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Abstract In the present article, the new exact solutions of fractional cou-
pled Schrödinger type equations have been studied by using a new reliable
analytical method. We applied a relatively new method for finding some new
exact solutions of time fractional coupled equations viz. time fractional cou-
pled Schrödinger–KdV and coupled Schrödinger–Boussinesq equations. The
fractional complex transform have been used here along with the property of
local fractional calculus for reduction of fractional partial differential equations
(FPDE) to ordinary differential equations (ODE). The obtained results have
been plotted here for demonstrating the nature of the solutions.

Keywords Fractional complex transform, local fractional calculus, time frac-
tional coupled Schrödinger–KdV equation, time-fractional coupled Schrödinger–
Boussinesq equation.

MSC(2010) 26A33, 34A08, 35R11.

1. Introduction

Now a days study of nonlinear evolution equations play important role for de-
scribing the nonlinear wave phenomena [1–6] in mathematical physics. Especially
Schrödinger types of equation are known to describe the quantum mechanical be-
haviour [7, 8]. The development of instability associated with the envelope modu-
lation of an high frequency wave packet coupled to an low frequency wave field is
presented by coupled nonlinear equations like coupled Schrödinger–KdV and cou-
pled Schrödinger-Boussinesq equations in plasma physics [9].

Consider the time fractional coupled Schrödinger-KdV(SK) equation [10,11]

iDα
t u− uxx − uv = 0,

Dα
t v + 6vvx + vxxx +

(
|u|2
)
x

= 0,
(1.1)

where the α symbolizes the order of fractional derivative, whose range is 0 < α ≤ 1.
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Schrödinger-KdV equation describes various process such as dust-acoustic, Lang-
muir and electromagnetic waves in dusty plasma [12–14]. Various methods like
unified algebraic method [15], hybrid of Fourier transform method [16], Variation-
al iteration method [17] have been used for finding the solutions of Schrödinger-
KdV equation. Consider time-fractional coupled Schrödinger–Boussinesq (SB) e-
quation [18,19]

iεDα
t u+

3

2
uxx −

1

2
uv = 0,

D2α
t v − vxx − vxxxx − v2

xx −
1

4

(
|u|2
)
xx

= 0,

(1.2)

where u is the complex valued function which represents the short wave amplitude
of media and v is the real-valued function which represents the long wave amplitude
of media. The ε > 0 denotes the ratio between the electron number with respect to
ion number and the α is the fractional order whose range is 0 < α ≤ 1.

The coupled Schrödinger-Boussinesq equation is originated from nonlinear mag-
netosonic and upper-hybrid waves in magnetized plasma [20]. It also describes the
diatomic lattice system [21], the dynamics of Langmuir soliton formation and the
interaction in plasma [22–25]. Various methods like Multi-symplectic scheme [18],
Fourier spectral method [19], conservative difference scheme [26], (G’/G) -expansion
method [27], extended simplest equation method [28] have been used for findinding
solution for coupled Schrödinger-Boussinesq equation.

The fractional differential equations can be described best in discontinuous me-
dia and the fractional order is equivalent to its fractional dimensions. Fractal media
which is complex, appears in different fields of engineering and physics. In this con-
text, the local fractional calculus theory is very important for modelling problems
for fractal mathematics and engineering on Cantorian space in fractal media.

Our main objective here to find new exact solutions of time fractional coupled
Schrödinger-KdV (SK) and time-fractional coupled Schrödinger-Boussinesq (SB)
equations by applying a reliable and relatively new analytical method.

The primary content of the article is arranged as following. Definitions of local
fractional calculus with some properties are described in Section 2. The algorithm
of new analytical method is presented in Section 3. The implementation of proposed
method for establishing the exact solutions of time fractional coupled Schrödinger-
KdV (SK) and time-fractional coupled Schrödinger-Boussinesq equations are pre-
sented in Section 4. The numerical simulation for newly proposed analytical method
is presented in Section 5. A brief conclusion of the current study is presented in
Section 6.

2. Preliminaries of local fractional calculus and pro-
posed method

2.1. Local fractional continuity of a function

Definition 2.1. Suppose that f(x) is defined throughout some interval containing
x0 and all point near x0, then f(x) is said to be local fractional continuous at x = x0,
denote by lim

x→x0

f(x) = f(x0), if to each positive εand some positive constant k
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corresponds some positive δ such that [29–31]

|f(x)− f(x0)| < kεα, 0 < α ≤ 1, (2.1)

whenever |x− x0| < δ, ε, δ > 0 and ε, δ ∈ R. Consequently, the function f(x) is
called local fractional continuous on the interval (a, b), denoted by

f(x) ∈ Cα(a, b), (2.2)

where α is fractal dimension with 0 < α ≤ 1.

