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DERIVATIVE NONLINEAR SCHRÖDINGER
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Abstract In this paper, we considered the model of the thirteenth order
derivatives of nonlinear Schrödinger equations. It is shown that a wave pack-
et ansatz inserted into these equations leads to an integrable Hamiltonian
dynamical sub-system. By using bifurcation theory of planar dynamical sys-
tems, in different parametric regions, we determined the phase portraits. In
each of these parametric regions we obtain possible exact explicit parametric
representation of the traveling wave solutions corresponding to homoclinic,
hetroclinic and periodic orbits.
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1. Introduction

Many phenomena in physics, engineering and sciences are described by nonlinear
partial differential equations (NPDEs). Exact traveling wave solutions of nonlinear
evolution equations is one of the fundamental object of study in mathematical
physics. When these exact solutions exist, they can help one to understand the
mechanism of the complicated physical phenomena and dynamical process modeled
by these nonlinear evolution equations.

Derivative nonlinear Schrödinger (DNLS) equations occur frequently in appli-
cations, for instance, in models incorporating self-steepening effects in optical puls-
es [8, 16]. Derivative nonlinear Schrödinger equations constitute a class of models
which describe the evolution in physical media that has been drawn considerable at-
tention both in a theoretical context and in many applied disciplines, notably in hy-
drodynamics, nonlinear optics and the study of Bose-Einstein condensates [2,6,19].
In the past decades a vast variety of the powerful and direct methods to find the ex-
plicit solutions of NPDE have been developed, such as inverse scattering transform
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method, Backlund and Darboux transforms method, Lie group method, homotopy
perturbation method, planner dynamical method, algebraic method, Jacobi elliptic
function expansion method [1, 9, 10,17,20,26] to list a few.

In this paper, we apply the planner dynamical method for solving coupled deriva-
tives of nonlinear Schrodinger equations of thirteenth order:

iAt +Axx + f ′(Φ)A+ j′(Φ)iAx + (g(Φ))xiA−
s|A|xx
|A|

A = 0, (1.1)

where f = µ
2 Φ2 + ν

3 Φ3 + ac
λ Φ4 − a2

2λΦ7, j = 2aΦ4 and g = α
2 Φ2 + β

3 Φ3, are
analytic functions which depend on the squared amplitude Φ = |A|2 = φ2 + ψ2

and “ ′ ” stands for the derivative with respect to Φ (see [11, 12] and the reference
there in). The constant s > 1 corresponds to the resonant nonlinear Schrödinger
(NLS) equation so-called because it admits both fission and fusion resonant solitonic
phenomena [11,21,23,25,27].

In a wide class of NLS equations with underlying Hamiltonian structure was
shown to be reducible to the integrable resonant NLS equation [21, 28]. This so-
called resonant NLS equation has also been derived in plasma physics where it
describes the transmission of long magneto-acoustic waves in a cold collisionless
plasma subject to a transverse magnetic field. The resonant NLS equation and
its (2+1)-dimensional integrable extension to a resonant Davey-Stewartson system
were introduced in a capillarity model context in [25,27]. The nonlinear Schrödinger
equation is an example of a universal nonlinear model that describes many physical
nonlinear systems [5]. In the setting of optical fiber waveguides, terms involving
λ, µ and α are associated with group velocity dispersion, Kerr (cubic) nonlinearity
and self-steeping (or, more precisely, an effect which may be converted to self-
steeping form following a gauge transformation).

Recent interests on coupled nonlinear Schrödinger systems, on a class of prop-
agating wave patterns for families of derivative nonlinear Schrödinger equation-
s of seventh (septic), ninth (nonic) and thirteenth order, which incorporates de
Broglie-Bohm quantum potentials and which admit integrable Ermakov-Ray-Reid
sub-systems have bought attention of researchers [4, 29]. A procedure recently em-
ployed by [5, 7, 13, 18] (the application of a pair of invariants of motion) is also
applied here. To analyze the traveling wave solution with the form:

