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DELAY INDUCED SUBCRITICAL HOPF
BIFURCATION IN A DIFFUSIVE

PREDATOR-PREY MODEL WITH HERD
BEHAVIOR AND HYPERBOLIC MORTALITY∗

Xiaosong Tang1,†, Heping Jiang2, Zhiyun Deng1 and Tao Yu1

Abstract In this paper, we consider the dynamics of a delayed diffusive
predator-prey model with herd behavior and hyperbolic mortality under Neu-
mann boundary conditions. Firstly, by analyzing the characteristic equations
in detail and taking the delay as a bifurcation parameter, the stability of the
positive equilibria and the existence of Hopf bifurcations induced by delay are
investigated. Then, applying the normal form theory and the center manifold
argument for partial functional differential equations, the formula determining
the properties of the Hopf bifurcation are obtained. Finally, some numerical
simulations are also carried out and we obtain the unstable spatial periodic
solutions, which are induced by the subcritical Hopf bifurcation.
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1. Introduction

The study on dynamics of a biological model is one of the dominant subjects in
mathematical biology due to its universal existence and importance. Numerous
mathematical models have been proposed to study the relation between predator
population and prey population. Thus, predator-prey model becomes one of the
most important population dynamical models. We know that there are many factors
which affect population dynamics in predator-prey models. One crucial component
of predator-prey relationships is predator-prey interaction (also called functional
response), which can be classified into many different types, such as Holling I-IV
types, Hassell-Varley type, Crowley-Martin type, Beddington-DeAngelis type, and
so on.

In natural ecosystems, many living beings live forming herds and all members of
a group do not interact at a time. There are many reasons for this herd behaviour,
such as searching for food resources, defending the predators, etc. Because of having
more abundant and interesting dynamic characteristics, predator-prey systems with
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prey group defense ability attract attention of many scholars [1,6,11,12,19,21,37].
Of course, there are other ways of modelling group defence. More recently, More
recently, in [2, 3], a new predator-prey interaction has been studied for a more
elaborated social model, in which the individuals of one population in the large
herbivores populating the savannas, gather together in huge herds, with generally
the strongest individuals on the border and the weakest being concentrated in the
middle of the bunch, while the other one shows a more individualistic behavior. This
leads to the consequence that the capture of a prey by a successful predators attack
occurs mainly on the boundary, involving therefore mostly the individuals that
occupy the outermost positions in the herd. Based on the fact that predator-prey
interactions occur mainly through the perimeter of the herd, the authors in [2, 3]
have proposed a new predator-prey model with square root functional responses

du

dt
= u(1− u)−

√
uv

1 + α
√
u
,

dv

dt
= βv(−γ +

√
u

1 + α
√
u

),

(1.1)

where u(t) and v(t) stand for the prey and predator densities, respectively, at time
t. βγ is the death rate of the predator in the absence of prey, γ is the conversion or
consumption rate of prey to predator. α ≥ 0 is related to the the search efficiency
of v for u and average handling time, see [2, 3] in detail.This model is also known
as the predator-prey model with herd behavior. When α = 0, the authors in [2, 3]
have obtained some meaningful results for system (1.1) by the Poincaré-Bendixson
theorem, method of phase plane analysis and numerical calculation, respectively.
Other types of models have been considered, see for instance [5, 7, 16,18,33,34].

In the real world, the predator and the prey may move for many reasons, such
as currents and turbulent diffusion. Thus, we should consider the spatial disperse.
The spatiotemporal dynamics of the predator-prey models involving spatial diffusion
have been increasingly studied by many researchers, see [23,28,29,36,44,48]. Here,
assuming the preys and the predators are in an isolate patch, we neglect the impact
of migration, including immigration and emigration, and only consider the diffusion
of the spatial domain. With the development of mathematical models for population
dynamics, we know that the functional response and mortality rate of the predator
are essential. Therefore, we further consider another crucial component of predator-
prey relationships, that is, mortality rate including linear mortality and nonlinear
mortality. Of course, linear mortality rate is intensively used by researchers, see
[23,24,28–30,36,44,48]. But nonlinear mortality rates, such as quadratic mortality,
have also been used and can lead to richer dynamics, see [38, 42, 45, 49] and so on.
Besides, in 1994, Cavani and Farkasin [8] introduced a new nonlinear mortality
rates: hyperbolic mortality, with which predator-prey models have been studied by
some scholars, see [8, 9, 42, 49]. So, in [31], we have proposed a spatial model with
herd behavior and hyperbolic mortality as follows:

∂u

∂t
− d1∆u = u(1− u)−

√
uv

1 + α
√
u
, x ∈ (0, π), t > 0,

∂v

∂t
− d2∆v = βv(−γ + δv

1 + v
+

√
u

1 + α
√
u

), x ∈ (0, π), t > 0,

ux(0, t) = vx(0, t) = ux(π, t) = vx(π, t) = 0, t > 0,

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, x ∈ (0, π),

(1.2)
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where d1 and d2 are the positive diffusion constants for the prey and predator,
respectively. The hyperbolic mortality γ+δv

1+v of predators in absence of prey depends
on the quantity of predator, γ is the mortality at low density, and δ is the maximal
mortality with the natural assumption 0 < γ < δ, see [8] in detail. In [31], we have
investigated the Hopf bifurcation, steady state bifurcation and Turing instability of
model (1.2) by Faria normal form and center manifold theory.

In fact, the reproduction of predator after consuming the prey is not instanta-
neous, but is mediated by some time lag required for gestation. Thus, the effects of
delay on population dynamics have been widely investigated, and are believed to be
one major reason accounting for the nonlinear scenarios in population dynamics [22].
Meanwhile, many researchers have also concentrated on the reaction diffusion equa-
tions with delay and have obtained some interesting results such as delay-induced
Hopf bifurcation [20,25–27,39–41,46,47,50–55], traveling wave solutions [4, 15,32],
stability and global attractivity [17,43,56]. Based on the above analysis, in this pa-
per, we shall devote our attention to the following delayed diffusive predator-prey
model with herd behavior and hyperbolic mortality

∂u

∂t
− d1∆u = u(1− u)−

√
uv

1 + α
√
u
,

∂v

∂t
− d2∆v = βv(−γ + δv

1 + v
+

√
ut

1 + α
√
ut

),

ux(0, t) = ux(π, t) = vx(0, t) = vx(π, t) = 0, t ≥ 0,

u(x, t) = φ(x, t) ≥ 0, v(x, t) = ψ(x, t) ≥ 0, (x, t) ∈ [0, π]× [−τ, 0],

(1.3)

where the delay item ut = u(x, t− τ) shows that the reproduction of predator after
consuming the prey is not instantaneous, but mediated by some constant time lag
τ for gestation.

However, to the best of our knowledge, there are no results on the Hopf bifurca-
tions of the above system (1.3). In this paper, we shall investigate the stability of
the positive equilibrium, delay-induced Hopf bifurcation and the properties of Hopf
bifurcation such as the direction of the bifurcation and stability of the bifurcating
periodic solutions. The rest of this paper is organized as follows. In Section 2,
the stability of the positive equilibrium and the existence of Hopf bifurcations are
investigated by analyzing the characteristic equations. In Section 3, the results of
determining the direction and stability of the bifurcating periodic solutions are ob-
tained by Faria normal form and center manifold theory. In Section 4, we illustrate
our results with numerical simulations, which support and extend the theoretical
results. The paper ends with a conclusion.

2. Stability of positive equilibrium and existence of
Hopf bifurcations

In this section, we consider the stability of the positive equilibrium for system (1.3)
and existence of Hopf bifurcations by analyzing the distribution of eigenvalues in
corresponding linear system of system (1.3), which can be induced by delay.

It is easy to check that system (1.3) has two boundary equilibria (0, 0) and (1,0).
In [31], we have proved that system (1.3) has a unique positive equilibrium (u∗, v∗).
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For convenience of readers, we list the result of a unique positive equilibrium as
follows:

Lemma 2.1. Assume that 0 < γ < δ < 1 and 1
δ − 1 < α < min{ 1

δ −
1
3 ,

1
γ − 1} hold.

Then system (1.3) has a unique positive equilibrium (u∗, v∗).