Definition 2.2. A functionf(x) : R→ R, X 7→ f(X) is called a non-differentiable
function of exponent α, 0 < α ≤ 1, which satisfies Hölder function of exponent α,
then for x, y ∈ X, we have [29–31]

|f(x)− f(y)| ≤ C |x− y|α . (2.3)

Definition 2.3. A function f(x) : R→ R, X 7→ f(X) is called to be local fractional
continuous of order α, 0 < α ≤ 1, or shortly α−local fractional continuous, when
we have [29–31]

f(x)− f(x0) = O ((x− x0)α) . (2.4)

Remark 2.1. A function f(x) is said to be in the space Cα[a, b] if and only if it
can be written as [29–31]

f(x)− f(x0) = O ((x− x0)α)

with any x0 ∈ [a, b] and 0 < α ≤ 1.

2.2. Local fractional derivative

Definition 2.4. Let f(x) ∈ Cα(a, b). Local fractional derivative of f(x) of order α
at x = x0 is defined as [29–31]

f (α)(x0) =
dαf(x)

dxα

∣∣∣∣
x=x0

= lim
x→x0

∆α(f(x)− f(x0))

(x− x0)α
, (2.5)

where ∆α(f(x)− f(x0)) ∼= Γ(1 + α)∆(f(x)− f(x0)) and 0 < α ≤ 1.

Remark 2.2. The following rules are hold for local fractional derivative [31]

(i) dαxkα

dxα = Γ(1+kα)
Γ(1+(k−1)α)x

(k−1)α;

(ii) dαEα(kxα)
dxα = kEα(kxα), k is a constant.

Remark 2.3 ( [29–32]). (i) If y(x) = (f ◦u)(x)where u(x) = g(x), then we have

dαy(x)

dxα
= f (α) (g(x))

(
g(1)(x)

)α
, (2.6)

when f (α) (g(x))and g(1)(x) exist.

(ii) If y(x) = (f ◦ u)(x)where u(x) = g(x), then we have

dαy(x)

dxα
= f (1) (g(x)) g(α)(x), (2.7)

when f (1) (g(x))and g(α)(x) exist.
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3. Algorithm of the proposed new analytical method

In the present section, the algorithm of new analytical method has been presented.
The major steps of the newly proposed method are described as follows:

Step 1: The nonlinear coupled time-fractional partial differential equation with
two independent variables x and t is considered here as in the following form:

F (u, ux, uxx, uxxx, ...D
α
t u, v, vx, vxx, vxxx, ...D

α
t v...) = 0, 0 < α ≤ 1,

P (u, ux, uxx, uxxx, ...D
α
t u, v, vx, vxx, vxxx, ...D

α
t v...) = 0, 0 < α ≤ 1,

(3.1)

where u(x, t) and v(x, t) are unknown function. Here the fractional derivativeDα
t u,

Dα
t v are considered in the modified Riemann-Liouville sense. F and P are the

functions in u(x, t) and v(x, t) along with their highest order partial derivatives and
nonlinear terms of u(x, t) and v(x, t) respectively.

Step 2: The exact solution of eqs. (3.1) is considered here with the help of
fractional complex transform [33–37], which is given by

u(x, t) = Φ(ζ)eiη, v(x, t) = Ψ(ζ), ζ = cx+
γtα

Γ(α+ 1)
, η = kx+

rtα

Γ(α+ 1)
, (3.2)

where c, γ, r, k are a constants, which are determined later.
By using the chain rule eq. (2.7) [34–37], we have

Dα
t u = σtΦξD

α
t ξ,

Dα
t v = σtΨξD

α
t ξ,

where σt is the fractal indexes [36,37], without loss of generality we can take σt = κ,
where κ is a constant.

Using eqs. (3.2), the fractional partial differential equations (FPDEs) eqs. (3.1)
is reduced to the following nonlinear ordinary differential equations (ODEs)

F (Φeiη, icΦ′eiη,−c2Φ′′eiη, ic3Φ′′′eiη, .., γiΦ′eiη,Ψ, cΨ′, c2Ψ′′, c3Ψ′′′..., γΨ′) = 0,

P (Φeiη, icΦ′eiη,−c2Φ′′eiη, ic3Φ′′′eiη, .., γiΦ′eiη,Ψ, cΨ′, c2Ψ′′, c3Ψ′′′..., γΨ′) = 0.
(3.3)

Step 3: Here the exact solutions of eqs. (3.1) are assumed in the polynomial
φ(ζ) as follows:

Φ(ζ) = a0 +

n∑
i=1

aiφ
i(ζ),

Ψ(ζ) = b0 +

m∑
i=1

biφ
i(ζ),

(3.4)

where φ(ζ) = eζ

1+eζ
and φ(ζ)also satisfies following :

φζ = φ− φ2. (3.5)

Step 4: According to the proposed method, we substitute Φ = ζ−p and Ψ = ζ−q

in all terms of eqs. (3.3) for determining the highest order singularity. Then the
degree of all terms of eqs. (3.3) has been taken in to study and consequently the
two or more terms of lower degree are chosen. The maximum value of p and q are
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known as the pole and denoted as n and m respectively. For integer values of n
and m, this proposed method only can be implemented. However, if n and m are
non-integer, the above eqs. (3.3) can be transferred and then the above procedure
can be repeated.

