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in the time-derivative term.

Keywords Nonlinear sixth-order modified Boussinesq equation, Tanh func-
tion method, Polynomial function method.

MSC(2010) 35Q51, 35Q53.

1. Introduction

The Boussinesq-type partial differential equations (PDEs) are used to describe the
longitudinal waves on nonlinear elastic rods [17], plasma waves expressed with hy-
drodynamical equations [4, 11, 13, 14], heat transfer in a porous medium [5], ultra-
short pulse propagation [3] and long solitary waves on shallow waters [2, 7, 12, 16,
18,19] together with their interactions [10]. In addition, nonlinear analogues of the
Boussinesq equation arise in the signal propagation along the transmission lines
including diode-like components whose capacitance exhibits nonlinear dependance
on the displacement voltage [6].

The nonlinear term(s) in the nonlinear analogues of the Boussinesq equation
studied so far in the literature was (were) mostly included in the sought function
and/or in the derivative of that sought function with respect to the space vari-
ables [8, 9, 15]. In our previous work, we proved the existence and uniqueness of
the solution of boundary value problem for the nonlinear analogues of the Boussi-
nesq equation where the nonlinearity was included in the time-derivative of the
sought function [1]. In the present work, analytical solitary wave solutions for such
equations are demonstrated.

The nonlinear analogue of the Boussinesq equation studied in this work has the
following general form:

∂2q(u)

∂t2
− uxx − uxxtt − µuxxxxxx = 0 (1.1)
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Here, q(ξ) is a sufficiently differentiable monotonous function. In the present paper,
µ = 0 and µ = 1 cases are investigated corresponding to nonlinear analogues of the
Boussinesq and sixth-order modified Boussinesq equations, respectively.

2. Formulation of the problem and method of the
solution

2.1. Equations to be investigated

In (1.1), the analytical solitary wave solutions are to be shown for q(ξ)=ξ3 and
µ = 0, 1 where the equation takes the following forms:

(u3)tt − uxx − uxxtt = 0, (2.1)

(u3)tt − uxx − uxxtt − uxxxxxx = 0. (2.2)

2.2. Common steps to reach the solutions

Step 1. Consider the following nonlinear PDE with two independent variables x
and t:

P (u, ut, ux, utt, uxx, . . .) = 0, (2.3)

where P is a polynomial in u(x, t) and its several partial derivatives including any
kind of linear and nonlinear terms. In order to obtain the solitary wave solutions,
we perform a change of variables as

ξ = x− ct (2.4)

with c being the speed of the wave. Hence, u(x, t) becomes u(ξ).

Step 2. After the change of variables, the PDE given in (2.3) is transformed to the
following ordinary differential equation (ODE):

P (u,−cu′, u′, c2u′′, u′′, . . .) = 0. (2.5)

Step 3. (2.5) is integrated as many times as possible and the integration constants
are set to zero for simplicity.

Step 4. The homogeneous balance between the highest order derivatives and the
highest order nonlinear terms in (2.5) must be taken into account in order to obtain
m, which will be explained in Step 5. The degrees of the relevant terms to be
equated to each other can be calculated using the general expression:

deg

[
uq
(
dru

dξr

)s]
= mq + s (m+ r) . (2.6)

After this step, tanh function and polynomial function methods are separated,
which are explained in the following subsections.
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2.2.1. Tanh function method

Step 5. Defining a new variable y=tanh(ξ), the solution of (2.5) is sought in the
following form:

u(ξ) = S(y) = a0 +

m∑
i=1

aiy
i + biy

i−1

√
σ

(
1 +

y2

µ

)
, (2.7)

where a0, a1, a2, . . . , am, b1, b2, . . . , bm, are coefficients to be determined, while σ and
µ are constants.

