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GLOBAL DYNAMICS OF A REACTION AND
DIFFUSION MODEL FOR AN HTLV-I

INFECTION WITH MITOTIC DIVISION OF
ACTIVELY INFECTED CELLS ∗

Wei Wang and Wanbiao Ma†

Abstract This paper is concerned with the global dynamics of a reaction
and diffusion model for an HTLV-I infection with mitotic division of actively
infected cells and CTL immune response. The well posedness of the proposed
model is investigated. In the case of a bounded spatial domain, we establish
the threshold dynamics in terms of the basic reproduction number R0 for the
spatially heterogeneous model. Also, by means of different Lyapunov func-
tions, the global asymptotic properties of the steady states for the spatially
homogeneous model are studied. In the case of an unbounded spatial domain,
there are no travelling wave solutions connecting the infection-free steady state
with itself when R0 < 1. Finally, numerical simulations and conclusions are
given.
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1. Introduction

Mathematical models combined with experimental measurements have been proved
to be valuable in understanding the dynamics of human immunodeficiency virus
(HIV), hepatitis B virus (HBV) and human T-cell leukemia type-1 (HTLV-I) patho-
genesis (see, for example [5, 38–40]). Analysis of mathematical models is also
very helpful for the clinical treatment. In recent years, the dynamics of the HIV,
HBV and HTLV-I models have received considerable attentions (see, for exam-
ple [4, 13,19,32,33,38–40] and the references therein).

HTLV-I is a persistent human retrovirus that infects many individuals world-
wide. HTLV-I infection is life-long and there is still no cure nor preventative vac-
cine for HTLV-I, and neither is there satisfactory treatment for HTLV-I-associated
pathologies (see, for example [5, 32, 37]). In most virus infections, cytotoxic T
lymphocytes (CTLs) plays an important role in antiviral defense by providing a
cell-mediated response to specific foreign antigens associated with cells (see, for ex-
ample, [7,28,33,51]). Because of the importance in medicine, dynamical properties
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of HTLV-I models with immune response have been studied by many authors. Con-
sidering the mitotic division of actively infected cells and CTL immune response, [33]
investigated the following HTLV-I infection model

ẋs(t) = ξ − µ1xs(t)− βxs(t)y(t),

u̇(t) = βxs(t)y(t) + ry(t)− (τ + µ2)u(t),

ẏ(t) = τu(t)− γy(t)z(t)− µ3y(t),

ż(t) = vy(t)− µ4z(t),

(1.1)

where xs(t), u(t), y(t), and z(t) represent density of healthy CD4+ helper T-cells,
latently infected CD4+ helper T-cells, actively infected CD4+ helper T-cells, and
HTLV-I-specific CD8+ CTLs at time t, respectively. T cells are produced at a
rate ξ, die at rate µ1xs(t), and become latently infected cells at rate βxs(t)y(t).
The constant µ2 represents the death rate of latently infected CD4+ T cells. The
actively infected CD4+ helper T-cells are produced at rate τu(t), die at rate µ3y(t)
and are removed at rate γy(t)z(t) by the CTL immune response. The constant τ
is the rate of the latently infected cells translating to the actively infected cells.
The actively infected cells by mitosis produce daughter cells and the daughter cells
enter the latent period at the rate ry(t). The CTL cells proliferate at rate vy(t) by
contacting with infected cells, and die at rate µ4z(t).

For the model (1.1), the global stabilities of the equilibria were discussed by [33].
It is traditionally assumed that the rate of infection in most HTLV-I models is bilin-
ear according to the principle of mass action. Recently, various functional response
functions have been studied in many mathematical models, such as the Holling-II,
Beddington-DeAngelis functional response, and the Crowley-Martin functional re-
sponse and so on (see, for example [10, 15, 18, 19, 22, 24, 26, 29, 44, 56, 58] and the
references therein). In these functional response functions mentioned above, the
incidence rate of the form βxpyq, where x and y are respectively the number of sus-
ceptible and infective individuals in the population, and β, p and q are positive con-
stants, is the most common nonlinear incidence rate. In recent years, models with
this incidence rate were considered by many authors (see, for example [15,24,29,51]
and the references therein). Epidemiological models with the incidence rate of the
form βxpyq show a much wider range of dynamical behaviors than to those with
bilinear incidence rate βxy. These behaviors are mainly determined by parameters
β, p and q. For such models, there may exist multiple attractive regions in phase
space (see, for example, [29]). In some cases, periodic solutions may appear by Hopf
bifurcation at some critical parameter value (see, for example, [15, 29]).

The model (1.1) which is governed by ordinary differential equations is implic-
itly assumed that cells are well mixed. However, there is another phenomenon that
plays a crucial role in determining the dynamical behavior of the model (1.1), that
is diffusion (see, for example [11,12,27,34,48,50,54,56,58] and the references there-
in). From [23], we know that T cells/macrophages must pass through the basement
membrane and migrate into the central nervous system (CNS) parenchyma after
trans-endothelial migration. Also, as argued by [6, 7, 28, 46], we have that CD4+

(both healthy cells and infected cells) and CD8+ CTLs can move and go from
regions of high concentration to regions of low concentration. That is, the cells
may disperse spatially and evolve in time. Both of these considerations involving
diffusion process may cause different cell movements because of the different con-
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centration levels of cells (see, for example, [11, 12, 27, 34, 48, 50, 54–56, 58] and the
references therein).

Since the pioneering work of [41], the existence of travelling wave solutions in
reaction-diffusion models has drawn much attentions. The model with reaction
terms satisfying the quasi-monotonicity or exponential quasi-monotonicity condi-
tions was considered, and a monotone iteration scheme was established by [49].
Then the method of Schauder’s fixed point theorem is employed to prove the exis-
tence of travelling wavefronts to the model with quasi-monotonicity [35]. However,
the reaction terms for many models may not satisfy either the quasi-monotonicity
or the exponential quasi-monotonicity conditions. Therefore, it is a very inter-
esting problem to investigate the existence of travelling wave solutions for models
with non-quasi-monotonic reaction terms. Recently, the existence of travelling wave
solutions of a class of delayed models with two equations is investigated by employ-
ing the Schauder’s fixed point theorem, in which non-linear reaction terms satisfy
the partial quasi-monotonicity (PQM) and partial exponential quasi-monotonicity
(see, for example, [17, 30]). Further, the existence of travelling wave solutions
of the delayed models with three equations for virus infection dynamical models
are investigated in which the non-linear reaction terms satisfy the partial quasi-
monotonicity (PQM) (see, for example, [12, 58]). Some further developments can
be found in [12,34,50,55,56,58,60].

Taking into account the inhomogeneous distribution of cells in different spatial
locations within a domain Ω ⊆ RN (N ≥ 1) with smooth boundary ∂Ω at any given
time, a diffusive HTLV-I infection model with mitotic division of actively infected
cells, CTL immune response and nonlinear incidence is proposed

∂xs(x, t)

∂t
= D1∆xs + ξ(x)− µ1xs(x, t)− β(x)xqs(x, t)y

p(x, t),

∂u(x, t)

∂t
= D1∆u+ β(x)xqs(x, t)y

p(x, t) + r(x)y(x, t)− (τ(x) + µ2)u(x, t),

∂y(x, t)

∂t
= D1∆y + τ(x)u(x, t)− γ(x)y(x, t)z(x, t)− µ3y(x, t),

∂z(x, t)

∂t
= D2∆z + v(x)y(x, t)− µ4z(x, t).

(1.2)
The model (1.2) is based on some assumptions. Firstly, we assume the within-host
environment is spatially heterogenous. That is, we assume that ξ(x), β(x), r(x),
τ(x), γ(x), and v(x) may depend on the spatial location x. We further assume that
these functions are positive, continuous and bounded in x on Ω assuming

ξ = max
x∈Ω

ξ(x), β = max
x∈Ω

β(x), r = max
x∈Ω

r(x), v = max
x∈Ω

v(x),

γ = max
x∈Ω

γ(x), τ = max
x∈Ω

τ(x), ξ = min
x∈Ω

ξ(x).

Secondly, we assume that healthy CD4+ helper T-cells, latently infected CD4+

helper T-cells, and actively infected CD4+ helper T-cells can move (see, for example,
[6,7,23,28,46]) and follow the Fickian diffusion with the same diffusion rate D1 (see,
for example [34]), meaning that the fluxes of these cells are proportional to their
concentration gradient and go from regions of high concentration to regions of low
concentration.
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Thirdly, we also assume that HTLV-I-specific CD8+ CTLs can move (see, for
example, [6, 7, 28, 46]), following the Fickian diffusion with diffusion rate D2. Note
that movement of CD4+ T cells may be slow comparing with CD8+ CTLs, that is,
D1 ≤ D2.