A(x, t) = [(φ(ξ) + iψ(ξ))]exp(i(νx− λt)), ξ = x− µt, (1.2)

where µ, ν and λ are related to the nonlinearity induced shifts in three quanti-
ties, namely, group delay, carrier frequency and propagation constant respectively.
Substituting equation (1.2) into equation (1.1), separating the real and imaginary
parts, one obtains the coupled nonlinear integrable system respectively,

dφ

dξ
= q1,

dq1

dξ
= −(f ′ + λ− ν2)φ+ (j′ + 2ν − µ)ψ̇ + g′(φ2 + ψ2)•ψ

+ s

 (φ̇φ+ ψ̇ψ)
•

φ2 + ψ2
−

(
φ̇φ+ ψ̇ψ

φ2 + ψ2

)2
φ,

dψ

dξ
= q2,

dq2

dξ
= −(f ′ + λ− ν2)ψ − (j′ + 2ν − µ)φ̇− g′(φ2 + ψ2)•φ (1.3)
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+ s

 (φ̇φ+ ψ̇ψ)•

φ2 + ψ2
−

(
φ̇φ+ ψ̇ψ

φ2 + ψ2

)2
ψ.

where, dot indicates a derivative with respect to x− µt.
System (1.3) admits two independent integrals of motion and, accordingly, is

integrable. Thus, we obtain the first integral of the dynamical invariant in the form
of the Hamiltonian:

2Ĥ(φ, ψ, q1, q2) =q2
1 + q2

2 − (λ− ν2)Φ− να− µ
2λ

Φ2 − (2β − 1)ν

3λ
Φ3

− a(µ− 2ν)

λ
Φ4 +

a2

λ2
Φ7 − s

4

Φ̇2

Φ
≡ ĥ1, (1.4)

where the constant ĥ1 corresponds to the Hamiltonian invariant. The identification
of constants of motion has been proven as key to the subsequent integration of other
physically important nonlinear dynamical systems, such as the Ermakov - Ray - Reid
systems with invariant of the type and the second integral [4, 13,22,29]:

Î(φ, ψ, q1, q2) = q1ψ − q2φ−
a

λ2
Φ4 − β

3λ
Φ3 − α

4λ
Φ2 +

1

2
(µ− 2ν)Φ = ĥ2, (1.5)

where, ĥ2 is constant of motion. The pair of integrals of motion equation (1.4) and
equation (1.5) allow explicit solution of the nonlinear coupled system (1.3) for φ
and ψ in terms of quadrature.

Let N̂ĥ1ĥ2
be an invariant manifold family of system (1.3) given by

N̂ĥ1ĥ2
= {Ĥ = ĥ1, Î = ĥ2, ĥ1, ĥ2 ∈ R} ⊂ R4. (1.6)

Using the identity

(φ2 + ψ2)(φ̇2 + ψ̇2)− (φφ̇+ ψψ̇)2 ≡ (φψ̇ − ψφ̇)2, (1.7)

and combined with equation (1.4) and equation (1.5), for fixed (ĥ1, ĥ2) gives rise(
dΦ

dξ

)2

=
4Φ

1− s

[
2ĥ1 − (λ− ν2)Φ− (να− µ)

2λ
Φ2 − (2β − 1)ν

3λ
Φ3 − a(µ− 2ν)

λ
Φ4

]
+

4a2

λ2(1− s)
Φ8 − 4

1− s

[
ĥ2 −

(µ− 2ν)

2
Φ +

α

4λ
Φ2 +

β

3λ
Φ3 +

a

λ
Φ4

]2

(1.8)

From equation (1.5), [5] introduced the variable Θ = arctan∆. So that,

cosΘ =
ψ√
Φ
, sinΘ =

φ√
Φ
,

where ∆ = φ
ψ . We see from equation (1.5) that,

Θ(ξ) =

∫ ξ

0

12λĥ2 − 6λ(µ− 2ν)Φ + 3αΦ2 + 4βΦ3 + 12aΦ4

12λ2Φ
dξ

= −1

2
(µ− 2ν)ξ+ĥ2

∫ ξ

0

dξ

Φ
+

α

4λ

∫ ξ

0

Φdξ +
β

3λ

∫ ξ

0

Φ2dξ +
a

λ

∫ ξ

0

Φ3dξ, (1.9)
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where ξ is a dummy variable of integration.
Thus, if we know Φ(ξ) and Θ(ξ) from equation (1.8) and equation (1.9), then

we may solve equation (1.1) and system (1.3) to obtain the following solutions:

A(x, t) = i
√

Φexp [−iΘ + i(νx− λt)] (1.10)

and

φ(ξ) =
√

ΦsinΘ and ψ(ξ) =
√

ΦcosΘ. (1.11)

The corresponding class of exact solutions of equation (1.1), is then given by
equation (1.10). Let dΦ

dξ = 1
2 (1− s)y, then we have a system

dΦ

dξ
=

1

2
(1− s)y,

dy

dξ
= β0 − β1Φ− β2Φ2 − β3Φ3 − β4Φ4 − β5Φ5 − β6Φ6,

(1.12)

where,

β0 = 2ĥ1 + ĥ2(µ− 2ν);