Introducing this new variable requires the derivatives in (2.5) to be modified as:

d

dξ
=
(
1− y2

) d
dy

;

d2

dξ2
=
(
1− y2

)((
1− y2

) d2

dy2
− 2y

d

dy

)
;

d3

dξ3
=
(
1− y2

)3 d3

dy3
+ 4y2

(
1− y2

) d
dy

+
(
1− y2

)2(−6y
d3

dy3
− 2

d

dy

)
; (2.8)

d4

dξ4
=
(
1− y2

)4 d4

dy4
− 4y

(
3y2 − 1

) (
1− y2

) d
dy

+
(
1− y2

)3(−12y
d3

dy3
− 6

d2

dy2

)
+
(
1− y2

)2(
24y2 d

2

dy2
+ 2

(
3y2 − 1

) d2

dy2
+ 12y

d

dy

)
.

Step 6. Using the m value found in Step 4, the function (2.7) is substituted into

(2.5) to get a polynomial function in yi and yi
√
σ
(

1 + y2

µ

)
. Since the right-hand-

side of this equation is zero, the left-hand-side has to be a zero polynomial. Thus,
all the coefficients of this zero polynomial is set equal to zero, which results in
an overdetermined system of homogeneous algebraic equations with respect to the
constants a0, ai, bi, c, σ and µ.
Step 7. This equation system can be solved in a mathematics software like Math-
ematica, Matlab, or Maple. We prefer to use Mathematica as it is more practical
in symbolic calculations. Then, possible values for the coefficients in the function
(2.7) are determined.
Step 8. After the coefficients determined are substituted into the function (2.7)
and taking the change of variables in (2.4) into account, the solitary wave solution
u(x, t) of (2.3) is found.

2.2.2. Polynomial function method

Step 5. The general solution of (2.5) is sought in the following form:

u(x, t) =

m∑
i=0

aiφ
i, (2.9)

where the coefficients ai are unknown constants for now.
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Step 6. Here, the function φ is the solution of the following ODE:

(φ′(ξ))2 = αφ2(ξ) + βφ3(ξ) + γφ4(ξ), (2.10)

where α, β and γ are unknown constants for now.

Step 7. Substituting the function (2.9) into (2.5), a polynomial in powers of φ is
obtained. Equating the coefficients of this polynomial to zero, an overdetermined
system of algebraic equations is found depending on the unknowns ai, α, β and γ.

Step 8. This system of algebraic equations is solved using Mathematica and the
unknowns ai, α, β and γ are determined.

Step 9. These coefficients are substituted into the function (2.9) and the change
of variables in (2.4) is taken into account to find the solitary wave solution u(x, t)
of (2.3).

3. Results

3.1. Application to nonlinear Boussinesq equation

The nonlinear Boussinesq equation given in (2.1) takes the following general ODE
form after Step 3 of Section 2.2:

3c2
(
u2uξ

)
− uξ − c2uξξξ = 0. (3.1)

Let us determine the value of m as explained in Step 4:

2m+m+ 1 = m+ 3. (3.2)

Here, we find m=1.

3.1.1. Application of the tanh function method

Taking the equalities in (2.9) into account and substituting the function (2.7) into
(3.1), the following equation is acquired:

3c2
(
1− y2

)
S(y)2S′(y)− c2

((
1− y2

)3
S(3)(y)

)
+ c2

(
6y
(
1− y2

)2
S′′(y)

)
−c2

(
2
(
3y2 − 1

) (
1− y2

)
S′(y)

)
−
(
1− y2

)
S′(y) = 0. (3.3)

Since m=1, the function S(y) becomes:

S(y) = a0 + a1y + b1

√
σ

(
1 +

y2

µ

)
. (3.4)