If p 6= 1 and q 6= 1, then the existence of the steady states of the model (1.2)
seems very intricate. For the sake of simplicity, in this paper, we assume p = 1
and q > 0 (see, for example [51]). That is, we consider the following diffusive
HTLV-I infection model with mitotic division of actively infected cells, CTL immune
response and nonlinear incidence

∂xs(x, t)

∂t
= D1∆xs + ξ(x)− µ1xs(x, t)− β(x)xqs(x, t)y(x, t),

∂u(x, t)

∂t
= D1∆u+ β(x)xqs(x, t)y(x, t) + r(x)y(x, t)− (τ(x) + µ2)u(x, t),

∂y(x, t)

∂t
= D1∆y + τ(x)u(x, t)− γ(x)y(x, t)z(x, t)− µ3y(x, t),

∂z(x, t)

∂t
= D2∆z + v(x)y(x, t)− µ4z(x, t),

(1.3)

for t > 0, x ∈ Ω, with the Neumann boundary conditions

∂xs(x, t)

∂n
=
∂u(x, t)

∂n
=
∂y(x, t)

∂n
=
∂z(x, t)

∂n
= 0, t > 0, x ∈ ∂Ω, (1.4)

and the initial conditions

xs(x, 0) = xs0(x) > 0, u(x, 0) = u0(x) ≥ 0,

y(x, 0) = y0(x) ≥ 0, z(x, 0) = z0(x) ≥ 0, x ∈ Ω.
(1.5)

In the model (1.3), xs(x, t), u(x, t), y(x, t) and z(x, t) represent density of healthy
CD4+ helper T-cells, latently infected CD4+ helper T-cells, actively infected CD4+

helper T-cells, and HTLV-I-specific CD8+ CTLs at location x and time t, respec-
tively. ∆ is the Laplacian operator. Other parameters are the same as the model
(1.1) in [33]. ∂

∂n denotes the outward normal derivative on ∂Ω, and the Neumann
boundary conditions imply that the cell populations do not move across the bound-
ary ∂Ω.

The purpose of this paper is to investigate threshold dynamics for the spatially
heterogeneous model and the global stabilities of the two classes of steady states
for the spatially homogeneous model in the case of a bounded spatial domain.
Furthermore, we are also interested in the nonexistence of travelling wave solutions
when R0 < 1 in the case of an unbounded spatial domain.

This paper is organized as follows. In Section 2, we discuss well posedness of
the model (1.3). In the case of a bounded spatial domain, we establish the basic
reproduction number R0 and investigate the threshold dynamics. By means of
different Lyapunov functions, the global asymptotic properties of the steady states
are obtained in Section 3. In Section 4, the non-existence of travelling wave solutions
which connects the infection-free steady state E0 with itself of the model (1.3)
when R0 < 1 is discussed. In Section 5, numerical simulations and conclusions are
given. We also investigate the existence of travelling wave solutions connecting the
infection free steady state E0 and the chronic-infection steady state E∗ by numerical
simulations.



Global dynamics of a reaction and diffusion model for an HTLV-I infection 903

2. Spatially heterogeneous model

In this section, we investigate the well posedness of the model (1.3) and establish the
basic reproduction number R0. Further, we study the threshold dynamics in terms
of R0 for the spatially heterogeneous model, assuming a bounded spatial domain
Ω ⊆ RN .

2.1. Well posedness of the model

In this section, we use the method similar to [34] study the well posedness of the
model (1.3) (see, also [55]). As usual, we denote the following positive cone in R4

by R4
+, i.e.,

R4
+ = {U = (xs, u, y, z)

T ∈ R4 | xs ≥ 0, u ≥ 0, y ≥ 0, z ≥ 0}.

Let p > 4 so that the space W 1,p(Ω,R4) is continuously embedded in the continuous
function space C(Ω,R4) (see, for example [1]). Since xs, u, y and z are populations,
we only need to consider the following phase space

X+ = {U ∈W 1,p(Ω,R4) | U(Ω) ⊂ R4
+ and ∂U/∂n = 0 on ∂Ω}.

Obviously, the model (1.3) can be rewritten as the following abstract quasi-linear
parabolic model

Ut +A(U)U = F(x, U), x ∈ Ω, t > 0,

BU = 0, x ∈ ∂Ω, t > 0,

where

A(U)U = −
∑
j,k

∂j(aj,k∂kU), BU =
∂U

∂n
,

and aj,k = aδj,k, 1 ≤ j, k ≤ 4,

a =


D1 0 0 0

0 D1 0 0

0 0 D1 0

0 0 0 D2

 ,

here δj,k is the Kronecker delta function, and

F(x, U) =
(
ξ(x)− µ1xs − β(x)xqsy, β(x)xqsy + r(x)y − (τ(x) + µ2)u,

τ(x)u− γ(x)yz − µ3y, v(x)y − µ4z
)T
,

for U = (xs, u, y, z). Clearly, we know that a ∈ C2(L(R4
+)), where we identified

L(R4
+) with the space of 4 × 4 real matrices. Furthermore, the boundary value

problem is normally elliptic (see, for example [3]). For the global existence and
nonnegativity of solutions of the model (1.3), we have the following theorem.
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Theorem 2.1. Assuming that r < µ, for every initial value (xs0, u0, y0, z0), the
model (1.3) has a unique solution defined on [0,+∞)× Ω, such that

(xs, u, y, z) ∈ C
(

[0,+∞), X+

)
∩ C2,1

(
[0,+∞)× Ω,R4

)
.

Moreover, the solution of the model (1.3) satisfies xs(x, t) ≥ 0, u(x, t) ≥ 0, y(x, t) ≥
0 and z(x, t) ≥ 0, for all (t, x) ∈ [0,+∞)× Ω, where µ = min{µ1, µ2, µ3}.

Proof. Note that the model (1.3) is normally elliptic and triangular. According
to [3, Theorem 14.4 and Theorem 14.6] or [2, Theorem 1], the model (1.3) has a
unique classical solution (xs, u, y, z) defined on [0, η0)× Ω such that

(xs, u, y, z) ∈ C
(

[0, η0), X+

)
∩ C2,1

(
[0, η0)× Ω, R4

)
,

where η0 > 0 is the maximal interval of existence of the solution of the model (1.3).
From [3, Theorem 15.1], we know that the solution of the model (1.3) is nonnegative.
In order to show that η0 = +∞, motivated by [2, Theorem 5.2], it suffices to prove
that the solution of the model (1.3) is bounded.

Next, we need to show that any nonnegative solution (xs(x, t), u(x, t), y(x, t), z(x, t))
of the model (1.3) lies in a certain bounded region.

Let W = xs + u+ y. Adding the first three equations of the model (1.3) yields

∂W (x, t)

∂t
≤ D1∆W + ξ − (µ− r)W.

By [31, Lemma 1], we know that ξ
µ−r is the globally attractive steady state for the

scalar parabolic equations

∂W (x, t)

∂t
= D∆W + ξ − (µ− r)W, x ∈ Ω, t > 0,

∂W

∂n
= 0, x ∈ ∂Ω, t > 0.

From [42, Theorem 7.3.4], we know that xs + u+ y is bounded. Combined with
the nonnegativity of xs, u, and y, we obtain that xs(x, t), u(x, t) and y(x, t) of the
model (1.3) are bounded. We assume 0 ≤ xs(x, t) ≤ XM , 0 ≤ u(x, t) ≤ UM and
0 ≤ y(x, t) ≤ YM .

Here we assume r < µ which corresponds to the producing rate of CD4+ T cells
being lower than the rate of removal due to natural death [33]. Thus, it ensures
that the quantity on the right-hand side of the inequality is always positive.

From the last equation of the model (1.3), we have

∂z(x, t)

∂t
= D2∆z + v(x)y(x, t)− µ4z(x, t)

≤ D2∆z + YMv − µ4z(x, t),

which implies that z(x, t) of the model (1.3) is bounded assuming that 0 ≤ z(x, t) ≤
ZM . We completes the proof.
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2.2. Basic reproduction number

In this subsection, we establish the basic reproduction number R0 for the reaction-
diffusion equation with spatially heterogenous for the model (1.3).

Letting X = C(Ω, R4) be the Banach space of continuous functions with supre-
mum norm ‖ · ‖X. We also denote the positive cone as X+ = C(Ω, R4

+). It is easy
to see that X+ induces a partial order, making (X, X+) strongly ordered space.
Again, we denote Y := C(Ω, R) and Y+ = C(Ω, R+).

To this end, we firstly show that the model (1.3) has a unique infection-free
steady state. Letting u(x, t) = 0, y(x, t) = 0 and z(x, t) = 0 in the xs(x, t) equation
in the model (1.3), we easily obtain that

∂xs(x, t)

∂t
= D1∆xs(x, t) + ξ(x)− µ1xs(x, t), x ∈ Ω, t > 0,

∂xs(x, t)

∂n
= 0, x ∈ ∂Ω, t > 0.

(2.1)

From [31, Lemma 1], we easily obtain that the model (2.1) has a unique positive
steady state x̂s(x), which is globally attractive in C(Ω,R). Thus, the model (1.3)
has a unique infection-free steady state E0 = (x̂s(x), 0, 0, 0).

