = (0,m0, u0). (3.18)

Next, we only need to solve the initial value problem (3.17) and (3.18). From
(3.16) and(3.17)2, we have

dw(t)

dt
= ρ∗(uδ − u∗)− ρ−uδ + ρ−u− = ρ−(u− − uδ). (3.19)

From (3.16) and (3.17)3, we have

d
(
w(t)uδ(t)

)
dt

=ρ∗u∗(uδ − u∗)− ρ−u−uδ + ρ−u
2
− + u− − u∗

=ρ−
(
u− +

1

ρ−

)
(u− − uδ).

(3.20)

Combining (3.19) and (3.20), we have

d
(
w(t)uδ(t)

)
dt

=
(
u− +

1

ρ−

)dw(t)
dt

. (3.21)

Integrating (3.21) from 0 to t, we have

w
(
u− +

1

ρ−
− uδ

)
= m0

(
u− +

1

ρ−
− u0

)
> 0. (3.22)

Combining (3.22) and (3.19), we obtain

dw

dt
=

A− w

w
, (3.23)
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where

A = ρ−m0

(
u− +

1

ρ−
− u0

)
. (3.24)

In addition, the delta shock wave should satisfy the entropy condition:

u0 < uδ < u−.

This, together with (3.19) and (3.22) implies

dw

dt
> 0, (3.25)

and
w > 0. (3.26)

Combining (3.23), we have
0 < w < A. (3.27)

Solving (3.23) with initial data w(0) = m0, we have

m0 − w +A ln(A−m0)−A ln(A− w) = t. (3.28)

Setting f(w) = m0 − w +A ln(A−m0)−A ln(A− w), then, from (3.27) we have

f ′(w) =
w

A− w
> 0. (3.29)

Thus, from (3.11), there exists a unique inverse function f−1(t), such that w =
w(t) = f−1(t). Then from (3.22), we obtain

uδ(t) = u− +
1

ρ−
− A

ρ−w(t)
. (3.30)

Furthermore, we have

x(t) =

∫ t

0

uδ(τ)dτ. (3.31)

Remark 3.1. From (3.18), we have lim
t→+∞

w(t) = A. Then from (3.20), lim
t→+∞

uδ(t) =

u− < u+ + 1
ρ+

. This implies that the delta shock wave δS will never overtake those

2-contact discontinuities.

Case 3.3. u+ + 1
ρ+

< u0 < u−.

This is a typical case, a delta shock wave emits from the origin. We seek the
solution in the following form (see Fig. 8)

(ρ, u)(t, x) =


(ρ−, u−), x < x(t),

(w(t)δ(x− x(t)), uδ(t)), x = x(t),

(ρ+, u+), x > x(t),

(3.32)

which satisfies (3.17), where [ρ] = ρ+ − ρ−, with initial data

(x,w, uδ)(0) = (0,m0, u0). (3.33)

Now, we are going to solve the initial value problem (3.32) and (3.33).
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6

-
O

t

x

(ρ+, u+)(ρ−, u−) δS

,

Figure 8.

Integrating (3.17) from 0 to t with initial data (3.33), we have{
w −m0 = [ρ]x− [ρu+ 1]t,
wuδ −m0u0 = [ρu]x− [ρu2 + u]t.

(3.34)

Cancelling w(t) in (3.34), we have

m0u0 −m0uδ = [ρ]xuδ − [ρu]tuδ − [ρu]x+ [ρu2 + u]t, (3.35)

or
d

dt

{1
2
[ρ]x2 + (m0 − [ρu]t)x+

1

2
[ρu2 + u]t2 −m0u0t

}
= 0. (3.36)

Integrating (3.35) from 0 to t, we obtain

1

2
[ρ]x2 + (m0 − [ρu]t)x+

1

2
[ρu2 + u]t2 −m0u0t = 0. (3.37)

From u+ + 1
ρ+

< u0 < u−, we know that

u+ < u+ +
1

ρ+
< u0 < u− < u− +

1

ρ−
, (3.38)

if [ρ] ̸= 0, we have

∆ =(m0 − [ρu]t)2 − 2[ρ]
(1
2
[ρu2 + u]t2 −m0u0t

)
=
(
[ρu]2 − [ρ][ρu2 + u]

)
t2 + 2m0t

(
[ρ]u0 − [ρu]

)
+m2

0

=ρ+ρ−(u− − u+)

(
u− +

1

ρ−
−
(
u+ +

1

ρ+

))
t2

+ 2m0t
(
ρ+(u0 − u+) + ρ−(u− − u0)

)
+m2

0 > 0.