In the following, we only study the effect of delay on system (1.3). For sim-
plification of notations, we always use u(t) for u(x, t), v(t) for v(x, t), u(t − τ) for
u(x, t− τ), and v(t− τ) for v(x, t− τ). Let

f(u, v) = u(1− u)−
√
uv

1+α
√
u
, g(v, w) = βv(−γ+δv

1+v +
√
w

1+α
√
w

). (2.1)

Linearizing system (1.3) at positive equilibrium (u∗, v∗), then we have that ∂u
∂t

∂v
∂t

 = D∆

u(t)

v(t)

+A0

u(t)

v(t)

+A1

u(t− τ)

v(t− τ)

 , (2.2)

with

D =

d1 0

0 d2

 , A0 =

a11 a12

0 a22β

 , A1 =

 0 0

a21β 0

 ,

where

a11 =
∂f (1)

∂u
(u∗, v∗) = 1− 2u∗ − v∗

2
√
u∗(1 + α

√
u∗)2

,

a12 =
∂f (1)

∂v
(u∗, v∗) = −

√
u∗

1 + α
√
u∗
, a21 =

∂f (2)

∂u
(u∗, v∗) =

v∗

2
√
u∗(1 + α

√
u∗)2

,

a22 =
∂f (2)

∂v
(u∗, v∗) = −v

∗(δ − γ)

(1 + v∗)2
.

(2.3)

Thus, we can write out the characteristic equation of (2.2) as follows:

det(λI −Mk −A0 −A1e
−λτ ) = 0, (2.4)

where I is the 2×2 identity matrix and Mk = −k2diag{d1, d2}, k ∈ N0 = {0, 1, 2, · ·
·}. It follows from (2.4) that the characteristic equations for the positive constant
equilibrium (u∗, v∗) are the following sequence of quadratic transcendental equations

λ2 − [a11 + a22β − (d1 + d2)k2]λ+ d1d2k
4

− (a11d2 + a22βd1)k2 + (a11a22 − a12a21e
−λτ )β = 0.

(2.5)

When τ = 0, the characteristic equation (2.5) becomes the following sequence of
quadratic polynomial equations

λ2 − Tkλ+Dk = 0, (2.6)
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where

Tk = a11 + a22β − (d1 + d2)k2,

Dk = d1d2k
4 − (a11d2 + a22βd1)k2 + (a11a22 − a12a21)β.

(2.7)

Now, we begin to discuss that the Hopf bifurcation is induced by delay when
τ 6= 0. For this aim, we always assume that positive equilibrium (u∗, v∗) of system
(1.3) is locally asymptotically stable when τ = 0, which implies Tk < 0, Dk > 0 for
any k ∈ N0. Assume that iω(ω > 0) be a root of the characteristic equation (2.5),
then ω satisfies the following equation:

− ω2 − [a11 + a22β − (d1 + d2)k2]iω + d1d2k
4

− (a11d2 + a22βd1)k2 + (a11a22 − a12a21e
−iωτ )β = 0.

(2.8)

Separating the real and imaginary parts of Eq. (2.8) leads to−ω2 + d1d2k
4 − (a11d2 + a22βd1)k2 + a11a22β − a12a21β cosωτ = 0,

(a11 + a22β − (d1 + d2)k2)ω − a12a21β sinωτ = 0,
(2.9)

which implies that

ω4 + Pkω
2 +Qk = 0, (2.10)

where

Pk = [d1k
2 − a11]2 + [d2k

2 − a22β]2,

Qk = Dk[d1d2k
4 − (a11d2 + a22βd1)k2 + (a11a22 + a12a21)β].

(2.11)

Setting

Rk = d1d2k
4 − (a11d2 + a22βd1)k2 + (a11a22 + a12a21)β, (2.12)

then the sign of Qk coincides with that of Rk since Dk > 0.
To obtain the values of k, we need the following condition.
(H) a11a22 + a12a21 < 0.
Notice that Rk is a quadratic polynomial with respect to k2 and R0 < 0. Thus,

from (2.12), we can conclude that there exists N1 ∈ N0 such that

Rk < 0, for 0 ≤ k ≤ N1, and Rk > 0 for k ≥ N1 + 1, k ∈ N0. (2.13)

From Pk > 0 and (2.13), we can conclude that for each k ∈ {0, 1, 2, · · ·, N1}, Eq.
(2.10) has only one positive real root ωk, where

ωk =

√
−Pk+

√
P 2
k−4Qk

2 , (2.14)

but has no positive real roots for k ≥ N1 + 1, k ∈ N0.
According to the above analysis, we have the following results:
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Lemma 2.2. Assume that the condition of lemma 2.1 and (H) hold. Jk < 0,
Dk > 0 for any k ∈ N0. Then (2.5) has a pair of purely imaginary roots iωk for
each k ∈ {0, 1, 2, · · ·, N1} and (2.5) has no purely imaginary roots for k ≥ N1 + 1.