Linearizing the model (1.3) at E0, we obtain the following linearized model

∂u1

∂t
= D1∆u1 − µ1u1 − β(x)x̂s

q(x)u3,

∂u2

∂t
= D1∆u2 +

(
β(x)x̂s

q(x) + r(x)
)
u3 −

(
µ2 + τ(x)

)
u2,

∂u3

∂t
= D1∆u3 + τ(x)u2 − µ3u3,

∂u4

∂t
= D2∆u4 + v(x)u3 − µ4u4,

(2.2)

satisfying the following boundary conditions

∂u1

∂n
=
∂u2

∂n
=
∂u3

∂n
=
∂u4

∂n
= 0, ∀x ∈ ∂Ω, t > 0.

From the model (2.2), we easily observe that the equations u2 and u3 are inde-
pendent from the equations u1 and u4. Obviously, we know that these two e-
quations constitute a cooperative system. Substituting u2(x, t) = eλtϕ1(x) and
u3(x, t) = eλtϕ2(x) into equations of u2 and u3 of the model (2.2), we get the
following eigenvalue problem

λϕ1(x) = D1∆ϕ1(x) +
(
β(x)x̂s

q(x) + r(x)
)
ϕ2(x)−

(
τ(x) + µ2

)
ϕ1(x),

λϕ2(x) = D1∆ϕ2(x) + τ(x)ϕ1(x)− µ3ϕ2(x),
(2.3)

∂ϕ1(x)

∂n
=
∂ϕ2(x)

∂n
= 0, ∀x ∈ ∂Ω, t > 0, ϕ = (ϕ1, ϕ2) ∈ Y× Y.

According to [42, Theorem 7.6.1], we easily get the following Lemma.

Lemma 2.1. The eigenvalue problem (2.3) has a principal eigenvalue λ0

(
D1, x̂s(x)

)
with a strictly positive eigenvector.
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Assuming that for each t ≥ 0, T1(t) and T2(t) are the strongly continuous semi-

groups associated with D1∆ −
(
τ(x) + µ2

)
and D1∆ − µ3 subject to Neumann

boundary conditions, respectively, that is,

[T1(t)φ](x) =

∫
Ω

Γ(x, y, t,D1)φ(y)dy

and

[T2(t)φ](x) = e−µ3t

∫
Ω

Γ(x, y, t,D1)φ(y)dy

for any φ1, φ2 ∈ Y, t ≥ 0. Here Γ(x, y, t,D1) represents the Green function associ-
ated with D1∆ subject to homogenous Neumann boundary conditions. Therefore,
it can be known that Ti(t) : Y → Y, i = 1, 2 is strongly positive and compact for

each t > 0 ( [42, Corollary 7.2.3]). Thus, we obtain that T (t) =
(
T1(t), T2(t)

)
is a

positive C0− semigroup.
According to [45, 52], we obtain the basic reproduction number of the model

(1.3) (see, also [31]). To this end, we define a positive linear operator as follows

S(φ)(x) =
(
S1(φ)(x),S2(φ)(x)

)
, ∀φ = (φ1, φ2) ∈ Y× Y, x ∈ Ω,

where

S1(φ)(x) =
(
β(x)x̂s

q(x) + r(x)
)
φ2(x), S2(φ)(x) = τ(x)φ1(x).

In order to establish the basic reproduction number for the spatially heterogeneous
model (1.3), we assume that there are no infected cells (both latently infected
and actively infected) initially. In other words, the model (1.3) is near E0. Let
(φ1(x), φ2(x)) be the spatial distribution of initial latently infected cells and actively
infected cells at t = 0. According to the model (1.3), we obtain that, as time evolves,

those distributions can reach
(

[T1(t)φ1](x), [T2(t)φ2](x)
)

at time t. Therefore, the

total distribution of new latently infected cells can have the following form

[ +∞∫
0

S1(T (t)φ)dt
]
(x) =

+∞∫
0

(
β(x)x̂s

q(x) + r(x)
)

[T2(t)φ2](x)dt.

Similarly, the total distribution of new actively infected cells have the following form

[ +∞∫
0

S2(T (t)φ)dt
]
(x) =

+∞∫
0

τ(x)[T1(t)φ1](x)dt.

Hence, we obtain that

L(φ) =

+∞∫
0

S
(
T (t)φ

)
dt = S

+∞∫
0

(
T (t)φ

)
dt.

Here L represents the next infection operator. Biologically, the next infection op-
erator maps the initial distribution φ of initial latently infected cells and actively
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infected cells to the total distribution of new latently infected cells and actively
infected cells produced during the infection period.

In view of [9,47,52], we define the spectral radius of L as the basic reproduction
number of the model (1.3), that is,

R0 = r(L).

By the results in [45] (see, also [53, Theorem 3.1 (i)]), we obtain the following
lemma.

Lemma 2.2. R0 − 1 has the same sign as λ0.

Since the parameters depend on the location x, we cannot give the explicit
formula for R0 = r(L). For simplicity, here, we assume that all the parameters of
the model (1.3) are constants. In the special case, the explicit formula for R0 can
be actually derived. Indeed, applying [53, Theorem 3.4] (see also, [31, Lemma 5]),
we easily obtain the following theorem.

Theorem 2.2. Assume that ξ(x), β(x), r(x), τ(x), γ(x), and v(x) are positive
constants, so that x̂s(x) = ξ

µ1
, xH . Then

R0 =

√
τ(βxqH + r)

(τ + µ2)µ3
.

We cannot give the explicit formula for the basic reproduction number R0 if
at least one of the parameters are spatially dependent. In this case, numerical
simulation becomes a natural choice (see, for example [34, 53]). It is worth noting
that the diffusion coefficients have no effects on the basic reproduction number R0

for the case of spatially homogeneous model. We employ numerical simulations to
investigate the influence of diffusion coefficients for the basic reproduction number
R0 in the case of the spatially heterogeneous model. For simplicity, we assume
Ω = (0, 1). Then we have

Γ(x, y, t,D) = 1 + 2

∞∑
n=1

e−Dn
2π2t cos(nπx) cos(nπy).

Note that L is a compact and positive linear operator on X = C([0, 1], R2). There-
fore, we employ the orthogonal projection method to simulate the basic reproduction
number R0 by computing the eigenvalues of compact linear operators [8]. Let

ξ = 105, β(x) = 3×10−9x2, r = 0.1, τ = 0.3, µ1 = 0.1, µ2 = 0.2, µ3 = 0.4, γ = 450.

From the numerical simulation, we find that R0 is a decreasing function of D1 (see,
Figure 1). Further, we find that R0 = 1 when D1 ≈ 0.03.

2.3. Threshold dynamics in a bounded spatial domain

In this subsection, we establish the threshold-type result in terms ofR0 in a bounded
spatial domain. To this end, we need the following Lemmas. In the following, we
also assume r < µ.

Lemma 2.3. For any φ = (φ1, φ2, φ3, φ4) ∈ X+, the solution semiflow Φ(t) =
U(t, ·, φ) : X+ → X+ has a compact global attractor for t > 0.
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Figure 1. Basic reproduction number R0 is a decreasing function of D1.

Proof. From the analysis of Theorem 2.1, we obtain that

∂W (x, t)

∂t
≤ D1∆W + ξ − (µ− r)W.

Then, the comparison principle implies there exists t1(φ) > 0 such that xs(x, t) ≤
2ξ
µ−r =: B1, u(x, t) ≤ 2ξ

µ−r =: B1 and y(x, t) ≤ 2ξ
µ−r =: B1 for t > t1.

From the forth equation of the model (1.3), we obtain that

∂z(x, t)

∂t
≤ D1∆z + vB1 − µ4z(x, t).

Again, the comparison principle implies there exists t2(φ) > 0 such that z(x, t) ≤
2vB1

µ4
=: B2 for t > t2.

Furthermore, the solution semiflow Φ(t) = U(t, ·, φ) : X+ → X+ is point dis-
sipative. Then it suffices to prove that the solution semiflow is compact. In view
of [48, Theorem 2.2.6], we can get that Φ(t) is compact for any t > 0. Thus,
from [14, Theorem 3.4.8], it can be concluded that Φ(t) = U(t, ·, φ) has a compact
global attractor in X+ for t > 0.

Lemma 2.4. Let U(t, ·, φ) be the solution of the model (1.3) with U(0, ·, φ) = φ ∈
X+, then we have

(i) If there exists some t0 > 0 such that u(t0, ·, φ) 6≡ 0, y(t0, ·, φ) 6≡ 0 and
z(t0, ·, φ) 6≡ 0, then u(t, ·, φ) > 0, y(t, ·, φ) > 0, and z(t, ·, φ) > 0 for all t > t0,
x ∈ Ω.

(ii) It holds that xs(t, ·, φ) > 0 for any t > 0, x ∈ Ω, q ≥ 1, and

lim inf
t→∞

xs(t, ·, φ) ≥
ξ

µ1 + βBq1

uniformly for x ∈ Ω.
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Proof. From the model (1.3), we easily obtain that

∂u(x, t)

∂t
≥ D1∆u− (τ(x) + µ2)u(x, t),

∂y(x, t)

∂t
≥ D1∆y − (γ(x)z(x, t) + µ3)y(x, t),

∂z(x, t)

∂t
≥ D2∆z − µ4z(x, t),

∂u(x, t)

∂n
=
∂y(x, t)

∂n
=
∂z(x, t)

∂n
= 0, x ∈ ∂Ω.