(3.39)

We solve Eq. (3.37) to obtain

x(t) =
−m0 + [ρu]t±

√
∆

[ρ]
. (3.40)
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From (3.40), we have

uδ(t) =
[ρu]±∆− 1

2

(
m0([ρ]u0 − [ρu]) + t([ρu]2 − [ρ][ρu2 + u])

)
[ρ]

.

Thus,

lim
t→∞

uδ(t) =
[ρu]±

√
[ρu]2 − [ρ][ρu2 + u]

[ρ]
.

Substituting (3.40) into (3.34)1, we have

w(t) = ±
√
∆.

In addition, to guarantee uniqueness, the delta shock wave should satisfy the entropy
condition:

u+ +
1

ρ+
< uδ(t) < u−.

So, we have
w(t) =

√
∆.

Then, we obtain a unique solution

x(t) =
−m0 + [ρu]t+

√
∆

[ρ]
,

uδ(t) =
[ρu] + ∆− 1

2

(
m0([ρ]u0 − [ρu]) + ([ρu]2 − [ρ][ρu2 + u])t

)
[ρ]

,

w(t) =
√
∆.

(3.41)

If [ρ] = 0, solving (3.37), we have

x(t) =
m0u0t− 1

2 [ρu
2 + u]t2

m0 − [ρu]t
.

Then, we have

uδ(t) =
m2

0u0 +
1
2 [ρu

2 + u][ρu]t2 − [ρu2 + u]m0t

(m0 − [ρu]t)2
,

and
w(t) = m0 − [ρu]t.

Remark 3.2. It is seen that

lim
t→∞

uδ(t) =


[ρu2 + u]

2[ρu]
, [ρ] = 0,

[ρu] +
√
[ρu]2 − [ρ][ρu2 + u]

[ρ]
, [ρ] ̸= 0.

So, the delta-shock satisfies the entropy condition

u+ +
1

ρ+
< lim

t→∞
uδ(t) < u−,

which means that all the characteristics on both sides of the delta shock are incom-
ing.



Riemann problem with delta initial data 695

Remark 3.3. If m0 = 0, u0 = 0, then

(x,w, uδ)(t)

=


(

[ρu2+u]
2[ρu] t,−[ρu]t, [ρu2+u]

2[ρu]

)
, [ρ] = 0,(

[ρu]+
√

[ρu]2−[ρ][ρu2+u]

[ρ] t,
√
[ρu]2 − [ρ][ρu2 + u]t,

[ρu]+
√

[ρu]2−[ρ][ρu2+u]

[ρ]

)
, [ρ] ̸= 0.

This is consistent with the results in [5]. It implies that the solution constructed
here is stable under some perturbations.

Case 3.4. u0 < u+ + 1
ρ+

< u−. (If u+ + 1
ρ+

< u− < u0, then the structure of

the solution is similar.)
Similar to the analysis in Case 3.2, we know that, in this case, when t is small

enough, the solution is the same as that in Case 3.2. From (3.27) and (3.30), we
have

u′
δ(t) =

m0

(
u− + 1

ρ−
− u0

)
w2

dw

dt
> 0, for t > 0, (3.42)

which shows that uδ(t) is a strictly monotonic increasing function of t for t ∈
[0,+∞). On the other hand, uδ(0) = u0, lim

t→+∞
uδ(t) = u− and u0 < u++ 1

ρ+
< u−.

Thus we can apply the intermediate value theorem in mathematical analysis, and
conclude that there exists a unique t∗ in [0,+∞) such that uδ(t

∗) = u+ + 1
ρ+

.

When 0 ≤ t ≤ t∗, the solution is the same as that in Case 3.2, which can be
expressed as (see Fig. 9)

(ρ, u)(t, x) =



(ρ−, u−), x < x(t),

(w(t)δ(x− x(t)), uδ(t)), x = x(t),

(ρ, u)(t, x), x(t) < x <
(
u+ +

1

ρ+

)
t,

(ρ+, u+), x >
(
u+ +

1

ρ+

)
t,

(3.43)

where x(t), w(t) and uδ(t) are the same as those in Case 3.2. When t > t∗, the
delta shock wave will overtake all the 2-contact discontinuities and penetrate them
in finite time. Suppose that the penetration ends at time t = t#.