β1 =
1

4λ

[
8λ(λ− ν2) + λ(µ− 2ν)2 + αĥ2

]
;

β2 =
1

4λ

[
(6β − 3(µ− 2ν))α+ 4βĥ2

]
;

β3 =
4

3λ

[
2νβ − ν + β(µ− 2ν)− 2aĥ2λ

]
+

1

4λ2
α2;

β4 =
5αβ

6λ2
;

β5 =
2

3λ2

(
9α2 + 5β2

)
;

β6 =
7βa

3λ2
.

Clearly, system (1.12) is a seven parameter system depending on the eight pa-

rameter group (λ, µ, a, s, ν, δ, ĥ1, ĥ2). It is abound with dynamical system [11,23,24].

For a given parameter group (ν, µ) 6= (0, 0), we next take (ĥ1, ĥ2) such that

β0 ≡ 0, ĥ1 =
(2ν − µ)

4
× ĥ2. (1.13)

Then, for s = 2 system (1.12) reduces to

dΦ

dξ
= −1

2
y,

dy

dξ
= −β1Φ− β2Φ2 − β3Φ3 − β4Φ4 − β5Φ5 − β6Φ6,

(1.14)

with the first integral

H̃(Φ, y) =
1

4
y2 − Φ2

(
1

2
β1 +

1

3
β2Φ +

1

4
β3Φ2 +

1

5
β4Φ3 +

1

6
β5Φ4 +

1

7
β6Φ5

)
= h̃.

(1.15)
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We notice that, Rogers and Chow, [5] did not discuss the dynamical behavior
for the cases when; β2 = β4 = β6 = 0 when α = β = 0, β5 6= 0. Moreover, they did
not give all possible exact explicit parametric representations of the traveling wave
solutions. Incorporating the above given conditions in equation (1.14), we have a
new system:

dΦ

dξ
= −1

2
y,

dy

dξ
= −Φ(β1 + β3Φ2 + β5Φ4).

(1.16)

In this paper, we use the method of dynamical systems [12,14,15] to investigate the
dynamical behavior of system (1.16). In addition we give all possible exact explicit
parametric representations of the traveling wave solutions of equation (1.1).

This paper is organized as follows. In section 2, we state the dynamical behavior
of system (1.16). In section 3, by using the bifurcation of phase portraits we in-
vestigate the exact traveling wave solution of equation (1.1) in different parametric
regions. In section 4, we give the main result of the study.

2. Bifurcations of phase portraits of system (1.16)

We consider system (1.16) which has the hamiltonian

H(Φ, y) =
1

4
y2 − Φ2(

1

2
β1 +

1

4
β3Φ2 +

1

6
β5Φ4) = h. (2.1)

Write ∆ = β2
3 − 4β1β5. Clearly, system (1.16) has always the equilibrium point

E0(0, 0). If ∆ < 0 and β1 < 0 < β5, then system (1.16) has two equilibrium points

E1(Φ1, 0) and E2(Φ2, 0), where Φ1 =
(
−β3−

√
∆

2β5

) 1
2

and Φ2 =
(
−β3+

√
∆

2β5

) 1
2

. If ∆ > 0

and β5 < 0 < β1, system (1.16) has four equilibrium points E1(−Φ1, 0), E2(−Φ2, 0),
E3(Φ2, 0) and E4(Φ1, 0). If ∆ = 0, and β1 = 0, then system (1.16) has a double
equilibrium point at E12(Φ1, 0) = E1(Φ1, 0) and E34(Φ2, 0) = E2(Φ2, 0).

Let M̂(Φj , 0) be the coefficient matrix of the linearized system of system (1.16)
at an equilibrium point Ej . We have

J(0, 0) = detM̂(0, 0) = β1, J(Φj , y) = detM̂(Φj , y) = β1 + 3β3Φ2 + 5β5Φ4.

J(0, 0) = β1 implies that when β1 < 0, the equilibrium point E0(0, 0) is a center
point, when β1 > 0, equilibrium point E0(0, 0) is a saddle point and while for
β1 = 0 and β5 < 0, the equilibrium point E0(0, 0) is a cusp point.