If u(t0, ·, φ) 6≡ 0, y(t0, ·, φ) 6≡ 0 and z(t0, ·, φ) 6≡ 0, the comparison principle implies
that u(t, ·, φ) > 0, y(t, ·, φ) > 0, and z(t, ·, φ) > 0 for t > t0, x ∈ Ω, that is, the
conclusion (i) holds.

From the model (1.3), we easily obtain that

∂xs(x, t)

∂t
= D1∆xs + ξ(x)− µ1xs(x, t)− β(x)xqs(x, t)y(x, t),

≥ D1∆xs + ξ − (µ1 + βB1x
q−1
s )xs.

In order to show the conclusion (ii), there are two cases to be discussed.
If q = 1, we obtain that xs(t, ·, φ) ≥ v(t, ·, φ) > 0 for t > 0, x ∈ Ω and

lim inf
t→∞

xs(t, ·, φ) ≥
ξ

βB1 + µ1

uniformly for x ∈ Ω.
If q > 1, we obtain that xs(t, ·, φ) ≥ v(t, ·, φ) > 0 for t > 0, x ∈ Ω and

lim inf
t→∞

xs(t, ·, φ) ≥
ξ

µ1 + βBq1

uniformly for x ∈ Ω.
From the analysis above, we obtain that xs(t, ·, φ) ≥ v(t, ·, φ) > 0 for t > 0,

x ∈ Ω and

lim inf
t→∞

xs(t, ·, φ) ≥
ξ

µ1 + βBq1

for any q ≥ 1, uniformly for x ∈ Ω. We complete the proof.
In order to establish the uniform persistence of the model (1.3), we need to show

the following Lemma.

Lemma 2.5. If R0 > 1, then there exists τ1 > 0 such that for any φ ∈ X+ with
φ2 6≡ 0 and φ3 6≡ 0 the solution U(t, ·, φ) of the model (1.3) satisfying

lim sup
t→∞

‖ U(t, ·, φ)− (x̂s(x), 0, 0, 0) ‖X+≥ τ1.

Proof. For any given φ ∈ X+ with φ2 6≡ 0 and φ3 6≡ 0, let

U(t, x, φ) =
(
xs(t, x), u(x, t), y(t, x), z(t, x)

)
.
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By the parabolic maximum principle and Lemma 2.4, from the model (1.3), we
easily get

u(t, x) > 0, y(t, x) > 0, ∀t > 0, x ∈ Ω. (2.4)

Since R0 > 1, from Lemma 2.2, we easily get λ0 > 0. Then for any given τ1 ∈
(0, x̂s(x)], let λ0(τ1) be the principal eigenvalue of the following elliptic eigenvalue
problem

λϕ1(x) = D1∆ϕ1(x) +
(
β(x)(x̂s(x)− τ1)q + r(x)

)
ϕ2(x)−

(
τ(x) + µ2

)
ϕ1(x),

λϕ2(x) = D1∆ϕ2(x) + τ(x)ϕ1(x)−
(
µ3 + γ(x)τ1

)
ϕ2(x),

∂ϕ1(x)

∂n
=
∂ϕ2(x)

∂n
= 0, ∀x ∈ ∂Ω, t > 0, ϕ = (ϕ1, ϕ2) ∈ Y× Y.

It is easy to obtain lim
τ1→0+

λ0(τ1) = λ0. Therefore, we can fix a sufficiently small

number τ1 ∈ (0, x̂s(x)] such that λ0(τ1) > 0. By contradiction, we assume that
there exists some φ ∈ X+ with φ2 6≡ 0 and φ3 6≡ 0 such that

lim sup
t→∞

‖ U(t, ·, φ)− (x̂s(x), 0, 0, 0) ‖X+
< τ1.

Then there exists a sufficiently large positive number T1 such that

x̂s(x)− τ1 < xs(x, t) < x̂s(x) + τ1, y(x, t) < τ1, z(x, t) < τ1, ∀t ≥ T1, x ∈ Ω.

Therefore, for ∀t ≥ T1, x ∈ Ω, we obtain the following model
∂u

∂t
≥ D1∆u+

(
β(x)(x̂s(x)− τ1)q + r(x)

)
y −

(
µ2 + τ(x)

)
u,

∂y

∂t
≥ D1∆y + τ(x)u−

(
µ3 + γ(x)τ1

)
y,

We easily see that (v2(x, t), v3(x, t)) := eλ0(τ1)t
(
ψ1(x), ψ2(x)

)
satisfies the follow-

ing linear model
∂v2

∂t
= D1∆u2 +

(
β(x)(x̂s(x)− τ1)q + r(x)

)
v3 −

(
µ2 + τ(x)

)
v2,

∂v3

∂t
= D1∆v3 + τ(x)v2 −

(
µ3 + γ(x)τ1

)
v3, t ≥ T1.

Here,
(
ψ1(x), ψ2(x)

)
be the positive eigenfunction associated with λ0.

In view of (2.4) and the comparison principle, we can choose a sufficiently small
number ϑ > 0 such that(

u(x, t), y(x, t)
)
≥ ϑ

(
v2(x, t), v3(x, t)

)
, ∀t ≥ T1, x ∈ Ω.

Since λ0(τ1) > 0, we obtain

lim
t→+∞

u(t, x) =∞, lim
t→+∞

y(t, x) =∞,

which is a contradiction. We complete the proof.
Now we state the result of threshold dynamics as follows.
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Theorem 2.3. If R0 < 1, then the infection-free steady state E0 is globally attrac-
tive in X+ for the model (1.3).

If R0 > 1, then there exists ζ > 0 such that any nonnegative solution U(t, x, φ)
with φ2 6≡ 0 and φ3 6≡ 0 such that

lim inf
t→∞

u(x, t) ≥ ζ, lim inf
t→∞

y(x, t) ≥ ζ,

uniformly for all x ∈ Ω.

Proof. It is easy to see that λ0(x̂s(x)) < 0 when R0 < 1 by Lemma 2.2. Since

lim
ε→0

λ0

(
x̂s(x) + ε

)
= λ0

(
x̂s(x)

)
< 0,

there exists ε0 > 0 sufficiently small such that λ0

(
x̂s(x)+ε0

)
< 0. For fixed ε0 > 0,

there exists T2 > 0 such that xs(x, t) ≤ x̂s(x) + ε0 for all t ≥ T2, x ∈ Ω. Therefore,
for all t ≥ T2, we obtain the following

∂u

∂t
≤ D1∆u+

(
β(x)(x̂s(x) + ε0)q + r(x)

)
y −

(
µ2 + τ(x)

)
u,

∂y

∂t
≤ D1∆y + τ(x)u− µ3y,

∂z

∂t
≤ D2∆z + v(x)y − µ4z.

Then there exists a strongly positive eigenfunction ψ0 corresponding to λ0(x̂s(x) +
ε0) < 0. It then obtains the following linear system

∂V1

∂t
= D1∆V1 +

(
β(x)(x̂s(x) + ε0)q + r(x)

)
V2 −

(
µ2 + τ(x)

)
V1,

∂V2

∂t
= D1∆V2 + τ(x)V1 − µ3V2,

∂V3

∂t
= D2∆V3 + v(x)V2 − µ4V3.

∂V1

∂n
=
∂V2

∂n
=
∂V3

∂n
= 0, x ∈ ∂Ω,

admits a solution V (t, x) = eλ0(x̂s(x)+ε0)tψ0(x). Since for any given φ ∈ X+, there
exists ά > 0 such that(

u(T2, ·, φ), y(T2, ·, φ), z(T2, ·, φ)
)
≤ άV (T2, ·, φ).

It then follow from the comparison principle(
u(t, x, φ), y(t, x, φ), z(t, x, φ)

)
≤ άeλ0(x̂s(x)+ε0)tψ0(x), ∀t ≥ T2.

We then obtain that lim
t→+∞

(
u(t, x, φ), y(t, x, φ), z(t, x, φ)

)
= 0 uniformly for x ∈ Ω.

Therefore, in view of [31], we obtain that

lim
t→+∞

xs(t, x, φ) = x̂s(x)
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uniformly for ∀x ∈ Ω. Then we obtain that the infection-free steady state E0 of the
model (1.3) is globally attractive if R0 < 1 in X+.

Next, we apply method developed in [43] to study the uniform persistence of
the model (1.3) when R0 > 1.

Define

X0 =
{
φ = (φ1, φ2, φ3, φ4) ∈ X+ : φ2 6≡ 0 and φ3 6≡ 0

}
.

Clearly, we have

∂X0 := X+\X0 =
{
φ ∈ X+ : φ2 ≡ 0 or φ3 ≡ 0

}
.

In view of (2.4), we obtain that X0 is positively invariant for the solution semiflow
Φ(t). Define

Q∂ :=
{
φ ∈ ∂X0 : Φ(t)φ ∈ ∂X0, ∀ t ≥ 0

}
.