Step 5: The derivatives of the function Φ(ζ) and Ψ(ζ) can be calculated by
using eq. (3.5). Some derivatives of Φ(ζ) are presented as follows:

Φ′(ζ) =

n∑
i=1

aii(1− φ)φi; Ψ′(ζ) =

m∑
i=1

bii(1− φ)φi;

Φ′′(ζ) =

n∑
i=1

aii[φ+ i(1− φ)](1− φ)φi; Ψ′(ζ) =

m∑
i=1

bii[φ+ i(1− φ)](1− φ)φi;

Φ′′′(ζ) =

n∑
i=1

aii(i+ 1)(1− φ)2φi+1 +

n∑
i=1

aii[φ+ i(1− φ)](1− φ)φi+1;

Ψ′′′(ζ) =
m∑
i=1

bii(i+ 1)(1− φ)2φi+1 +
m∑
i=1

bii[φ+ i(1− φ)](1− φ)φi+1.

(3.6)
Step 6: Substituting eqs. (3.6) into eqs. (3.3) and equating the coefficient of

φi(i = 0, 1, 2, ...) into zero, we obtain the set of algebraic equations. By solving
the obtained algebraic equations, we can get the unknowns ai(i = 0, 1, 2, · · · , n),
bi(i = 0, 1, 2, · · · ,m) and other constants. Then putting the all obtained unknowns
in eq. (3.4), we get the required exact solutions for eqs. (3.1) instantly.

4. Implementation of new proposed method for the
solutions of time-fractional coupled SK and cou-
pled SB equations

In this part, the newly proposed method has been applied for obtaining the exact
solutions for time-fractional coupled SK and coupled SB equation.

4.1. Exact solutions for time-fractional coupled SK equation

The newly proposed method has been applied here for finding the exact solutions
for eqs. (1.1). By using the fractional complex transform (3.2) in eqs. (1.1), we
have the following nonlinear ODE:

Φ(ζ)Ψ(ζ) + (r − k2)Φ(ζ) + c2Φ′′(ζ)2 + i(−γ + 2kc)Φ′(ζ) = 0, (4.1)

γΨ′(ζ) + 6cΨ(ζ)Ψ′(ζ) + c3Ψ′′′(ζ)− 2cΦ(ζ)Φ′(ζ) = 0. (4.2)

Again the eq. (4.1) can be written as

Φ(ζ)Ψ(ζ) + (r − k2)Φ(ζ) + c2Φ′′(ζ)2 = 0, (4.3)

where γ = 2kc.
By integrating eq. (4.2) once with respect to ζ and putting γ = 2kc, we have

2kΨ(ζ) + 3Ψ2(ζ) + c2Ψ′′(ζ)− Φ2(ζ) = 0. (4.4)
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Let

Φ(ζ) = a0 +

n∑
i=1

aiφ
i and Ψ(ζ) = b0 +

m∑
i=1

biφ
i. (4.5)

The dominant terms with highest order singularity of eq. (4.3) are Φ(ζ)Ψ(ζ) and
c2Φ′′(ζ)2. The maximum value of pole is 2 that means here n = 2. Similarly the
dominant terms with highest order singularity of eq. (4.4) are 3Ψ2(ζ) and c2Ψ′′(ζ).
The maximum value of pole is 2 that means here m = 2.

Therefore by eq. (4.5), we have the following ansatz:

Φ(ζ) = a0 + a1φ+ a2φ
2 and Ψ(ζ) = b0 + b1φ+ b2φ

2, (4.6)

where φ satisfies eq. (3.5).
Substituting eq. (4.6) along with eqs. (3.6) into eqs. (4.3) and (4.4), then

equating each coefficients of φi (i = 0, 1, 2, ...) to zero, we can find a system of
algebraic equations for a0, a1, a2, b0, b1, b2, c, k and r as follows:

φ0 : a0b0 + a0(−k2 + r) = 0;

: −a2
0 + 3b20 + 2b0k = 0;

φ1 : a1b0 + a0b1 + a1c
2 + a1(−k2 + r) = 0;

: −2a0a1 + 6b0b1 + c2b1 + 2b1k = 0;

φ2 : a2b0 + a1b1 + a0b2 − 3a1c
2 + 4a2c

2 + a2(−k2 + r) = 0;

: −a2
1 − 2a0a2 + 3b21 + 6b0b2 − 3c2b1 + 4c2b2 + 2b2k = 0;

φ3 : a2b1 + a1b2 + 2a1c
2 − 10a2c

2 = 0;

: −2a1a2 + 6b1b2 + 2c2b1 − 10c2b2 = 0;

φ4 : a2b2 + 6a2c
2 = 0;

: −a2
2 + 3b22 + +6c2b2 = 0.