Substituting the function (3.4) in (3.3), we get a polynomial in yi and yi
√
σ
(

1 + y2

µ

)
whose coefficients depend on a0, a1, b1, c, σ and µ. Setting the coefficients of this
polynomial equal to zero, the overdetermined system of algebraic equations can be
solved for the three different cases of {a0=0}, {a0=0 & b1=0} and {a0=0 & a1=0}.
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Case i. The system of equations for a0=0 is as follows:

c2(3b21σ + 2)− 1 = 0,

−µ+ c2(3 + 6a2
1µ

2 + µ(8 + 3b21σ)) = 0,

c2(µ(3a2
1 − 3b21σ − 8) + 15b21σ + 4) + µ− 2 = 0,

−2 + µ+ c2(1− 6a2
1µ

2 + 9b21σ + µ(−20 + 21a12 − 3b12σ)) = 0,

−1 + 2µ+ c2(2− 3(−2 + a2
1)µ2 + 21b21σ + µ(−16 + 6a2

1 − 15b21σ)) = 0,

−1 + 2µ+ c2(2− 3(−4 + 7a2
1)µ2 + 9b21σ + µ(−19 + 24a2

1 − 9b21σ)) = 0, (3.5)

−6(−2 + a2
1)c2µ2 + 9b21c

2σ + µ(1 + c2(−8 + 3a2
1 − 21b21σ)) = 0,

−3(−5 + 8a2
1)c2µ2 + 3b21c

2σ + µ(1 + c2(−8 + 9a2
1 − 9b21σ)) = 0,

(−2 + a2
1)µ+ 3b21σ = 0,

(−2 + 3a2
1)µ+ b21σ = 0.

Solving this equation system with Mathematica results in a1=± 1√
2
, b1 6=0, c=±

√
2,

σ=−c
2−4

12b21
, µ= 1

6

(
−4− c2

)
. Using these values and considering the change of vari-

ables in (2.4), the solitary wave solution is acquired as follows:

u(x, t) =

√
tanh2

(√
2t− x

)
− 1

√
2

−
tanh

(√
2t− x

)
√

2
(3.6)

whose behavior is shown in Fig. 1-a.
Case ii. Similarly, a system of equations for the particular case of a0=0 and b1=0
can be obtained as follows:

−a1 + 2a1c
2 = 0,

a1 − 8a1c
2 + 3a3

1c
2 = 0, (3.7)

6a1c
2 − 3a3

1c
2 = 0.

This equation can be simply solved to have a1=±
√

2, and c=± 1√
2
. Then, the

solitary wave solution is written as:

u(x, t) =
√

2 tanh

(
t√
2
− x
)
. (3.8)

The behavior of (3.8) is plotted in Fig. 1-b.
Case iii. For a0=0 and a1=0, the overdetermined system of algebraic equations is
as follows:

3b1c
2µ2σ − b1µ3σ + 8b1c

2µ3σ + 3b31c
2µ3σ2 = 0,

− 2b1µ
2σ + b1c

2µ2σ + b1µ
3σ − 20b1c

2µ3σ + 9b31c
2µ2σ2 − 3b31c

2µ3σ2 = 0,

− b1µσ + 2b1c
2µσ + 2b1µ

2σ − 19b1c
2µ2σ + 12b1c

2µ3σ + 9b31c
2µσ2 − 9b31c

2µ2σ2 = 0.

b1µσ − 8b1c
2µσ + 15b1c

2µ2σ + 3b31c
2σ2 − 9b31c

2µσ2 = 0,

6b1c
2µσ − 3b31c

2σ2 = 0.
(3.9)

Solution of this equation system leads to the values of the unknowns b1 6=0, c=±i,
σ=− 2(c2+4)

3b21
and µ= 1

3

(
−c2 − 4

)
. Using these values, the solitary wave solution is
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Figure 1. Solitary wave solutions of the nonlinear Boussinesq equation using the tanh function method
where (a) a0=0, (b) a0=0 and b1=0.

found as the following:

u(x, t) =
√

2
√
−1− tan2(t+ ix). (3.10)

3.1.2. Application of the polynomial function method

Since m=1, the solitary wave solutions of (2.1) is sought using the polynomial
function method in the following form:

u(x, t) = u(ξ) = a0 + a1φ(ξ). (3.11)

Depending on the choice of the function φ(ξ), two possible solitary wave solutions
can be found as given below.