Let ω(φ) be the omega limit set of the orbit of Φ(t) through φ ∈ ∂X0, and set

Q1 :=
{

(x̂s(x), 0, 0, 0)
}
.

For any given φ ∈ Q∂ , we have Ut(φ) ∈ ∂X0. Due to Ut(φ) = U(t, ·, φ), we
know that for each t ≥ 0 either y(t, ·, φ) ≡ 0 or u(t, ·, φ) ≡ 0. For the case where
y(t, ·, φ) ≡ 0, ∀ t ≥ 0, from the second equation of the model (1.3), it can be
seen that lim

t→+∞
u(t, x) = 0. From the forth equation of the model (1.3), we obtain

lim
t→+∞

z(t, x) = 0. Furthermore, from the first equation of the model (1.3), we know

that
lim

t→+∞
xs(t, x) = x̂s(x)

uniformly for x ∈ Ω. In the case where y(t0, ·, φ) 6≡ 0 for some t0 > 0, by parabolic
maximum principle, it can be obtained that y(t, ·, φ) > 0 for all t > t0 and x ∈ Ω.
Thus, we have u(t, ·, φ) ≡ 0 for all t ≥ t0. From the second equation of the model
(1.3), we get y(t, ·, φ) ≡ 0, for t ≥ t0, which is a contradiction. Thus, we get
ω(φ) = Q1, ∀φ ∈ Q∂ .

Furthermore, we define a continuous function p : X+ → R+ by

p(φ) = min
{

min
x∈Ω

φ2(x), min
x∈Ω

φ3(x)
}
, ∀ φ ∈ X+.

It is easy to see that p−1(0, +∞) ⊂ X0 and p has the property that if either p(φ) = 0
and φ ∈ X0, or p(φ) > 0, then p(Φ(t)(φ)) > 0. Consequently, p is a generalized
distance function for the semiflow Φ(t) : X+ → X+. Note that any forward orbit of
Φ(t) in Q∂ converges to Q1. From [43, Theorem 3], it can be concluded that Q1 is
isolated invariant set in X+. Then we know that W s(Q1) ∩ X0 = ∅. Here W s(Q1)
represents the stable set of Q1. Furthermore, we can easily observe that no subset
of Q1 forms a cycle in ∂X0. In view of [43, Theorem 3], we show that there exists
ζ > 0 such that min{p(ψ) : ψ ∈ ω(φ)} > ζ for any φ ∈ X0. We complete the proof.

According to the [57, Theorem 1.3.6], we easily obtain the following result.

Corollary 2.1. If R0 > 1, then the model (1.3) has at least one coexistence steady
state.
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3. Spatially homogeneous model

In this section, we investigate the global stabilities of the steady states for the
spatially homogeneous model in a bounded spatial domain. For convenience, we
assume that all the parameters are constants. That is, we consider the following
dynamic model

∂xs(x, t)

∂t
= D1∆xs + ξ − µ1xs(x, t)− βxqs(x, t)y(x, t),

∂u(x, t)

∂t
= D1∆u+ βxqs(x, t)y(x, t) + ry(x, t)− (τ + µ2)u(x, t),

∂y(x, t)

∂t
= D1∆y + τu(x, t)− γy(x, t)z(x, t)− µ3y(x, t),

∂z(x, t)

∂t
= D2∆z + vy(x, t)− µ4z(x, t).

(3.1)

3.1. The existence of the steady states

The model (3.1) always has an infection-free steady state E0(xH , 0, 0, 0), where
xH = ξ

µ1
. Next, we will prove the existence of the unique chronic-infection steady

state of the model (3.1),

y∗ =
ξ − µ1x

∗
s

β(x∗s)
q
, z∗ =

vy∗

µ4
, u∗ =

rv

τµ4
(y∗)2 +

µ3

2
y∗,

where x∗s is the root of the following equation

F (x) = βxq + r − (τ + µ2)
( rv

τµ4

ξ − µ1x

βxq
+
µ3

τ

)
= 0.

Obviously, F (x) is a monotonically nondecreasing function of x and F (0) = −∞ on
x ∈ (0, xH), so x∗s is unique, if it exists.

Moreover, since

F (xH) = β(xH)q + r − µ3(τ + µ2)

τ
=

(τ + µ2)µ3

τ
(R2

0 − 1),

the existence of a unique positive root x∗ ∈ (0, xH) of F (x) = 0 is equivalent to the
condition that R0 > 1. Then we have the following theorem.

Theorem 3.1. (i) The model (3.1) always has an infection-free steady state
E0(xH , 0, 0, 0);

(ii) The model (3.1) has a unique chronic-infection steady state E∗(x∗s, u
∗, y∗, z∗)

if and only if R0 > 1.

3.2. The global stability of the steady states

In general, it seems to be very difficult to establish the global stability of the steady
states for reaction-diffusion equation models. In recent years, there are many works
to investigate the global stabilities of the steady states by employing the techniques
of the upper and lower solutions, monotone iteration and Lyapunov direct method
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(see, for example, [51, 56, 58]). Here, by constructing the suitable Lyapunov func-
tions, we discuss the global stabilities of the infection-free steady state E0 and the
chronic-infection steady state E∗ of the model (3.1) with the homogeneous Neu-
mann boundary conditions (1.4) and the initial conditions (1.5). The Lyapunov
functions are motivated by the works of [20–22,24–26,36,51,52,59].

For the global stability of the infection-free steady state E0 of the model (3.1),
we have the following result.

Theorem 3.2. If R0 < 1, then the infection-free steady state E0 of the model (3.1)
is globally asymptotically stable.

Proof. If q 6= 1, we construct the following Lyapunov function

V1 =

∫
Ω

xs

(
1 +

1

q − 1
(
xH
xs

)q
)
dx+

∫
Ω

u(t, x)dx

+
τ + µ2

τ

∫
Ω

y(x, t)dx+
(τ + µ2)γ

2τv

∫
Ω

z2(x, t)dx.

Calculating the time derivative of V1 along the solution of the model (3.1), we have

∂V1

∂t
=−D

∫
Ω

qxqH ‖ ∇xs ‖2

xq+1
s

dx− D(τ + µ2)γ

τv

∫
Ω

‖ ∇z ‖2dx

+

∫
Ω

[ξ − βxqsy − µ1xs − (
xH
xs

)q(ξ − βxqsy − µ1xs)]dx

+

∫
Ω

[βxqsy + ry − (τ + µ2)u]dx+

∫
Ω

τ + µ2

τ
(τu− γyz − µ3y)dx

+

∫
Ω

(τ + µ2)γ

τv
z(vy − µ4z)dx

=−D
∫

Ω

qxqH ‖ ∇xs ‖2

xq+1
s

dx− D(τ + µ2)γ

τv

∫
Ω

‖ ∇z ‖2dx

+

∫
Ω

µ1xH [1− xs
xH
− (

xH
xs

)q + (
xH
xs

)q−1]dx

+

∫
Ω

y[βxqH + r − µ3(τ + µ2)

τ
]dx−

∫
Ω

(τ + µ2)γµ4

τv
z2dx

=−D
∫

Ω

qxqH ‖ ∇xs ‖2

xq+1
s

dx− D(τ + µ2)γ

τv

∫
Ω

‖ ∇z ‖2dx

+

∫
Ω

[1− xs
xH

][1− (
xH
xs

)q]dx+

∫
Ω

y[βxqH + r − µ3(τ + µ2)

τ
]dx

−
∫

Ω

(τ + µ2)γµ4

τv
z2dx

=−D
∫

Ω

qxqH ‖ ∇xs ‖2

xq+1
s

dx− D(τ + µ2)γ

τv

∫
Ω

‖ ∇z ‖2dx

+

∫
Ω

[1− xs
xH

][1− (
xH
xs

)q]dx+

∫
Ω

µ3(τ + µ2)

τ
(R2

0 − 1)ydx

−
∫

Ω

(τ + µ2)γµ4

τv
z2dx.
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Since
[1− xs

xH
][1− (

xH
xs

)q] ≤ 0

for all q, xs > 0.

Hence, R0 < 1 ensures ∂V1(x,t)
∂t ≤ 0. For ∂V1(x,t)

∂t = 0, if and only if xs = xH , y =
0, z = 0, combined with the model (3.1), we have u = 0. The largest compact

invariant set in {(xs, u, y, z) ∈ R4
+ : ∂V1(x,t)

∂t = 0} is the singleton E0. By LaSalle
invariant principle ( [16, Theorem 5.3.1]), the infection-free steady state E0 of the
model (3.1) is globally asymptotically stable.

If q = 1, a Lyapunov function of the model (3.1) is defined as follows

V2 =

∫
Ω

(
xs − xH − xH ln

xs
xH

)
dx+

∫
Ω

u(t, x)dx

+
τ + µ2

τ

∫
Ω

y(x, t)dx+
(τ + µ2)γ

2τv

∫
Ω

z2(x, t)dx.