(4.7)

Solving the above algebraic eqs. (4.7), we have the following sets of coefficients for
the solutions of eqs. (4.3) and (4.4) as given below:

Case 1:

c = c, k = −c
2

2
, r =

c2(−4 + c2)

4
, a0 = 0, a1 = −6

√
2c2,

a2 = 6
√

2c2, b0 = 0, b1 = 6c2, b2 = −6c2.

For case 1, we have the following solution

Φ11 = −6
√

2c2(cosh(ζ) + sinh(ζ))

1 + cosh(ζ) + sinh(ζ)
+

6
√

2c2(cosh(2ζ) + sinh(2ζ))

(1 + cosh(ζ) + sinh(ζ))2
,

Ψ11 =
6c2(cosh(ζ) + sinh(ζ))

1 + cosh(ζ) + sinh(ζ)
− 6c2(cosh(2ζ) + sinh(2ζ))

(1 + cosh(ζ) + sinh(ζ))2
,

(4.8)

where ζ = cx+ γtα

Γ(α+1) .

Case 2:

c = c, k = −c
2

2
, r =

c2(8 + 3c2)

12
, a0 =

√
2c2,

a1 = −6
√

2c2, a2 = 6
√

2c2, b0 = −2c2

3
, b1 = 6c2, b2 = −6c2.
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For case 2, we have the following solution

Φ21 =
√

2c2 − 6
√

2c2(cosh(ζ) + sinh(ζ))

1 + cosh(ζ) + sinh(ζ)
+

6
√

2c2(cosh(2ζ) + sinh(2ζ))

(1 + cosh(ζ) + sinh(ζ))2
,

Ψ21 = −2c2

3
+

6c2(cosh(ζ) + sinh(ζ))

1 + cosh(ζ) + sinh(ζ)
− 6c2(cosh(2ζ) + sinh(2ζ))

(1 + cosh(ζ) + sinh(ζ))2
,

(4.9)

where ζ = cx+ γtα

Γ(α+1) .

Case 3:

c = c, k =
c2

2
, r =

c2(4 + c2)

4
, a0 =

√
2c2, a1 = −6

√
2c2,

a2 = 6
√

2c2, b0 = −c2, b1 = 6c2, b2 = −6c2.

For case 3, we have the following solution

Φ31 =
√

2c2 − 6
√

2c2(cosh(ζ) + sinh(ζ))

1 + cosh(ζ) + sinh(ζ)
+

6
√

2c2(cosh(2ζ) + sinh(2ζ))

(1 + cosh(ζ) + sinh(ζ))2
,

Ψ31 = −c2 +
6c2(cosh(ζ) + sinh(ζ))

1 + cosh(ζ) + sinh(ζ)
− 6c2(cosh(2ζ) + sinh(2ζ))

(1 + cosh(ζ) + sinh(ζ))2
,

(4.10)

where ζ = cx+ γtα

Γ(α+1) .

Case 4:

c = c, k =
c2

2
, r =

c2(−8 + 3c2)

12
, a0 = 0, a1 = −6

√
2c2,

a2 = 6
√

2c2, b0 = −c
2

3
, b1 = 6c2, b2 = −6c2.

For case 4, we have the following solution

Φ41 = −6
√

2c2(cosh(ζ) + sinh(ζ))

1 + cosh(ζ) + sinh(ζ)
+

6
√

2c2(cosh(2ζ) + sinh(2ζ))

(1 + cosh(ζ) + sinh(ζ))2
,

Ψ41 = −c
2

3
+

6c2(cosh(ζ) + sinh(ζ))

1 + cosh(ζ) + sinh(ζ)
− 6c2(cosh(2ζ) + sinh(2ζ))

(1 + cosh(ζ) + sinh(ζ))2
,

(4.11)

where ζ = cx+ γtα

Γ(α+1) .

Case 5:

c = c, k = −c
2

2
, r =

c2(−4 + c2)

4
, a0 = 0, a1 = 6

√
2c2,

a2 = −6
√

2c2, b0 = 0, b1 = 6c2, b2 = −6c2.

For case 5, we have the following solution

Φ51 =
6
√

2c2(cosh(ζ) + sinh(ζ))

1 + cosh(ζ) + sinh(ζ)
− 6
√

2c2(cosh(2ζ) + sinh(2ζ))

(1 + cosh(ζ) + sinh(ζ))2
,

Ψ51 =
6c2(cosh(ζ) + sinh(ζ))

1 + cosh(ζ) + sinh(ζ)
− 6c2(cosh(2ζ) + sinh(2ζ))

(1 + cosh(ζ) + sinh(ζ))2
,

(4.12)

where ζ = cx+ γtα

Γ(α+1) .