We write that for H(Φ, y) = h given by equation (2.1),

h0 = H(0, 0) = 0, h1,2 = H(±Φ1,2, 0) =
Φ1,2

24β5

(
β3

√
∆± (8β1β5 − β2

3)
)
. (2.2)

For a fixed β1 < 0 or β1 ≥ 0, we change the parameter space β3 and β5 in the
parameter plane (β3, β5). There are two parameter curves (L1) : β3 = 4

3

√
3β1β5

and (L2) : β3 = 2
√
β1β5, which partition this parameter plane into four regions:

(I), (II), (III), (IV ) shown in Fig.1.
By using the above information to do qualitative analysis, we have the following

bifurcations of phase portraits of system (1.16) in two cases as follows.
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Figure 1. The parameter regions partitioned by bifurcation curves of (L1) and (L2).

Case 1. Assume that β1 � 0. In this case, the equilibrium points E0(0, 0) is a
center. The bifurcations of phase portraits of system (1.16) are shown in Fig.2(a)–
(b).

(a) β3 > 0, β5 < 0, ∆ < 0. (b) β3 = 0, β5 < 0.

Figure 2. Bifurcations of phase portraits of system (1.16), β1 � 0.

Case 2. Assume that β1 < 0. In this case, system (1.16) has five equi-
librium points E0(0, 0) and Ej(Φj , 0), j = 1, 2, 3, 4, 5. The origin E0(0, 0), and
Ej(Φj , 0), j = 1, 4 are centers, while E2(Φ2, 0) and E4(Φ4, 0) are saddle points.
Specially, in Fig. 3(f), the equilibrium points E1(−Φ2, 0) and E2(Φ2, 0) are a cus-
p points. The bifurcations of phase portraits of system (1.16) are shown in Fig.
3(a)–3(f).

Case 3. Assume that β1 > 0. When β5 ≤ 0, system (1.16) has three equilib-
rium points E0(0, 0) and Ej(Φj , 0), j = 1, 2. The Equilibrium points E1(Φ1, 0) and
E2(Φ2, 0) are center points while E0(0, 0) is a saddle point. In addition, when β5 >
0, system (1.16) has five equilibrium points E0(0, 0) and Ej(Φj , 0), j = 1, 2, 3, 4.
The Equilibrium points E2 and E3 are center points while E0, E1, and E4 are
saddle points. The bifurcations of phase portraits of system (1.16) are shown in
Fig. 4(a)–4(f).
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(a) β3 > 0, β5 > 0, h2 < 0.
(b) β5 < β3 < 4

3

√
3β1β5, 0 <

h1 <∞. (c) β3 > 0, β5 < 0, h2 < h1.

(d) β3 = 8
3

√
3β1β5, β5 < 0. (e) β3 > 0, β5 < 0. (f) β3 < 0, β5 > 0.

Figure 3. Bifurcations of phase portraits of system (1.16), β1 < 0

(a) β3 > 0, β5 > 0, h2 < 0.
(b) 0 < β3 < 4

3

√
3β1β5, β5 <

0, 0 < h1 <∞. (c) β3 > 0, β5 < 0, h2 < h1.

(d) 0 < β3 < 2
√
β1β5, β5 < 0. (e) β3 > 0, β5 < 0. (f) β3 < 0, β5 > 0.

Figure 4. Bifurcations of phase portraits of system (1.16), β1 > 0
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3. Explicit parametric representations of the solu-
tions of system (1.16)

We now consider the exact explicit parametric representations of the solutions of
system (1.16) depending on

√
Φ and Θ. We see from equation (2.1) and the first

equation of system (1.14) that√
2β5

3
ξ=

∫ Φ

Φ0

dΦ√
6h
β5

+Φ2( 3β1

β5
+ 3β3

2β5
Φ2+Φ4)

=

∫ Ψ

Ψ0

dΨ

2
√

Ψ[ 6h
β5

+Ψ(3β1

β5
+ 3β3

2β5
Ψ+Ψ2)]

.

(3.1)

To find the exact solutions, we consider all bounded orbits of system (1.16) with
Φj =

√
Ψj > 0, for j = 1, 2, 3, 4,M, where Ψj > 0. In this section, we discuss the

exact solutions of equation (1.1) in the different regions of parameter plane.

3.1. Explicit parametric representations of the solutions of
system (1.16) when β1 � 0

Consider case 1 in section 2 (see [Fig. 2(a), 2(b)]). In this subsection, we notice
that β3 ≥ 0, β5 < 0, ∆ = 0. For h ∈ (h1, h2), the level curves defined by H(Φ, y) =
h, has a family of periodic orbits enclosing the origin.