Case i. Let φ(ξ) be the solution of the ODE in (2.10) when β=0. Now, we substi-
tute function (3.11) into (3.1) and we get a polynomial in φ(ξ) whose coefficients
include the constants a0, a1, α, γ and c. Setting these coefficients equal to zero, we
obtain the below overdetermined system of algebraic equations. When this equation
system is processed in Mathematica, we see that a0=0, c6=0 and a1 6=0 in order to
have a nontrivial solution.

−1− αc2 = 0,

a2
1 − 2γ = 0. (3.12)
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The solution of this equation system results in α = − 1
c2 and γ =

a21
2 which will be

inserted into (2.10). Considering the following solution of (2.10)

φ(ξ) = ±
√

2 cot ξ

√
tan2 ξ + 1, (3.13)

whose constant is equated to zero for simplicity, the solitary wave solution (3.11) is
acquired as:

u(x, t) = − 4
√

3 cot

(
x− ct
2
√

2

)√√√√ 1

cos
(
x−ct√

2

)
+ 1

. (3.14)

The behavior of (3.14) is given in Fig. 2-a.
Case ii. Now, let the function (3.11) be sought when

φ(ξ) =
4β

2β2c1ξ + β2c21 + β2ξ2 − 4γ
(3.15)

is the solution of the ODE (2.10) for α=0. In this solution, c1 is taken as equal to 1
for simplicity. Following the same procedure given in the previous case, the below

0

x

0.5

(a)

-5

t

0 5

0

u(
x,

t)

110 15

5

0

x

0.5

(b)

-10

t

0 2

0

u(
x,

t)

14 6 8 10

10

Figure 2. Solitary wave solution for the nonlinear Boussinesq equation with the polynomial function
method where (a) β=0, (b) α=0.
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overdetermined system of algebraic equations is reached:

β − 3a2
0βc

2 = 0,

−6a0a1βc
2 + 3β2c2 + γ − 3a2

0c
2γ = 0,

−3βc2(a2
1 − 2γ)− 6a0a1c

2γ + 3βc2γ = 0, (3.16)

a2
1 − 2γ = 0.

Solving this equation system in Mathematica gives out c6=0, a1 6=0, a0=± 1√
3c

,

β=2a0a1, γ=
a21
2 . Substituting the values of these constants in the function (3.11),

the below solitary wave solution is found:

u(x, t) =
1√
3

+
8√

3
(

4
3 (x− ct)2 + 8

3 (x− ct)− 2
3

) . (3.17)

The behavior of (3.17) is given in Fig. 2-b.

3.2. Application to nonlinear sixth-order modified Boussinesq
equation

After Step 3 of Section 2.2, the nonlinear sixth-order modified Boussinesq equation
(2.2) takes the following ODE form:

c2u3 − u− c2uξξ − uξξξξ = 0. (3.18)

As stated in (2.6), the m value of the polynomial function (2.7) can be calculated
from

3m = m+ 4, (3.19)

where we find m=2.

3.2.1. Application of the polynomial function method

Since the tanh function method given in Section 2.2.1 did not produce a solitary
wave solution for (3.18), we directly show the application of the polynomial func-
tion method given in Section 2.2.2 The polynomial function (2.9) is sought in the
following form:

u(x, t) = u(ξ) = a0 + a1φ(ξ) + a2φ
2(ξ). (3.20)

Two possible solitary wave solutions can be found for two different φ(ξ) functions.
Case i. Here, φ(ξ) is the solution of the ODE given in (2.10) for γ=0. When the
polynomial function (3.20) is inserted into (3.18), a polynomial in φ(ξ) is obtained.
Next, the coefficients of this polynomial, which depend on the unknown constants
a0, a1, a2, α, β and c, are equated to zero. When the resultant overdetermined
system of algebraic equations is processed in Mathematica, the real valued solutions
of this equation system can be reached for a0=0 and a2=0. The simplified equation
system after this process is given as:

1 + α2 + αc2 = 0,

−3

2
a1β(5α+ c2) = 0, (3.21)