Calculating the time derivative of V2 along the solution of the model (3.1), we have

∂V2

∂t
= −D

∫
Ω

xH ‖ ∇xs ‖2

x2
s

dx− D(τ + µ2)γ

τv

∫
Ω

‖ ∇z ‖2dx

−
∫

Ω

µ1

xs
(xs − xH)2dx+

∫
Ω

µ3(τ + µ2)

τ
(R2

0 − 1)ydx+

∫
Ω

γµ4(τ + µ2)

τv
z2dx.

Hence, R0 < 1 ensures ∂V2(x,t)
∂t ≤ 0. For ∂V2(x,t)

∂t = 0, if and only if xs = xH , y =
0, z = 0, combined with the model (3.1), we have u = 0. The largest compact

invariant set in {(xs, u, y, z) ∈ R4
+ : ∂V2(x,t)

∂t = 0} is the singleton E0. By LaSalle
invariant principle ( [16, Theorem 5.3.1]), the infection-free steady state E0 of the
model (3.1) is globally asymptotically stable.

Thus, for any q, the infection-free steady state E0 of the model (3.1) is globally
asymptotically stable if R0 < 1. The proof is completed.

For the global stability of the chronic-infection steady state E∗ of the model
(3.1), we have the following result.

Theorem 3.3. If R0 > 1, then the chronic-infection steady state E∗ of the model
(3.1) is globally asymptotically stable.

Proof. If q 6= 1, we define a Lyapunov function of the model (3.1) as follows

V3 =

∫
Ω

xs

(
1 +

1

q − 1
(
x∗s
xs

)q
)
dx+

∫
Ω

(u− u∗ − u∗ ln
u

u∗
)dx

+
τ + µ2

τ

∫
Ω

(y − y∗ − y∗ ln
y

y∗
)dx+

γz∗(τ + µ2)

τv

∫
Ω

(z − z∗ − z∗ ln
z

z∗
)dx.

Calculating the time derivative of V3 along the solution of the model (3.1), we have

∂V3

∂t
=−D

∫
Ω

q(x∗s)
q ‖ ∇xs ‖2

xq+1
s

dx−D
∫

Ω

u∗ ‖ ∇u ‖2

u2
dx

− D(τ + µ2)

τ

∫
Ω

y∗ ‖ ∇y ‖2

y2
dx− γz∗(τ + µ2)

τv

∫
Ω

z∗ ‖ ∇z ‖2

z2
dx

+

∫
Ω

[ξ − βxqsy − µ1xs − (
x∗s
xs

)q(ξ − βxqsy − µ1xs)]dx
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+

∫
Ω

{(1− u∗

u
)[βxqsy + ry − (τ + µ2)u]}dx

+

∫
Ω

[
τ + µ2

τ
(1− y∗

y
)(τu− γyz − µ3y) +

γz∗(τ + µ2)

τv
(1− z∗

z
)(vy − µ4z)]dx.

Noting that 

ξ = β(x∗s)
qy∗ + µ1x

∗
s,

β(x∗s)
qy∗ + ry∗ = (τ + µ2)u∗,

τu∗ = γy∗z∗ + µ3y
∗,

vy∗ = µ4z
∗.

(3.2)

It follows from (3.2) that

∂V3

∂t
=−D

∫
Ω

q(x∗s)
q ‖ ∇xs ‖2

xq+1
s

dx−D
∫

Ω

u∗ ‖ ∇u ‖2

u2
dx

− D(τ + µ2)

τ

∫
Ω

y∗ ‖ ∇y ‖2

y2
dx− γz∗(τ + µ2)

τv

∫
Ω

z∗ ‖ ∇z ‖2

z2
dx

+

∫
Ω

[µ1x
∗
s + β(x∗s)

qy∗ − βxqsy − µ1xs]dx

+

∫
Ω

[−(µ1x
∗
s + β(x∗s)

qy∗)(
x∗s
xs

)q + β(x∗s)
qy + µ1xs(

x∗s
xs

)q + β(x∗s)
qy]dx

+

∫
Ω

[β(xs)
qy + ry − (τ + µ2)u− u∗

u
β(xs)

qy − u∗

u
ry + (τ + µ2)u∗]dx

+

∫
Ω

β(x∗s)
qy∗ + ry∗

τu∗
(τu− τu∗ y

y∗
− y∗

y
τu+ τu∗)dx

+

∫
Ω

τ + µ2

τ
(γyz∗ − γyz − γy∗z∗ + γy∗z)dx

+

∫
Ω

rz∗(τ + µ2)

τv
(vy − vy∗ z

z∗
− z∗

z
vy + vy∗)dx

=−D
∫

Ω

q(x∗s)
q ‖ ∇xs ‖2

xq+1
s

dx−D
∫

Ω

u∗ ‖ ∇u ‖2

u2
dx

− D(τ + µ2)

τ

∫
Ω

y∗ ‖ ∇y ‖2

y2
dx− γz∗(τ + µ2)

τv

∫
Ω

z∗ ‖ ∇z ‖2

z2
dx

+

∫
Ω

µ1x
∗
s(1−

xs
x∗s

)[1− (
x∗s
xs

)q]dx+

∫
Ω

ry∗(2− u∗y

uy∗
− uy∗

u∗y
)dx

+

∫
Ω

γyz∗(τ + µ2)

τ
(2− z

z∗
− z∗

z
)dx

+

∫
Ω

β(x∗s)
qy∗(3− (x∗s)

q

xqs
− u∗xqsy

u(x∗s)
qy∗
− y∗u

yu∗
)dx.

Hence, R0 > 1 ensures ∂V3(x,t)
∂t ≤ 0. For ∂V3(x,t)

∂t = 0, if and only if xs = x∗s, u =
u∗, y = y∗, z = z∗. The largest compact invariant set in {(xs, u, y, z) ∈ R4

+ :
∂V3(x,t)

∂t = 0} is the singleton E∗. By LaSalle invariant principle ( [16, Theorem
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5.3.1]), the chronic-infection steady state E∗ of the model (3.1) is globally asymp-
totically stable.

If q = 1, a Lyapunov function of the model (3.1) is defined as follows

V4 =

∫
Ω

(
xs − x∗s − x∗s ln

xs
x∗s

)
dx+

∫
Ω

(
u− u∗ − u∗ ln

u

u∗

)
dx

+
τ + µ2

τ

∫
Ω

(
y − y∗ − y∗ ln

y

y∗

)
dx+

γz∗(τ + µ2)

τv

∫
Ω

(
z − z∗ − z∗ ln

z

z∗

)
dx.

Calculating the time derivative of V4 along the solution of the model (3.1), we have

∂V4

∂t
=

∫
Ω

(1− x∗s
xs

)(D∆xs + ξ − βxsy − µ1xs)dx

+

∫
Ω

(1− u∗

u
)[D∆u+ βxsy + ry − (τ + µ2)u]dx

+
τ + µ2

τ

∫
Ω

(1− y∗

y
)(D∆y + τu− γyz − µ3y)dx

+
γ(τ + µ2)z∗

τν

∫
Ω

(1− z∗

z
)(D∆z + vy − µ4z)dx

=−D
∫

Ω

x∗s ‖ ∇xs ‖2

x2
s

dx−D
∫

Ω

u∗ ‖ ∇u ‖2

u2
dx− D(τ + µ2)

τ

∫
Ω

y∗ ‖ ∇y ‖2

y2
dx

− γz∗(τ + µ2)

τv

∫
Ω

z∗ ‖ ∇z ‖2

z2
dx−

∫
Ω

µ1

xs
(xs − x∗s)2dx

+

∫
Ω

βx∗sy
∗(3− x∗s

xs
− xsu

∗y

x∗suy
∗ −

uy∗

u∗y
)dx

+

∫
Ω

ry∗(2− u∗y

uy∗
− uy∗

u∗y
)dx−

∫
Ω

γy(τ + µ2)

τ

(z − z∗)2

z
dx.

Hence, R0 > 1 ensures ∂V4(x,t)
∂t ≤ 0. For ∂V4(x,t)

∂t = 0, if and only if xs = x∗s, u =
u∗, y = y∗, z = z∗. The largest compact invariant set in {(xs, u, y, z) ∈ R4

+ :
∂V4(x,t)

∂t = 0} is the singleton E∗. By LaSalle invariant principle ( [16, Theorem
5.3.1]), the chronic-infection steady state E∗ of the model (3.1) is globally asymp-
totically stable.

Therefore, for any q > 0, the chronic-infection steady state E∗ of the model
(3.1) is globally asymptotically stable if R0 > 1. The proof is completed.

4. Non-existence of travelling wave solutions

We are very interested in the existence of travelling wave solutions connecting the
infection free steady state E0 and the chronic-infection steady state E∗. However,
for the high dimentional system, it is very difficult to construct the suitable upper-
lower solutions. Here, we only discuss the non-existence of travelling wave solutions
which connect the infection-free steady state E0 with itself. For the existence of
travelling wave solutions, we only give a numerical example. For mathematical
considerations, we assume q = 1 and D0 = D1 = D in the model (3.1). Then we
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only consider the following model

∂xs(x, t)

∂t
= D∆xs + ξ − µ1xs(x, t)− βxs(x, t)y(x, t),

∂u(x, t)

∂t
= D∆u+ βxs(x, t)y(x, t) + ry(x, t)− (τ + µ2)u(x, t),

∂y(x, t)

∂t
= D∆y + τu(x, t)− γy(x, t)z(x, t)− µ3y(x, t),

∂z(x, t)

∂t
= D∆z + vy(x, t)− µ4z(x, t).