When t∗ ≤ t < t#, the solution can be written in the following form (see Fig.
9)

(ρ, u)(t, x) =



(ρ−, u−), x < x1(t),

(w1(t)δ(x− x1(t)), u1
δ(t)), x = x1(t),

(ρ, u)(t, x), x1(t) < x <
(
u+ +

1

ρ+

)
t,

(ρ+, u+), x >
(
u+ +

1

ρ+

)
t.

(3.44)

Here, for any point (x1(t), t) on the delta shock wave δS1, there exists a unique
point (x(t1), t1) (0 ≤ t1 ≤ t∗) on the delta shock wave δS, such that

(
u+ +

1

ρ+

)
t− x1(t) =

(
u+ +

1

ρ+

)
t1 − x(t1). (3.45)
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Let (x,w, uδ)(t
∗) = (x∗, w∗, u∗

δ), then u∗
δ = u+ + 1

ρ+
, and the δ-shock wave δS1

satisfies the following generalized Rankine-Hugoniot conditions:

dx1(t)

dt
= u1

δ(t),

dw1(t)

dt
= u1

δ(t)[ρ]− [ρu+ 1],

d(w1(t)u1
δ(t))

dt
= u1

δ(t)[ρu]− [ρu2 + u],

(3.46)

where [ρ] = ρ∗(t1)− ρ−, with initial data

(x1, w1, u1
δ)(t

∗) = (x∗, w∗, u∗
δ). (3.47)

Here, (ρ∗, u∗)(t1) is the right state of the δ-shock wave δS1 defined by
u∗(t1) = u1

δ(t1),

u∗(t1) +
1

ρ∗(t1)
= u+ +

1

ρ+
.

(3.48)

When t# ≤ t < +∞, the solution can be expressed as (see Fig. 9)

(ρ, u)(t, x) =


(ρ−, u−), x < x2(t),

(w2(t)δ(x− x2(t)), u2
δ(t)), x = x2(t),

(ρ+, u+), x > x2(t).

(3.49)

It is easy to know that ρ∗ is a function of t1. Next, our aim is to express ρ∗ as
a function of t. Integrating (3.19) from 0 to t1, we have

1

ρ−
(w(t1)−m0) = u−t1 − x(t1). (3.50)

From (3.28), we have

w(t1)−m0 +A ln(A− w(t1))−A ln(A−m0) = −t1. (3.51)
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Letting a =
(
u− −

(
u+ + 1

ρ+

))
> 0, then calculating (3.51)× a+ (3.50), we have

(
a+

1

ρ−

)
w(t1)−

(
a+

1

ρ−

)
m0 + aA ln(A− w(t1))− aA ln(A−m0)

=
(
u+ +

1

ρ+

)
t1 − x(t1).

(3.52)

Substituting (3.45) into (3.52), we have

(
a+

1

ρ−

)
w(t1)−

(
a+

1

ρ−

)
m0 + aA ln(A− w(t1)− aA ln(A−m0)

=
(
u+ +

1

ρ+

)
t− x1(t).

(3.53)

From (3.30) and (3.48), we have

w(t1) =
A

ρ−
(
u− + 1

ρ−
− uδ

) =
A

ρ−
(
u− + 1

ρ−
−

(
u+ + 1

ρ+

)
+ 1

ρ∗

) . (3.54)

Substituting (3.54) into (3.53), we have

F
( 1

ρ∗

)
=

(
u+ +

1

ρ+

)
t− x1(t), (3.55)

where

F (s) =
(
a+

1

ρ−

) A

ρ−
(
u− + 1

ρ−
−
(
u+ + 1

ρ+

)
+ s

) −
(
a+

1

ρ−

)
m0 − aA ln(A−m0)

+ aA ln

(
A− A

ρ−
(
u− + 1

ρ−
−
(
u+ + 1

ρ+

)
+ s

)).
For s > 0,

F
′
(s) = − As

ρ2−
(
u− −

(
u+ + 1

ρ+

)
+ s

)(
u− + 1

ρ−
−
(
u+ + 1

ρ+

)
+ s

)2 < 0, (3.56)

which shows that F (s) is a strictly monotonic decreasing function of s for s ∈
[0,+∞).