The new exact solutions of variant types of time fractional CSE 831

Case 6:

c = c, k = −c
2

2
, r =

c2(8 + 3c2)

12
, a0 = −

√
2c2, a1 = 6

√
2c2,

a2 = −6
√

2c2, b0 = −2c2

3
, b1 = 6c2, b2 = −6c2.

For case 6, we have the following solution

Φ61 = −
√

2c2 +
6
√

2c2(cosh(ζ) + sinh(ζ))

1 + cosh(ζ) + sinh(ζ)
− 6
√

2c2(cosh(2ζ) + sinh(2ζ))

(1 + cosh(ζ) + sinh(ζ))2
,

Ψ61 = −2c2

3
+

6c2(cosh(ζ) + sinh(ζ))

1 + cosh(ζ) + sinh(ζ)
− 6c2(cosh(2ζ) + sinh(2ζ))

(1 + cosh(ζ) + sinh(ζ))2
,

(4.13)

where ζ = cx+ γtα

Γ(α+1) .

Case 7:

c = c, k =
c2

2
, r =

c2(4 + c2)

4
, a0 = −

√
2c2, a1 = 6

√
2c2,

a2 = −6
√

2c2, b0 = −c2, b1 = 6c2, b2 = −6c2.

For case 7, we have the following solution

Φ71 = −
√

2c2 +
6
√

2c2(cosh(ζ) + sinh(ζ))

1 + cosh(ζ) + sinh(ζ)
− 6
√

2c2(cosh(2ζ) + sinh(2ζ))

(1 + cosh(ζ) + sinh(ζ))2
,

Ψ71 = −c2 +
6c2(cosh(ζ) + sinh(ζ))

1 + cosh(ζ) + sinh(ζ)
− 6c2(cosh(2ζ) + sinh(2ζ))

(1 + cosh(ζ) + sinh(ζ))2
,

(4.14)

where ζ = cx+ γtα

Γ(α+1) .

Case 8:

c = c, k =
c2

2
, r =

c2(−8 + 3c2)

12
, a0 = 0, a1 = 6

√
2c2,

a2 = −6
√

2c2, b0 = −c
3

3
, b1 = 6c2, b2 = −6c2.

For case 8, we have the following solution

Φ81 =
6
√

2c2(cosh(ζ) + sinh(ζ))

1 + cosh(ζ) + sinh(ζ)
− 6
√

2c2(cosh(2ζ) + sinh(2ζ))

(1 + cosh(ζ) + sinh(ζ))2
,

Ψ81 = −c
2

3
+

6c2(cosh(ζ) + sinh(ζ))

1 + cosh(ζ) + sinh(ζ)
− 6c2(cosh(2ζ) + sinh(2ζ))

(1 + cosh(ζ) + sinh(ζ))2
,

(4.15)

where ζ = cx+ γtα

Γ(α+1) .

4.2. Exact solutions for time-fractional coupled SB equation

The newly proposed method has been used here for getting the exact solutions for
eqs. (1.1). By using the fractional complex transform (3.2) in eqs. (1.1), we have
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the following nonlinear ODE:

−
(
rε+

3

2
k2

)
Φ(ζ) +

3

2
c2Φ′′(ζ)− 1

2
Φ(ζ)Ψ(ζ) + i(rε+ 3kc)Φ′(ζ) = 0, (4.16)

(γ2 − c2)Ψ′′(ζ)− c4ΨIV (ζ)− c2(Ψ2(ζ))′′ − 1

4
c2(Φ2(ζ))′′ = 0. (4.17)

Again the eq. (4.16) can be written as

−
(
2rε+ 3k2

)
Φ(ζ) + 3c2Φ′′(ζ)− Φ(ζ)Ψ(ζ) = 0, (4.18)

where γ = − 3kc
ε .

By integrating eq. (4.17) twice with respect to ζ and puttingγ = − 3kc
ε , we have((

−3kc

ε

)2

− c2
)

Ψ(ζ)− c4Ψ′′(ζ)− c2Ψ2(ζ)− 1

4
c2Φ2(ζ) = 0. (4.19)

Let

Φ(ζ) = a0 +

n∑
i=1

aiφ
i and Ψ(ζ) = b0 +

m∑
i=1

biφ
i. (4.20)

The dominant terms with highest order singularity of eq. (4.18) are Φ(ζ)Ψ(ζ)
and 3c2Φ′′(ζ). The maximum value of pole is 2 that means here n = 2. Similarly
the dominant terms with highest order singularity in eq. (4.19) are c4Ψ′′(ζ) and
c2Ψ2(ζ). The maximum value of pole is 2 that means here m = 2.