By (2.9), we can obtain

τkj = τk0 + 2πj
ωk

and τk0 = 1
ωk

arccos
ω2
k−Dk−a12a21β
−a12a21β

(2.15)

for k ∈ {0, 1, 2, · · ·, N1}.
Clearly,

τk0 = min
j∈N0

{τkj}, k ∈ {0, 1, 2, · · ·, N1}. (2.16)

Let λ(τ) = α(τ)+ iβ(τ) be the roots of Eq. (2.5) near τ = τkj satisfying α(τkj) = 0,
β(τkj) = ωk. Then we have the following transversality condition.

Lemma 2.3. For k ∈ {0, 1, 2, · · ·, N1}, and j ∈ N0, dRe(λ)
dτ |τ=τkj > 0.

Proof. Differentiating two sides of Eq. (2.5) on τ , we get

(
dλ

dτ
)−1 =

(2λ− Tk)eλτ

−a12a21βλ
− τ

λ
.

Thus, by (2.9) and (2.11), we have

Re((
dλ

dτ
)−1)|τ=τkj =Re(

(2λ− Tk)eλτ

−a12a21βλ
− τ

λ
)|τ=τkj

=Re(
(2iωk − Tk)eiωkτkj

−a12a21βiωk
− τkj
iωk

)

=
Tka12a21β sinωkτkj − 2ωka12a21β cosωkτkj

a2
12a

2
21β

2ωk

=
2ω2

k + Pk
a2

12a
2
21β

2
> 0.

This completes the proof.

According to Lemmas 2.2 and 2.3 and the qualitative theory of partial functional
differential equations [35], we can obtain the following results on the stability and
Hopf bifurcation.

Theorem 2.1. Assume that the condition of lemma 2.1 and (H) hold. Jk < 0,
Dk > 0 for any k ∈ N0, ωk and τkj is defined by (2.14) and (2.15), respectively.
Denote the minimum of the critical values of delay by τ∗ = min

k∈{0,1,···,N1}
τk0.

(i) The positive equilibrium (u∗, v∗) of system (1.3) is asymptotically stable for
τ ∈ [0, τ∗) and unstable for (τ∗,+∞);

(ii) System (1.3) undergoes Hopf bifurcations near the positive equilibrium (u∗, v∗)
at τkj for k ∈ {0, 1, 2, · · ·, N1} and j ∈ N0. If k = 0, the bifurcating periodic solu-
tions are all spatially homogeneous. Otherwise, these bifurcating periodic solutions
are spatially inhomogeneous.
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3. Direction and stability of Hopf bifurcation

From Theorem 2.1, we can know that system (1.3) undergoes Hopf bifurcations
near the equilibrium (u∗, v∗) at τkj , k ∈ {0, 1, 2, · · ·, N1} and j ∈ N0. In this
section, we continue to investigate the stability, the direction and the period of
bifurcating periodic solutions by using the normal formal theory and the center
manifold theorem of partial functional differential equation presented in [13, 14].
Since the methods used are standard, we omit the detailed process and only give
the main results. The readers can see [13,14,27] for more details on the derivation
process. Without loss of generality, denote any one of the these critical values τkj ,
k ∈ {0, 1, 2, · · ·, N1} and j ∈ N0 by τ∗ at which Eq. (2.5) has a pair of simply purely
imaginary roots ±iωk denoted by ±iω∗.