(4.1)

Without loss of generality, let x̂s = ξ
µ1
−xs. Thus, the model (4.1) is transformed

into (omitting the hats on xs for simplicity)

∂xs(x, t)

∂t
= D∆xs − µ1xs(x, t) + β

( ξ
µ1
− xs(x, t)

)
y(x, t),

∂u(x, t)

∂t
= D∆u+ β

( ξ
µ1
− xs(x, t)

)
y(x, t) + ry(x, t)− (τ + µ2)u(x, t),

∂y(x, t)

∂t
= D∆y + τu(x, t)− γy(x, t)z(x, t)− µ3y(x, t),

∂z(x, t)

∂t
= D∆z + vy(x, t)− µ4z(x, t).

(4.2)

Obviously, the model (4.2) has two steady states E0(0, 0, 0, 0) and E∗(k1, k2, k3, k4),
where k1 = ξ

µ1
− x∗s, k2 = u∗, k3 = y∗, k4 = z∗.

A travelling wave solution of the model (4.2) is a solution (φ, ϕ, ψ, γ) of the
special form xs(x, t) = φ(x + ct), u(x, t) = ϕ(x + ct), y(x, t) = ψ(x + ct), z(x, t) =
γ(x+ ct), where φ, ϕ, ψ, γ ∈ C2(R,R4) and c > 0 is a constant accounting for the
wave speed. Substituting xs(x, t) = φ(x+ct), u(x, t) = ϕ(x+ct), y(x, t) = ψ(x+ct),
z(x, t) = γ(x+ ct) and denoting the travelling wave coordinate x+ ct still by t, we
derive from the model (4.2) that

Dφ̈− cφ̇+ fc1(φt, ϕt, ψt, γt) = 0,

Dϕ̈− cϕ̇+ fc2(φt, ϕt, ψt, γt) = 0,

Dψ̈ − cψ̇ + fc3(φt, ϕt, ψt, γt) = 0,

Dγ̈ − cγ̇ + fc4(φt, ϕt, ψt, γt) = 0,

(4.3)

where

fc1(φt, ϕt, ψt, γt) = −µ1φ(t) + β(
ξ

µ1
− φ(t))ψ(t),

fc2(φt, ϕt, ψt, γt) = β(
ξ

µ1
− φ(t))ψ(t) + rψ(t)− (τ + µ2)ϕ(t),

fc3(φt, ϕt, ψt, γt) = τϕ(t)− γψ(t)γ(t)− µ3ψ(t),

fc4(φt, ϕt, ψt, γt) = vψ(t)− µ4γ(t).

Theorem 4.1. Let R0 < 1. For any c ≥ 0, the model (4.2) does not have a
travelling wave solution, which connects the infection-free steady state E0 with itself.
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Proof. Assume that there exists a non-trivial travelling wave solution (φ(t), ϕ(t),
ψ(t), γ(t)) which connects the infection-free steady state E0 with itself. Then
(φ(t), ϕ(t), ψ(t), γ(t)) satisfies the boundary condition

lim
t→−∞

(φ(t), ϕ(t), ψ(t), γ(t)) = (0, 0, 0, 0),

and

lim
t→∞

(φ(t), ϕ(t), ψ(t), γ(t)) = (0, 0, 0, 0).

Now, for the second and third equations of the model (4.3), by using the funda-
mental theory of second-order ordinary differential equations, we get

ϕ(t) =
1

Λ′1

(∫ t

−∞
eλ
′
−(t−s)f(s)ds+

∫ ∞
t

eλ
′
+(t−s)f(s)ds

)
,

ψ(t) =
1

Λ′2

(∫ t

−∞
eγ
′
−(t−s)g(s)ds+

∫ ∞
t

eγ
′
+(t−s)g(s)ds

)
,

where

γ′− =
c−

√
c2 + 4µ3D

2D
, γ′+ =

c+
√
c2 + 4µ3D

2D
,

λ′− =
c−

√
c2 + 4D(τ + µ2)

2D
, λ′+ =

c+
√
c2 + 4D(τ + µ2)

2D
,

Λ′1 = D(λ′+ − λ′−), Λ′2 = D(γ′+ − γ′−),

f(s) = β(
ξ

µ1
− φ(s))ψ(s) + rψ(s), g(s) = τϕ(s)− γψ(s)γ(s).

By integrating, we have∫ +∞

−∞
ϕ(t)dt =

1

Λ′1

(∫ +∞

−∞

∫ t

−∞
eλ
′
−(t−s)f(s)ds+

∫ +∞

−∞

∫ t

−∞
eλ
′
+(t−s)f(s)ds

)
=

1

Λ′1

(∫ +∞

−∞

∫ +∞

0

eλ
′
−sf(t− s)ds+

∫ +∞

−∞

∫ 0

−∞
eλ
′
+(s)f(t− s)ds

)
=

1

Λ′1

(∫ +∞

0

eλ
′
−sds

∫ +∞

−∞
f(t− s)dt+

∫ 0

−∞
eλ
′
+sds

∫ +∞

−∞
f(t− s)dt

)
=

1

Λ′1

(∫ +∞

0

eλ
′
−sds+

∫ 0

−∞
eλ
′
+sds

)∫ +∞

−∞
f(t− s)dt

=
1

Λ′1

(∫ +∞

0

eλ
′
−sds+

∫ 0

−∞
eλ
′
+sds

)∫ +∞

−∞
f(s)ds

≤ 1

τ + µ2

∫ +∞

−∞

(βξ
µ1

+ r
)
ψ(t)dt

=
βξ + rµ1

µ1(τ + µ2)

∫ +∞

−∞
ψ(t)dt.
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Thanks for R0 < 1, we have∫ +∞

−∞
ψ(t)dt =

1

Λ′2

(∫ +∞

−∞

∫ t

−∞
eγ
′
−(t−s)g(s)ds+

∫ +∞

−∞

∫ t

−∞
eγ
′
+(t−s)g(s)ds

)
≤ τ

Λ′2

(∫ +∞

−∞

∫ +∞

0

eγ
′
−sϕ(t− s)ds+

∫ +∞

−∞

∫ 0

−∞
eγ
′
+(s)ϕ(t− s)ds

)
=
τ

Λ′2

(∫ +∞

0

eγ
′
−sds

∫ +∞

−∞
ϕ(t− s)dt+

∫ 0

−∞
eγ
′
+sds

∫ +∞

−∞
ϕ(t− s)dt

)
=
τ

Λ′2

(∫ +∞

0

eγ
′
−sds+

∫ 0

−∞
eγ
′
+sds

)∫ +∞

−∞
ϕ(t− s)dt

=
τ

Λ′2

(∫ +∞

0

eγ
′
−sds+

∫ 0

−∞
eγ
′
+sds

)∫ +∞

−∞
ϕ(s)ds

=
τ

µ3

∫ +∞

−∞
ϕ(t)dt

≤ τ(βξ + rµ1)

µ1µ3(τ + µ2)

∫ +∞

−∞
ψ(t)dt

<

∫ +∞

−∞
ψ(t)dt.

That is a contradiction. Hence, the proof is completed.

5. Numerical simulations and conclusions

5.1. Numerical simulations

In this subsection, we simulate the results obtained in Sections 2, 3 and 4. Firstly,
we illustrate the threshold dynamics obtained in Theorem 2.3 from the numerical
simulations. For this purpose, we truncate the spatial domain Ω by [0, 1]. We
consider the model (1.3) under the Neumann boundary conditions

∂xs(x, t)

∂n
=
∂u(x, t)

∂n
=
∂y(x, t)

∂n
=
∂z(x, t)

∂n
= 0, t > 0, x = 0, 1, (5.1)

and the initial functions as follows

xs0(x) =

{
0.0001 if x = 0,

0 if 0 < x ≤ 1,
u0(x) =

{
0.0001 if x = 0,

0 if 0 < x ≤ 1,

y0(x) =

{
0.0001 if x = 0,

0 if 0 < x ≤ 1,
z0(x) =

{
0.0001 if x = 0,

0 if 0 < x ≤ 1.
(5.2)

We choose the parameters as follows

D1 = D2 = 0.0001, ξ = 0.3, µ1 = 0.5, µ2 = 3, µ3 = 0.2,

µ4 = 0.2, r = 0.1, γ = 0.2, β = 0.8, τ = 0.2, v = 0.2, q = 1.
(5.3)

We fix the parameters as (5.3) and vary β(x) with the following form

β(x) = 3β(1 + sin 8πx),
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where β is a positive constant. From the numerical simulations, we find that the
infection free steady state of the model (1.3) is globally attractive. Numerical
simulation illustrates the result obtained in Theorem 2.3 (see, Figure 2). Figure 3
is the contour of Figure 2.