Therefore by eq. (4.20), we have the following ansatz:

Φ(ζ) = a0 + a1φ+ a2φ
2 and Ψ(ζ) = b0 + b1φ+ b2φ

2, (4.21)

where φ satisfies eq. (3.5).
Substituting eq. (4.21) along with eqs. (3.6) into eqs. (4.18) and (4.19), then

equating each coefficients of φi (i = 0, 1, 2, ...) to zero, we can find a system of
algebraic equations for a0, a1, a2, b0, b1, b2, c, k and r as follows:

φ0 : −a0b0 + a0(3k2 + 2εr) = 0;

: − 1
4a

2
0c

2 − b20c2 + b0

(
−c2 + 9c2k2

ε2

)
= 0;

φ1 : −a1b0 − a0b1 − 3a1c
2 + a1(3k2 + 2εr) = 0;

: − 1
2a0a1c

2 − 2b0b1c
2 + c4b1 + b1

(
−c2 + 9c2k2

ε2

)
= 0;

φ2 : −a2b0 − a1b1 − a0b2 − 9a1c
2 + 12a2c

2 + a2(3k2 + 2rε) = 0;

: − 1
4a

2
1c

2 − 1
2a0a2c

2 − b21c2 − 2b0b2c
2 + 3c4b1 − 4c4b2 + b2

(
−c2 + 9c2k2

ε2

)
= 0;

φ3 : −a2b1 − a1b2 + 6a1c
2 − 30a2c

2 = 0;

: − 1
2a1a2c

2 − 2b1b2c
2 − 2c4b1 + 10c4b2 = 0;

φ4 : −a2b2 + 18a2c
2 = 0;

: − 1
4a

2
2c

2 − b22c2 − 6c4b2 = 0.

(4.22)
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Solving the above algebraic eqs. (4.22), we have the following sets of coefficients for
the solutions of eqs. (4.18) and (4.19) as given below:

Case 1:

c = c, k = −1

3

√
1 + c2ε, r =

−9c2 − ε2 − c2ε2

6ε
,

a0 = 0, a1 = −24i
√

3c2, a2 = 24i
√

3c2, b0 = 0, b1 = −18c2, b2 = 18c2.

For case 1, we have the following solution

Φ11 = −24i
√

3c2(cosh(ζ) + sinh(ζ))

1 + cosh(ζ) + sinh(ζ)
+

24i
√

3c2(cosh(2ζ) + sinh(2ζ))

(1 + cosh(ζ) + sinh(ζ))2
,

Ψ11 = −18c2(cosh(ζ) + sinh(ζ))

1 + cosh(ζ) + sinh(ζ)
+

18c2(cosh(2ζ) + sinh(2ζ))

(1 + cosh(ζ) + sinh(ζ))2
,

(4.23)

where ζ = cx+ γtα

Γ(α+1) .

Case 2:

c = c, k = −1

3

√
1 + c2ε, r =

−12c2 − ε2 + c2ε2

6ε
,

a0 = 0, a1 = −24i
√

3c2, a2 = 24i
√

3c2, b0 = −c2, b1 = −18c2, b2 = 18c2.

For case 2, we have the following solution

Φ21 = −24i
√

3c2(cosh(ζ) + sinh(ζ))

1 + cosh(ζ) + sinh(ζ)
+

24i
√

3c2(cosh(2ζ) + sinh(2ζ))

(1 + cosh(ζ) + sinh(ζ))2
,

Ψ21 = −c2 − 18c2(cosh(ζ) + sinh(ζ))

1 + cosh(ζ) + sinh(ζ)
+

18c2(cosh(2ζ) + sinh(2ζ))

(1 + cosh(ζ) + sinh(ζ))2
,

(4.24)

where ζ = cx+ γtα

Γ(α+1) .

Case 3:

c = c, k = −1

3

√
1 + c2ε, r =

−9c2 − ε2 − c2ε2

6ε
,

a0 = 0, a1 = 24i
√

3c2, a2 = −24i
√

3c2, b0 = 0, b1 = −18c2, b2 = 18c2.

For case 3, we have the following solution

Φ31 =
24i
√

3c2(cosh(ζ) + sinh(ζ))

1 + cosh(ζ) + sinh(ζ)
− 24i

√
3c2(cosh(2ζ) + sinh(2ζ))

(1 + cosh(ζ) + sinh(ζ))2
,

Ψ31 = −18c2(cosh(ζ) + sinh(ζ))

1 + cosh(ζ) + sinh(ζ)
+

18c2(cosh(2ζ) + sinh(2ζ))

(1 + cosh(ζ) + sinh(ζ))2
,

(4.25)

where ζ = cx+ γtα

Γ(α+1) .