Let ũ(·, t) = u(·, τ t)− u∗, ṽ(·, t) = v(·, τ t)− v∗ and Ũ(t) = (ũ(·, t), ṽ(·, t)), then
dropping the tildes for simplification of notation, system (1.3) can be written as
the equation in the space C = C([−1, 0], X), X = {(u, v) ∈ W 2,2(0, π)|∂u∂x = ∂v

∂x =
0 at x = 0, π},

dU(t)

dt
= τD∆U(t) + L(τ)(Ut) + f(Ut, τ), for ϕ = (ϕ1, ϕ2)T ∈ C, (3.1)

where L(τ)(·) : C → X, and f : C ×R→ X are given, respectively, by

L(τ)(ϕ) = τ

 a11ϕ1(0) + a12ϕ2(0)

a21ϕ1(−1) + a22ϕ2(0)

 ,

f(ϕ, τ) = τ

 f (1)(τ)

f (2)(τ)

 = τ


∑

i+j≥2

1
i!j!f

(1)
ij ϕ

i
1(0)ϕj2(0)

∑
i+j≥2

1
i!j!f

(2)
ij ϕ

i
1(−1)ϕj2(0)

 ,

(3.2)

where

f (1)(u, v) = (u+ u∗)(1− u− u∗)−
√
u+ u∗(v + v∗)

1 + α
√
u+ u∗

,

f (2)(w, v) = β(v + v∗)(−γ + δ(v + v∗)

1 + v + v∗
+

√
w + u∗

1 + α
√
w + u∗

),

f
(1)
ij =

∂i+jf (1)

∂ui∂vj
(u∗, v∗), f

(2)
ij =

∂i+jf (2)

∂wi∂vj
(u∗, v∗).

Setting τ = τ∗ + α, α ∈ R, and consider only the case Λ0 = {−iτ∗ω∗, iτ∗ω∗} is
the set of eigenvalues on the imaginary axis of the infinitesimal generator associated
with the flow of

dU(t)

dt
= τ∗D∆U(t) + L(τ∗)(Ut), (3.3)

Thus, Eq. (3.1) can be written as

dU(t)

dt
= τD∆U(t) + L(τ)(Ut) + F (Ut, α), (3.4)
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where F (ϕ, α) = αD∆ϕ(0) + L(α)(ϕ) + f(ϕ, τ∗ + α) for ϕ ∈ C. The eigenvalues
of τ∗D∆ on X are µik = −diτ∗k2, i = 1, 2, k ∈ N0, with corresponding normalized

eigenfunctions βjk, where

β1
k =

γk(x)

0

 , β2
k =

 0

γk(x)

 , γk(x) =
cos kx

‖ cos kx ‖2,2
, k ∈ N0. (3.5)

Let Bk =span{< v(·), βik > βik|v ∈ C, i = 1, 2}. Assume that zt(θ) ∈ C =
C([−1, 0], R2) and

zTt (θ)

β1
k

β2
k

 ∈ Bk, (3.6)

then linear PDE (3.3) restricted on Bk is equivalent to the FDE on C = C([−1, 0], R2)

ż(t) =

µ1
k 0

0 µ2
k

 z(t) + L(τ∗)(zt) (3.7)

with the characteristic equation given by (2.5).
Suppose that there exists a k ∈ N0 such that (2.5), for fixed k, has a pair of

purely imaginary roots ±iω∗ and all other roots of (2.5) have negative real parts
when τ = τ∗. Define η(θ) ∈BV([−1, 0], R) such that

µkψ(0) + L(τ∗)ψ =

∫ 0

−1

dη(θ)ψ(θ) (3.8)

and the adjoint bilinear form on C∗ × C, C∗ = C([0, 1], R2∗), as follows

< ψ(s), φ(θ) >= ψ(0)φ(0)−
∫ 0

−1

∫ θ

0

ψ(ξ − θ)dη(θ)φ(ξ)dξ for ψ ∈ C∗, φ ∈ C.