1

2
a1(−15β2 + 2a2

1c
2) = 0.
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The nontrivial solution of this equation system results in a1 6=0, c=±
√

5
2 , α=−c

2

5

and β=±
√

2
15a1c. Using these constants and taking the solution

φ(ξ) =
1

2

(√
3 +
√

3 tan2

(
1

4

(
2
√

3c1 +
√

2ξ
)))

(3.22)

of (2.10) into account together with c1=0 for simplicity, the solitary wave solution
(3.20) can be written as follows:

u(x, t) =
1

2

√
3 sec2

x−
√

5
2 t

2
√

2

 , (3.23)

whose behavior is plotted in Fig. 3-a.

Case ii. Now, let β=0 and φ(ξ) be the solution of the corresponding ODE (2.10).
Similar to the procedure followed in the previous case (Case i), a polynomial in φ(ξ)
is obtained after the polynomial function (3.20) is substituted into (3.18). Again,
the coefficients of this polynomial are equated to zero to have an overdetermined
system of algebraic equations. Real valued solutions to this equation system are
found by Mathematica only for a0=0 and a1=0. Consequently, the equation system
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Figure 3. Solitary wave solution for the nonlinear sixth-order modified Boussinesq equation with the
polynomial function method where (a) γ=0, (b) β=0.
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to be solved becomes:
− 16α2 − 4αc2 − 1 = 0,

20α+ c2 = 0,

a2
2c

2 − 120γ2 = 0,

(3.24)

which leads to a2 6=0, c=±
√

5
2 , α=- c

2

20 , γ=± a2c
2
√

30
. With these constants and the

solution

φ(ξ) = ±
cot
(

1
4

((
−
√

2
)
ξ − 4

√
3c1
))

√
2

×

√√
3 tan2

(
1
4

((
−
√

2
)
ξ − 4

√
3c1
))

+
√

3
√

2
(3.25)

of (2.10), the solitary wave solution (3.20) is acquired as follows after c1 is set equal
to zero for simplicity:

u(x, t) =
1

2

√
3 csc2

x−
√

5
2 t

2
√

2

 . (3.26)

The graph of (3.26) is given in Fig. 3-b.

4. Conclusion

The analytical solitary wave solutions are found for the nonlinear analogue of the
Boussinesq and sixth-order modified Boussinesq equation where the nonlinearity is
within the term which includes the derivative with respect to time. Both tanh func-
tion and polynomial function methods are used to reach the solitary wave solutions
for the nonlinear Boussinesq equation, while those for the nonlinear sixth-order
modified Boussinesq equation are obtained using the polynomial function method.

References

[1] S. Amirov and A. I. Kozhanov, Global solvability of initial boundary-value prob-
lems for nonlinear analogs of the Boussinesq equation, Mathematical Notes,
2016, 99(1–2), 183–191.

[2] H. A. Basha and S. F. Maalouf, Theoretical and conceptual models of subsurface
hillslope flows, Water Resources Research, 2005, 41(7).

[3] M. A. Helal and A. R. Seadawy, Variational method for the derivative nonlinear
Schrdinger equation with computational applications, Physica Scripta, 2009,
80(3), 035004.

[4] V. I. Karpman, Non-Linear Waves in Dispersive Media: International Series
of Monographs in Natural Philosophy (Vol. 71), Pergamon Press, Hungary,
1975, 15–18.

[5] X. L. Li and Y. Zheng, The Effects of the Boussinesq Model to the Rising of the
Explosion Clouds, Nuclear Electronics & Detection Technology, 2010, 30(11),
1454–1458.

[6] K. E. Lonngren, Observation of solitons on nonlinear dispersive transmission
lines, Solitons in Action, 1978, 25, 127–152.



Solitary wave solutions for nonlinear analogues of Boussinesq equation 1623

[7] P. A. Madsen, H. B. Bingham and H. A. Schäffer, Boussinesq-type formulations
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