Case 4:

c = c, k = −1

3

√
1− c2ε, r =

−12c2 − ε2 + c2ε2

6ε
,

a0 = 0, a1 = 24i
√

3c2, a2 = −24i
√

3c2, b0 = −c2, b1 = −18c2, b2 = 18c2.
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For case 4, we have the following solution

Φ41 =
24i
√

3c2(cosh(ζ) + sinh(ζ))

1 + cosh(ζ) + sinh(ζ)
− 24i

√
3c2(cosh(2ζ) + sinh(2ζ))

(1 + cosh(ζ) + sinh(ζ))2
,

Ψ41 = −c2 − 18c2(cosh(ζ) + sinh(ζ))

1 + cosh(ζ) + sinh(ζ)
+

18c2(cosh(2ζ) + sinh(2ζ))

(1 + cosh(ζ) + sinh(ζ))2
,

(4.26)

where ζ = cx+ γtα

Γ(α+1) .

Case 5:

c = c, k = −1

3

√
1 + c2ε, r =

12c2 − ε2 − c2ε2

6ε
,

a0 = 4i
√

3c2, a1 = −24i
√

3c2, a2 = 24i
√

3c2, b0 = 4c2, b1 = −18c2, b2 = 18c2.

For case 5, we have the following solution

Φ51 = 4i
√

3c2 − 24i
√

3c2(cosh(ζ) + sinh(ζ))

1 + cosh(ζ) + sinh(ζ)
+

24i
√

3c2(cosh(2ζ) + sinh(2ζ))

(1 + cosh(ζ) + sinh(ζ))2
,

Ψ51 = 4c2 − 18c2(cosh(ζ) + sinh(ζ))

1 + cosh(ζ) + sinh(ζ)
+

18c2(cosh(2ζ) + sinh(2ζ))

(1 + cosh(ζ) + sinh(ζ))2
,

where ζ = cx+ γtα

Γ(α+1) .

Case 6:

c = c, k = −1

3

√
1− c2ε, r =

9c2 − ε2 − c2ε2

6ε
,

a0 = 4i
√

3c2, a1 = −24i
√

3c2, a2 = 24i
√

3c2, b0 = 3c2, b1 = −18c2, b2 = 18c2.

For case 6, we have the following solution

Φ61 = 4i
√

3c2 − 24i
√

3c2(cosh(ζ) + sinh(ζ))

1 + cosh(ζ) + sinh(ζ)
+

24i
√

3c2(cosh(2ζ) + sinh(2ζ))

(1 + cosh(ζ) + sinh(ζ))2
,

Ψ61 = 3c2 − 18c2(cosh(ζ) + sinh(ζ))

1 + cosh(ζ) + sinh(ζ)
+

18c2(cosh(2ζ) + sinh(2ζ))

(1 + cosh(ζ) + sinh(ζ))2
,

(4.27)

where ζ = cx+ γtα

Γ(α+1) .

Case 7:

c = c, k = −1

3

√
1 + c2ε, r =

12c2 − ε2 − c2ε2

6ε
,

a0 = −4i
√

3c2, a1 = 24i
√

3c2, a2 = −24i
√

3c2, b0 = 4c2, b1 = −18c2, b2 = 18c2.

For case 7, we have the following solution

Φ71 = −4i
√

3c2 +
24i
√

3c2(cosh(ζ) + sinh(ζ))

1 + cosh(ζ) + sinh(ζ)
− 24i

√
3c2(cosh(2ζ) + sinh(2ζ))

(1 + cosh(ζ) + sinh(ζ))2
,

Ψ71 = 4c2 − 18c2(cosh(ζ) + sinh(ζ))

1 + cosh(ζ) + sinh(ζ)
+

18c2(cosh(2ζ) + sinh(2ζ))

(1 + cosh(ζ) + sinh(ζ))2
,

where ζ = cx+ γtα

Γ(α+1) .
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Case 8:

c = c, k = −1

3

√
1− c2ε, r =

9c2 − ε2 + c2ε2

6ε
,

a0 = −4i
√

3c2, a1 = 24i
√

3c2, a2 = −24i
√

3c2, b0 = 3c2, b1 = −18c2, b2 = 18c2.

For case 8, we have the following solution

Φ81 = −4i
√

3c2 +
24i
√

3c2(cosh(ζ) + sinh(ζ))

1 + cosh(ζ) + sinh(ζ)
− 24i

√
3c2(cosh(2ζ) + sinh(2ζ))

(1 + cosh(ζ) + sinh(ζ))2
,

Ψ81 = 3c2 − 18c2(cosh(ζ) + sinh(ζ))

1 + cosh(ζ) + sinh(ζ)
+

18c2(cosh(2ζ) + sinh(2ζ))

(1 + cosh(ζ) + sinh(ζ))2
,

(4.28)

where ζ = cx+ γtα

Γ(α+1) .