Then, for Eq. (3.7) with fixed k, the dual bases Φk and Ψk for its eigenspace P and
its dual space P ∗ are, respectively, given by

Φk = (peiω
∗τ∗θ, pe−iω

∗τ∗θ), and Ψk = col(qT e−iω
∗τ∗s, qT eiω

∗τ∗s)

such that < Φk,Ψk >= I2, where I2 is a 2× 2 matrix and

p =

p1

p2

 =

 1

iω∗+d1k
2−a11

a12

 , q =

 q1

q2

 = ρ

 1

iω∗+d1k
2−a11

a21
eiω

∗τ∗

 , (3.9)

with

ρ =

(
1 + τ∗(iω∗ + d1k

2 − a11) +
(τ∗a22 + eiω

∗τ∗
)(iω∗ + d1k

2 − a11)2

a12a21

)−1

.
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Following the standard procedure in [13], especially [27], we can obtain the
following normal form on the center manifold

ż = Bz +

Ak1z1α

Ak1z2α

+

Ak2z
2
1z2

Ak2z1z
2
2

+O(|z|α2 + |z|4), (3.10)

where

Ak1 = −k2(d1q1p1 + d2q2p2) + iω∗qT p, (3.11)

and

Ak2 =
i

2ω∗τ∗

(
Bk20Bk11 − 2|Bk11|2 −

1

3
|Bk02|2

)
+

1

2
(Bk21 +Dk21), (3.12)

with

Bk20 =


τ∗
√
π

(C1q1 + C2q2), k = 0,

0, k 6= 0,

Bk11 =


τ∗
√
π

(C3q1 + C4q2), k = 0,

0, k 6= 0,

Bk02 =


τ∗
√
π

(C1q1 + C2q2), k = 0,

0, k 6= 0,

Bk21 =


τ∗

π C5, k = 0,

3τ∗

2π C5, k 6= 0,

where

C1 = f
(1)
20 p

2
1 + 2f

(1)
11 p1p2 + f

(1)
02 p

2
2, C3 = f

(1)
20 |p1|2 + 2f

(1)
11 Re{p1p2}+ f

(1)
02 |p2|2,

C2 = f
(2)
20 p

2
1e
−2iω∗τ∗

+ 2f
(2)
11 p1p2e

−iω∗τ∗
, C4 = f

(2)
20 |p1|2 + 2f

(2)
11 Re{p1p2e

−iω∗τ∗},

C5 = q1(f
(1)
30 p1|p1|2 + f

(1)
03 p2|p2|2 + f

(1)
21 (p2

1|p2|+ 2|p1|2p2) + f
(1)
12 (|p1|p2

2

+ 2p1|p2|2)) + q2(f
(2)
30 p1|p1|2e−iω

∗τ∗
+ f

(2)
21 (p2

1p2e
−2iω∗τ∗

+ 2|p1|2p2)),

and

Dk21 =


E0, k = 0,

E0 +
√

2
2 E2k, k 6= 0,

where for j = 0, 2k,

Ej = 2τ∗
√
π
qT

 F1h
(1)
j11(0) + F2h

(2)
j11(0) + F 1h

(1)
j20(0) + F 2h

(2)
j20(0)

F3h
(1)
j11(−1) + F 3h

(1)
j20(−1) + F4h

(2)
j11(0) + F 4h

(2)
j20(0)

 ,

with

F1 = f
(1)
20 p1 + f

(1)
11 p2, F2 = f

(1)
11 p1 + f

(1)
02 p2,

F3 = f
(2)
20 p1e

−iω∗τ∗
+ f

(2)
11 p2, F4 = f

(2)
11 p1e

−iω∗τ∗
,
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and

hk20(θ) = − 1

iω∗τ∗

(
Bk20e

iω∗τ∗θp+
1

3
Bk02e

−iω∗τ∗θp

)
+ e2iω∗τ∗θGk1,

hk11(θ) =
2

iω∗τ∗

(
Bk11e

iω∗τ∗θp−Bk11e
−iω∗τ∗θp

)
+Gk2,

where

Gk1 =

 σkj(C1(2iω∗−a22e−2iω∗τ∗ )+C2a12)

(2iω∗−a11)(2iω∗−a22e−2iω∗τ∗ )−a12a21e−2iω∗τ∗

σkj(C1a21e
−2iω∗τ∗+C2(2iω∗−a11))

(2iω∗−a11)(2iω∗−a22e−2iω∗τ∗ )−a12a21e−2iω∗τ∗

 ,

Gk2 =

 2σkj(C4a12−C3a22)
a11a22−a12a21

2σkj(C3a21−C4a11)
a11a22−a12a21

 ,

and

σkj =



1√
π
, j = k = 0,

1√
π
, j = 0, k 6= 0,

1√
2π
, j = 2k 6= 0,

0, otherwise.