0
0.2

0.4
0.6

0.8
1

0

20

40

60

80
0

0.2

0.4

0.6

0.8

1

1.2

x 10
−4

Distance xTime t

u

0
0.2

0.4
0.6

0.8
1

0

20

40

60

80
0

0.2

0.4

0.6

0.8

1

1.2

x 10
−4

Distance xTime t

y

0
0.2

0.4
0.6

0.8
1

0

20

40

60

80
−2

0

2

4

6

8

10

12

x 10
−5

Distance xTime t

z

Figure 2. The infection free steady state E0 of the model (1.3) is globally attractive under the
Neumann boundary conditions (5.1) and initial conditions (5.2) with parameters (5.3).

If ξ = 6, r = 0.2 and the other parameters are the same as (5.3), from the nu-
merical simulations, we observe that the model exists a unique positive nonconstant
steady state, which is also globally attractive. Numerical simulation illustrates the
results obtained in Theorem 2.3 (see, Figure 4). Figure 5 is the contour of Figure
4.

Secondly, we illustrate the global dynamics of the model (3.1) obtained in The-
orems 3.2 and 3.3 from the numerical simulations. We choose the parameters as
follows

D1 = D2 = 0.01, ξ = 1.3, µ1 = 0.5, µ2 = 3, µ3 = 0.2, µ4 = 0.2,

r = 0.1, γ = 0.2, β = 0.8, τ = 0.2, v = 0.2, q = 1.
(5.4)

By a simple computation, we find that R0 < 1. From Theorem 3.2, we obtain
that the infection free steady state E0 of the model (3.1) is globally asymptotically
stable. Numerical simulation illustrates the results (see, Figure 6). However, if
ξ = 6, r = 0.2 and the other parameters are the same as (5.4), we find that
the model (3.1) exists a unique chronic-infection steady state E∗ which is globally
asymptotically stable. Numerical simulation illustrates the result of Theorem 3.3
(see, Figure 7).

We are very interested in the existence of travelling wave solutions connecting
the infection-free steady state E0 and the chronic-infection steady state E∗. From
the biological considerations, the existence and non-existence of travelling wave
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Figure 3. The contour of Figure 2.

Figure 4. The infection steady state E0 of the model converges to a positive nonconstant distribution
under the Neumann boundary conditions (5.1) and initial conditions (5.2) with ξ = 6, r = 0.2 and the
other parameters are the same as (5.3).



Global dynamics of a reaction and diffusion model for an HTLV-I infection 923

Figure 5. The contour of Figure 4.

Figure 6. The infection free steady state E0 is globally asymptotically stable under the Neumann
boundary conditions (5.1) and initial conditions (5.2) with parameters (5.4).
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Figure 7. The chronic-infection steady state E∗ is globally asymptotically stable under the Neumann
boundary conditions (5.1) and initial conditions (5.2) with ξ = 6, r = 0.1 and the other parameters are
the same as (5.4).

solutions reveal whether the disease can spread or not. This can give us some
disease control strategies of HTLV-I. However, it is very difficult to construct the
suitable upper-lower solutions for the reaction-diffusion equations governed by four
variables. Here, we simulate the existence of travelling wave solution numerically.

If the parameters are chosen as,

D = 0.01, ξ = 100, µ1 = 0.5, µ2 = 0.4, µ3 = 0.2, µ4 = 0.2,

r = 0.000001, γ = 0.6, β = 0.008, τ = 0.2, v = 0.8, q = 1, c = 8,
(5.5)

the travelling wave solutions are illustrated from the numerical simulations (see
Figure 8).

We find that diffusion coefficient D can influence the wave speed c of the trav-
elling wave solution connecting the infection-free steady state E0 and the chronic-
infection steady state E∗. If diffusion coefficient D = 0.001 is reduced, the wave
speed of the travelling wave solution is decreasing from the numerical simulations
(see Figure 9).

5.2. Conclusions

From the biological considerations, it can be obtained that CD4+ (both healthy
cells and infected cells) and CD8+ CTLs can move ( [6, 7, 23, 28, 46]) and go from
regions of high concentration to regions of low concentration. It is widely known
that diffusion process may cause different cell movements because of the different
concentration levels of cells. In order to seek this interesting phenomenon, in the
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Figure 8. The travelling wave solutions are observed in the model (4.2) under the Neumann boundary
conditions (5.1) and initial conditions (5.2) with the parameters (5.5).

Figure 9. The travelling wave solutions are observed in the model (4.2) under the Neumann boundary
conditions (5.1) and initial conditions (5.2) with D = 0.001 and the other parameters are the same as
(5.5).
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current paper, a reaction-diffusion HTLV-I infection model with mitotic division of
actively infected cells, CTL immune response and nonlinear incidence is proposed.

The well posedness of the model (1.3) is investigated. The basic reproduction
number R0 is established by defining the the spectral radius of the next infection
operator. However, the explicit formula of R0 cannot be given if at least one of the
parameters are spatially dependent. If all the parameters are spatially independent,
we actually derive the explicit formula of R0. In this paper, we give the explicit
formula of R0 for the spatially homogeneous model. It is worth noting that the
diffusion coefficients have no effects on the basic reproduction number R0 for the
case of spatially homogeneous model. However, from the numerical simulations,
we find that the basic reproduction number R0 is a decreasing function of D1 for
the spatially heterogeneous model. Therefore, the larger the diffusion coefficients,
the smaller the basic reproduction number will be. Biologically, we obtain that the
random movements of cells result in less infection risk.

In the case of a bounded spatial domain, we establish the threshold dynamics in
terms of the basic reproduction number R0 for the spatially heterogeneous model.
Further, for the spatially homogeneous model, we obtain the global dynamics in
terms of the basic reproduction number R0. If R0 < 1, the infection-free steady
state E0 is globally asymptotically stable. If R0 > 1, there exists a unique chronic-
infection steady state E∗ whose global asymptotical stability is established by means
of Lyapunov functions. The global stability results show that R0 may be used to
control the disease transmission and to estimate the infection level.

From the expression of the basic reproduction number R0 of the homogeneous
model, it can be obtained that the disease can be eradicated if one of the following
two cases occurs: (a) either the production rate of latently infected cells or the
rate of the latently infected cells translating to the actively infected cells and the
production rate of actively infected cells by mitosis is reduced; (b) either the death
rate of latently infected cells or actively infected cells is increased. The global
stability results show that R0 may be used to control the disease transmission and
to estimate the infection level. Noticing that R0 has no relation to the diffusion
coefficient D1 for the homogeneous model, the free diffusion of the cells has no
effect on the global stabilities of such HTLV-I infection problem with Neumann
homogeneous boundary conditions.

In recent years, great attentions have been paid to the existence and non-
existence of travelling wave solutions in virus dynamical models with spatial d-
iffusion. The virus dynamical models governed by reaction diffusion models can
give rise to a moving zone of transition free from an infection steady state to the
other infection steady state. From the biological considerations, the existence and
non-existence of travelling wave solutions reveal whether the disease can spread
or not. This can give us some disease control strategies of HTLV-I. Our numer-
ical simulations confirm the existence of travelling wave solutions connecting E0

and E∗. In our numerical simulations, we set c = 8. We find that there exist-
s travelling wave solutions connecting the infection-free steady state E0 and the
chronic-infection steady state E∗ with the parameters (5.5). It is very difficult to
construct the suitable upper-lower solutions by employing Schauder’s fixed point
theorem to prove the existence of travelling wave solutions connecting the infection
free steady state E0 and the chronic-infection steady state E∗, especially for virus
infection dynamical models. It is widely known that the virus infection dynamical
models are neither a cooperative system nor a competitive system. In fact, the
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target cells and free virus have a relationship similar to a prey-predator system,
while infected cells and free virus are cooperative. However, it is very interesting
to investigate the minimal wave speed of travelling wave solutions. We will leave it
for further investigation.

The purpose of the paper is to investigate the dynamics of a reaction and d-
iffusion model for an HTLV-I infection with mitotic division of actively infected
cells and CTL immune response. In the model (1.3), we assume that the prolifera-
tion of CTL cells occurs instantly. However, it is well-known that the existence of
time delays is inevitable in biology. In fact, antigenic stimulation generating CTLs
may need a period of time θ, i.e., the CTL response at time t may depend on the
population of antigen at a previous time t − θ. In view of the above biological
considerations, we further propose an HTLV-I infection dynamic model with time
as follows

∂xs(x, t)

∂t
= D1∆xs + ξ(x)− µ1xs(x, t)− β(x)xqs(x, t)y

p(x, t),

∂u(x, t)

∂t
= D1∆u+ β(x)xqs(x, t)y

p(x, t) + r(x)y(x, t)− (τ(x) + µ2)u(x, t),

∂y(x, t)

∂t
= D1∆y + τ(x)u(x, t)− γ(x)y(x, t)z(x, t)− µ3y(x, t),

∂z(x, t)

∂t
= D2∆z + v(x)y(x, t− θ)− µ4z(x, t).

(5.6)
Threshold dynamics and the existence of travelling wave solutions for the model
(5.6) will be given in other paper. A more challenging problem is to investigate the
relationship between spreading speeds and the minimal wave speed. We leave these
interesting problems for future investigation.
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