5. Numerical simulations for time-fractional SK and
SB equations

In this present section, we have presented the numerical simulations of time-fractional
coupled SK and SB equations by newly proposed analytical method. Here the so-
lutions presented in eqs. (4.8) and (4.23) have been used to draw the 3-D and
the corresponding 2-D solution graphs for fractional coupled SK and coupled SB
equations respectively.

5.1. Numerical simulations for time-fractional coupled SK e-
quation

We have used here eqs. (4.8) for presenting the solution graphs for time-fractional
SK equation in case of both classical and fractional orders.

(a)

-30 -20 -10 10 20 30
x

-0.15

-0.10

-0.05

uHx,0L

(b)

Figure 1. (a) The 3-D solitary wave graph for u(x, t) appears in eq. (4.8) as Φ11 in Case 1, when
c = 0.3 and α = 1 (Classical order), (b) the corresponding 2-D graph for u(x, t) when t = 0.

5.2. Numerical simulations for time-fractional coupled SB e-
quation

We have used here eqs. (4.23) for presenting the solution graphs for time-fractional
coupled SB equation in case of both classical and fractional orders. As the solution



836 S. Sahoo & S. Saha Ray

(a)
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0.12

vHx,0L

(b)

Figure 2. (a) The 3-D solitary wave graph for v(x, t) appears in eq. (4.8) as Ψ11 in Case 1, when
c = 0.3 and α = 1(Classical order), (b) the corresponding 2-D graph for v(x, t) when t = 0.

(a)

-30 -20 -10 10 20 30
x

-0.15

-0.10

-0.05

uHx,0L

(b)

Figure 3. (a) The 3-D solitary wave graph for u(x, t) appears in eq. (4.8) as Φ11 in Case 1, when
c = 0.3 and α = 0.5 (Fractional order), (b) the corresponding 2-D graph for u(x, t) when t = 0.

(a)

-30 -20 -10 10 20 30
x
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0.04

0.06

0.08

0.10

0.12

vHx,0L

(b)

Figure 4. (a) The 3-D solitary wave graph for v(x, t) appears in eq. (4.8) as Ψ11 in Case 1, when
c = 0.3 and α = 0.5 (Fractional order), (b) the corresponding 2-D graph for v(x, t) when t = 0.

obtaining in eqs. (4.23) for u(x, t) is complex in nature, we have taken here the
absolute value of u(x, t) for obtaining the 3-D and the corresponding 2-D graphs.

The present section contains the numerical simulations for both time-fractional
coupled SK and SB equations. We have presented the solution graphs for time-
fractional coupled SK and for time-fractional SB equations for both classical and
fractional order in Sections 5.1 and 5.2 respectively. Figs. 1, 2, 3 and 4 show the
evolution of the solitary wave solutions for eqs. (1.1) and Figs. 5, 6, 7 and 8 show
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(a)
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(b)

Figure 5. (a) The 3-D solitary wave graph for Abs(u(x, t)) appears in eq. (4.23) as Φ11 in Case 1,
when ε = 0.5, c = 0.3 and α = 1 (Classical order), (b) the corresponding 2-D graph for Abs(u(x, t))
when t = 0.

(a)
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vHx,0L

(b)

Figure 6. (a) The 3-D solitary wave graph for v(x, t) appears in eq. (4.23) as Ψ11 in Case 1, when
c = 0.3 and α = 1(Classical order), (b) the corresponding 2-D graph for v(x, t) when t = 0.
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0.8

AbsHuHx,0LL

(b)

Figure 7. (a) The 3-D solitary wave graph for Abs(u(x, t)) appears in eq. (4.23) as Φ11 in Case 1,
when ε = 0.5, c = 0.3 and α = 0.5 (Fractional order), (b) the corresponding 2-D solution graph for
Abs(u(x, t)) when t = 0.

the evolution of the solitary wave solutions for eqs. (1.2).

6. Conclusion

In the present article, we have implemented a new analytical method for getting
exact solutions of time fractional time-fractional coupled SK and SB equations. We
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(a)
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(b)

Figure 8. (a) The 3-D solitary wave solution graph for v(x, t) appears in eq. (4.23) as Ψ11 in Case 1,
when c = 0.3 and α = 0.5 (Fractional order), (b) the corresponding 2-D graph for v(x, t) when t = 0.

have used here fractional complex transform for transformation of the nonlinear
fractional differential equations to nonlinear ordinary differential equations. The
most essential interest of the newly proposed method is that it takes less compu-
tation for obtaining the exact solutions. The exact solutions obtained from newly
proposed method have also been used here for presenting the numerical simulations.
From the numerical simulations, we have analyzed the nature of solution in physical
form as solitary waves. The newly proposed method is an effective and powerful
technique for handling the fractional nonlinear differential equation to obtain the
exact solutions.
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