Through the change of variables z1 = w1− iw2, z2 = w1 + iw2 and w1 = % cosφ,
w2 = % sinφ, then the normal form (3.10) becomes the following polar coordinate
system 

%̇ = κk1α%+ κk2%
3 +O(α2%+ |(%, α)|4),

φ̇ = −ω∗τ∗ +O(|(%, α)|),

where κk1 =ReAk1, κk2 =ReAk2. Thus, from [10], we can know that the sign of
κk1κk2 determines the direction of the bifurcation and the sign of κk2 determines
the stability of the nontrivial periodic orbits and have the following results.

(i) When κk1κk2 < 0, the Hopf bifurcation that system (1.3) undergoes at the
critical value τ = τ∗ is a supercritical bifurcation. Moreover, if κk2 < 0, the
bifurcating periodic solution is stable; if κk2 > 0, the bifurcating periodic solution
is unstable.

(ii) When κk1κk2 > 0, the Hopf bifurcation that system (1.3) undergoes at the
critical value τ = τ∗ is a subcritical bifurcation. Moreover, if κk2 < 0, the bifur-
cating periodic solution is stable; if κk2 > 0, the bifurcating periodic solution is
unstable.

4. Numerical calculations and simulations

In this section, we present some numerical simulations that support and supplement
the analytic results given in the previous sections. Taking α = 1.5, γ = 0.2, δ = 0.5



Subcritical Hopf bifurcation . . . 1395

and d1 = 0.01, together with Lemma 2.1, we can confirm that (1.3) has a uniqueness
positive equilibrium (u∗, v∗) = (0.4153, 0.7410). Further, we have that a11 = 0.0207,
a12 = −0.3277, a21 = 0.1487 and a22 = −0.0733 at (u∗, v∗) = (0.4153, 0.7410).

Choosing β = 0.35, d2 = 1 together with a direct computation, we have Tk < 0,
Dk > 0 for any k ∈ N0, which implies that the positive equilibrium (u∗, v∗) of model
(1.3) without delay is asymptotically stable. Further, from Theorem 2.1, we can
know that the positive equilibrium (u∗, v∗) of model (1.3) is asymptotically stable
for τ ∈ (0, τ∗) and unstable for τ ∈ (τ∗,+∞), where τ∗ is a critical value of delay
τ . By (2.11), we have that

Pk = 1.0001k4 + 0.0509k2 + 0.0011 > 0, for all k ∈ N0

and

Qk = (0.01k4 − 0.0204k2 + 0.0165)(0.01k4 − 0.0204k2 − 0.0176)


< 0, k = 0, 1,

> 0, k ≥ 2.

From this, we can know that Hopf bifurcations induced by delay occur for k = 0
and k = 1. By (2.15), we can obtain the critical values of delay as follows

τ00 ≈ 0.2906, τ01 ≈ 49.1871, · · ·; τ10 ≈ 67.5179, τ11 ≈ 561.2084, · · ·.

When k = 0, from Theorem 2.1, we can conclude that the positive equilibrium
(u∗, v∗) is asymptotically stable for τ < τ00 and unstable for τ > τ00. So, system
(1.3) undergoes Hopf bifurcation near the positive equilibrium (u∗, v∗) when the
delay τ increasingly crosses through the critical value τ00. By a direct computation,
together with (2.14), (3.2) and (3.9), we have that ω∗ = 0.1285, p1 = 1, p2 =
0.0632 + 0.3921i, q1 = 0.7511− 0.0895i, q2 = −0.0519 + 0.6601i and

f20 =

−1.6451

−0.1242

 , f11 =

−0.2006

0.0702

 , f02 =

 0

−0.0398

 ,

f30 =

−1.5941

0.5579

 , f12 =

 0

0

 , f21 =

 0.4789

−0.1676

 , f03 =

 0

0.0686

 .

Thus, from (3.10)-(3.12), we can get the following normal form truncated to the
third-order term:

%̇ = 0.0035α%+ 0.0475%3,

which implies κ01 = 0.0035 > 0 and κ02 = 0.0475 > 0. Then, from the results
in Section 3, we can conclude that Hopf bifurcation that system (1.3) undergoes
near the positive equilibrium (u∗, v∗) when the delay τ increasingly crosses through
the critical value τ00 is subcritical and the bifurcating periodic solution is unstable.
That is, there exists a unstable spatially homogenous periodic orbit bifurcating from
the positive equilibrium (u∗, v∗). These facts for system (1.3) without diffusion are
shown in Figs. 1 and 2, and for system (1.3) are shown in Figs. 3 and 4.