And from (3.55) together with (3.56), we have

1

ρ∗
= G

((
u+ +

1

ρ+

)
t− x1(t)

)
, (3.57)

where G = F−1 and 1
G is integrable. From (3.46) and (3.48), we have

dw1(t)

dt
= u1

δ(ρ∗ − ρ−)− (ρ∗u∗ − ρ−u−)

= ρ∗(u
1
δ − u∗)− ρ−u

1
δ + ρ−u−

= ρ∗
(
u1
δ −

(
u+ +

1

ρ+

))
− ρ−u

1
δ + ρ−

(
u− +

1

ρ−

)
, (3.58)
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and

dw1(t)u1
δ(t)

dt
=u1

δ(ρ∗u∗ − ρ−u−)− (ρ∗u
2
∗ + u∗ − ρ−u

2
− − u−)

=u1
δ

(
ρ∗
(
u+ +

1

ρ+

)
− 1− ρ−u−

)
−
(
u∗(ρ∗u∗ + 1)− ρ−u−

(
u− +

1

ρ−

))
=u1

δρ∗
(
u+ +

1

ρ+

)
− ρ−

(
u− +

1

ρ−

)
u1
δ + ρ−u−

(
u− +

1

ρ−

)
−
(
ρ∗
(
u+ +

1

ρ+

)
− 1

)(
u+ +

1

ρ+

)
=ρ∗

(
u+ +

1

ρ+

)(
u1
δ −

(
u+ +

1

ρ+

))
+
(
u+ +

1

ρ+

)
− ρ−

(
u− +

1

ρ−

)
u1
δ + ρ−u−

(
u− +

1

ρ−

)
. (3.59)

Substituting (3.57) into (3.58) and (3.59) respectively, and integrating from t∗ to t,
we have

w1 − w∗ =

∫ t

t∗

u1
δ −

(
u+ + 1

ρ+

)
G
((
u+ + 1

ρ+

)
τ − x1(τ)

)dτ − ρ−(x
1 − x∗) + ρ−

(
u− +

1

ρ−

)
(t− t∗),

(3.60)
and

w1u1
δ − w∗u∗

δ =
(
u+ +

1

ρ+

) ∫ t

t∗

u1
δ −

(
u+ + 1

ρ+

)
G
((
u+ + 1

ρ+

)
τ − x1(τ)

)dτ − ρ−
(
u− +

1

ρ−

)
(x1 − x∗)

+
(
u+ +

1

ρ+

)
(t− t∗) + u−ρ−

(
u− +

1

ρ−

)
(t− t∗). (3.61)

Calculating (3.61)− (3.60)× u1
δ , and noting the fact that u∗

δ = u+ + 1
ρ+

, we have

(
u+ +

1

ρ+
− u1

δ

) ∫ t

t∗

u1
δ −

(
u+ + 1

ρ+

)
G
((
u+ + 1

ρ+

)
τ − x1(τ)

)dτ +
(
u+ +

1

ρ+

)
(t− t∗)

+ ρ−u
1
δ(x

1 − x∗)− ρ−
(
u− +

1

ρ−

)
(x1 − x∗)− ρ−

(
u− +

1

ρ−

)
(t− t∗)

+ u−ρ−
(
u− +

1

ρ−

)(
t− t∗

)
− w∗(u1

δ −
(
u+ +

1

ρ+

))
= 0. (3.62)

Integrating (3.62) from t∗ to t, we have∫ t

t∗

(
u+ +

1

ρ+
− u1

δ

) ∫ s

t∗

u1
δ −

(
u+ + 1

ρ+

)
G
((
u+ + 1

ρ+

)
τ − x1(τ)

)dτds+ 1

2

(
u+ +

1

ρ+

)
(t− t∗)2

+
1

2
ρ−(x

1 − x∗)2 − ρ−
(
u− +

1

ρ−

)
(x1 − x∗)(t− t∗) +

1

2
ρ−u−

(
u− +

1

ρ−

)
(t− t∗)2

− w∗((x1 − x∗)−
(
u+ +

1

ρ+

)
(t− t∗)

)
= 0. (3.63)

Letting Y =

(
u++ 1

ρ+

)
τ −x1(τ), Z =

(
u++ 1

ρ+

)
s−x1(s), then the first term
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on the left-hand side of (3.63) equals to

−
∫ (u++ 1

ρ+
)t−x1

(u++ 1
ρ+

)t∗−x∗

∫ Z

(u++ 1
ρ+

)t∗−x∗

1

G(Y )
dY dZ. (3.64)