When k = 1, from Theorem 2.1, we can conclude that system (1.3) undergoes
Hopf bifurcation near the positive equilibrium (u∗, v∗) when the delay τ increasingly
crosses through the critical value τ10 and exits an unstable spatially inhomogenous
periodic solution bifurcating from the positive equilibrium (u∗, v∗).
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Figure 1. The trajectory portraits of system (1.3) without diffusion. Left: (u∗, v∗) is locally asymp-
totically stable when β = 0.15 < τ00 = 0.2906, and the initial value is u0 = 0.40, v0 = 0.68; right: the
unstable periodic orbit bifurcates from the positive equilibrium (u∗, v∗) when τ = 0.32 > τ00, and the
initial value is u0 = 0.41, v0 = 0.72.
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Figure 2. The phase portraits of system (1.3) without diffusion. Left: the positive equilibrium (u∗, v∗)
is asymptotically stable when τ = 0.15 < τ00, and the initial value is u0 = 0.40, v0 = 0.68; right: there
exists a unstable limit cycle bifurcating from the positive equilibrium (u∗, v∗) when τ = 0.32 > τ00, and
the initial value is u0 = 0.41, v0 = 0.72.

Figure 3. The positive equilibrium (u∗, v∗) = (0.4153, 0.7410) of system (1.3) is asymptotically stable
when τ = 0.15 < τ00. Here, we the set parameter values as d1 = 0.01, d2 = 1, α = 1.5, γ = 0.2, δ = 0.5,
β = 0.35 and the initial conditions u(x, 0) = u∗ + 0.01, v(x, 0) = v∗ + 0.01.
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Figure 4. The unstable spatial periodic solution bifurcating from the positive constant equilibrium
when τ = 0.32 > τ00. Here, we the set parameter values as d1 = 0.01, d2 = 1, α = 1.5, γ = 0.2, δ = 0.5,
β = 0.35, and the initial value is u(x, 0) = u∗ + 0.01, v(x, 0) = v∗ + 0.01. (A) and (B) are transient
behaviours for u and v, respectively. (C) and (D) are long-term behaviours for u and v, respectively.

5. Conclusions and discussion

In this paper, we consider the effects of delay on dynamics of a diffusive predator-
prey model with herd behavior and hyperbolic mortality under Neumann boundary
conditions. Firstly, the stability of the positive equilibria and the existence of Hopf
bifurcations induced by delay are investigated by analyzing the characteristic equa-
tions. Then, by the normal forms on the center manifold, the results determining
the direction and stability of Hopf bifurcations are derived. Finally, choosing the pa-
rameter values: d1 = 0.01, d2 = 1, α = 1.5, β = 0.35, γ = 0.2 and δ = 0.5, together
with a direct computation, we obtain the critical value of delay for k = 0 and k = 1,
that is, τ00 = 0.2906(k = 0) and τ10 = 67.5179(k = 1). When k = 0, from Theorem
2.1, we can conclude that the positive equilibrium (u∗, v∗) is asymptotically stable
for τ < τ00 and unstable for τ > τ00. So, system (1.3) undergoes Hopf bifurcation
near the positive equilibrium (u∗, v∗) when the delay τ increasingly crosses through
the critical value τ00. By κ01 = 0.0035 > 0 and κ02 = 0.0475 > 0, combining
with the results in Section 3, we can know that the direction of Hopf bifurcation is
subcritical and the bifurcating periodic solution is unstable. These facts are shown
in Figs. 1-4. Here, we have to point out a fact, that is, our results in this paper
are different from the ones in the known literatures [20,25–28,39–41,46,47,50–55],
and so on, in which the direction of Hopf bifurcation is supercritical and the bifur-
cating periodic solution is stable. Therefore, we think that our results in this paper
are new. Meanwhile, when k = 1, we obtain the unstable spatially inhomogenous
periodic solution. Of course, we hope that our work could be instructive to study
the population.
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