So, (3.63) can be written as
H
(
x1, t

)
= 0, (3.65)

where

H(x1, t) =−
∫ (

u++ 1
ρ+

)
t−x1(

u++ 1
ρ+

)
t∗−x∗

∫ Z(
u++ 1

ρ+

)
t∗−x∗

1

G(Y )
dY dZ +

1

2

(
u+ +

1

ρ+

)
(t− t∗)2

− ρ−
(
u− +

1

ρ−

)
(x1 − x∗)(t− t∗)

+
1

2
ρ−(x

1 − x∗)2 +
1

2
u−ρ−

(
u− +

1

ρ−

)
(t− t∗)2

− w∗(x1 − x∗ −
(
u+ +

1

ρ+

)
(t− t∗)). (3.66)

For t∗ < t < t#, we have

H|
x1=x∗+

(
u++ 1

ρ+

)
(t−t∗)

=
1

2

(
u+ +

1

ρ+

)
(t− t∗)2−ρ−

(
u−+

1

ρ−

)(
u++

1

ρ+

)
(t− t∗)2+

1

2
ρ−

(
u+ +

1

ρ+

)2
(t− t∗)2

+
1

2
ρ−u−

(
u− +

1

ρ−

)
(t− t∗)2

=
1

2
ρ−(t− t∗)2

((
u++

1

ρ+

)( 1

ρ−
−
(
u−+

1

ρ−

))
+
(
u+ +

1

ρ+

)(
u+ +

1

ρ+
−
(
u− +

1

ρ−

))
+ u−

(
u− +

1

ρ−

))
=
1

2
ρ−(t− t∗)2

(
u− −

(
u+ +

1

ρ+

))(
u− +

1

ρ−
−
(
u+ +

1

ρ+

))
> 0, (3.67)

and

H|
x1=x∗+

(
u−+ 1

ρ−

)
(t−t∗)

≤1

2

(
u+ +

1

ρ+

)
(t− t∗)2 − ρ−

(
u− +

1

ρ−

)2
(t− t∗)2 +

1

2
ρ−

(
u− +

1

ρ−

)2
(t− t∗)2

+
1

2
ρ−u−

(
u− +

1

ρ−

)
(t− t∗)2 − w∗(u− +

1

ρ−
−
(
u+ +

1

ρ+

))
(t− t∗)

=
1

2
(t− t∗)2

(
ρ−

(
u− +

1

ρ−

)(
u− − u− − 1

ρ−

)
+
(
u+ +

1

ρ+

))
− w∗(u− +

1

ρ−
−
(
u+ +

1

ρ+

)
(t− t∗)

)
=
1

2
(t− t∗)2

(
u+ +

1

ρ+
− u− − 1

ρ−

)
− w∗(u− +

1

ρ−
−

(
u+ +

1

ρ+

)
(t− t∗)

)
< 0.

(3.68)
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Moreover, for x∗ +
((
u+ + 1

ρ+

)
(t− t∗) < x1 < x∗ +

((
u− + 1

ρ−

)
(t− t∗), we have

∂H

∂x1
=

∫ ((
u++ 1

ρ+

)
t−x1((

u++ 1
ρ+

)
t∗−x∗

1

G(Y )
dY +ρ−(x

1−x∗−
((
u−+

1

ρ−

)
(t−t∗))−w∗ < 0. (3.69)

On account of (3.67), (3.68) and (3.69), there exists a unique function x1 =
x1(t) ∈ (x∗ +

(
u+ + 1

ρ+

)
(t− t∗), x∗ +

(
u− + 1

ρ−

)
(t− t∗)), such that H(x1, t) = 0 for

t∗ < t < t#. Futhermore, we have u1
δ(t) =

dx1(t)
dt . From (3.60), we have

w1(t) =

∫ t

t∗

u1
δ(τ)−

(
u+ + 1

ρ+

)
G(

(
u+ + 1

ρ+

)
τ − x1(τ))

dτ−ρ−(x
1(t)−x∗)+ρ−

(
u−+

1

ρ−

)
(t− t∗)+w∗.

(3.70)
For t# ≤ t < +∞, where t# is determined by x1(t#) =

(
u++

1
ρ+

)
t#, the solution

(3.49) is similar to that in case 3.3, where x2(t), w2(t) and u2
δ(t) are determined by

the Rankine-Hugoniot condition (3.34) with initial data

(x2, w2, u2
δ)(t

#) = (x1(t#), w1(t#), u1
δ(t

#)).

The details are omitted.
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