Now, from equation (2.1) we have y2 = 2β5

3

(
6h
β5

+ Φ2( 3β1

β5
+ 3β3

2β5
Φ2 + Φ4)

)
=

8β5

3 (Ψ− α0)Ψ(Ψ− γ)(Ψ− γ̄) = 8β5

3 (Ψ− α0)Ψ
[
(Ψ− a1)2 + b21

]
. Thus, we have the

following parametric representation:

Φ(ξ) =
√

Ψ(ξ) =

(
α0B(1 + cn(ω1ξ, k))

(B −A1) + (A1 +B)cn(ω1ξ, k)

) 1
2

, (3.2)

where, A2
1 = (α0 − b1)2 + a2

1, ω1 =
√

2|β5|A1B
3 , B2 = a2

1 + b21, k
2 =

(A1+B)2−α2
0

4A1B
,

a2
1 = −

(
γ−γ̄

4

)2
, b21 = (γ+γ̄)2

2 , sn(·, k), cn(·, k), dn(·, k), sd(·, k) are Jacobin elliptic
functions, E(·, k), is the elliptic integrals of the second kind and Π(·, ·, k), is the
elliptic integrals of the third kind [3].

Write that,

ᾱ0 =
A1 +B

A1 −B
, β̄0 =

α0B

A1 −B
, γ̄0 =

α0B

A1 +B
.

Thus, we have from equation (1.9) that

Θ(ξ)=
1

2
(2ν−µ)ξ+

β(ᾱ0+1)

3λγ̄0ᾱ0(1−ᾱ2
0)
×
[
Π

(
arcsin(sn(ω1ξ, k)),

ᾱ2
0

ᾱ2
0 − 1

, k

)
−ᾱ0f1(ω1ξ, k)

]

+ĥ2

∫ Ψ

0

− ᾱ0

γ̄0
+

(
1
β̄0

+ ᾱ0

γ̄0

)
1−cn(ω1ξ, k)


1
2

dξ+
α

4λ

∫ Ψ

0

(
− γ̄0

ᾱ0
+

β̄0+ γ̄0
ᾱ0

1+ᾱ0cn(ω1ξ, k)

) 1
2

dξ

+
a

λ

∫ Ψ

0

(
− γ̄0

ᾱ0
+

β̄0 + γ̄0
ᾱ0

1 + ᾱ0cn(ω1ξ, k)

) 3
2

dξ, (3.3)



258 T. Leta & J. Li

where

f1(t) =

√
1− α2

0

k2 + (k′)2α2
0

tan−1

(√
k2 + (k′)2α2

0

1− α2
0

sd(t, k)

)
, if

α2
0

α2
0 − 1

< k2,

= sd(t, k), if
α2

0

α2
0 − 1

= k2,

=
1

2

√
α2

0−1

k2+(k′)2α2
0

ln

[√
k2+(k′)2α2

0dn(t, k)+
√
α2

0−1sn(t, k)√
k2+(k′)2α2

0dn(t, k)−
√
α2

0−1sn(t, k)

]
, if

α2
0

α2
0 − 1

>k2.

Hence, we have the following solution equation (1.1):

A(x, t) = i

(
α0B(1 + cn(ω1ξ, k))

(B −A1) + (A1 +B)cn(ω1ξ, k)

) 1
4

× exp [−iΘ + i(νx− λt)] , (3.4)

where, Θ(ξ) is given by Eq. equation (3.3).

3.2. Explicit parametric representations of the solutions of
system (1.16) when β1 < 0

In this section, we consider case 2 of section 2 for β1 < 0, (see [Fig. 3(a)–3(h)]).
(1) β3 > 0, β5 > 0, h ∈ (0, h1] (see [Fig. 3(a)])
(i) Corresponding to the family of periodic orbits defined by H(Φ, y) = h, h ∈

(0, h1), we have from equation (2.1) that y2 = 8β5

3 (r1−Ψ)(r2−Ψ)Ψ(Ψ− r4), where
r4 < 0 < r2 < r1. Thus, we have the following parametric representation of the
family of periodic orbits of system (1.16):

Φ(ξ) = ±
√

Ψ(ξ) = ±
√
r4

(
1− 1

1− α2
1sn2(ω2ξ, k)

) 1
2

, (3.5)

where, α2
1 = r2

r2−r4 , k
2 = α2

1

(
r1−r4
r2−r4

)
, ω2 =

√
β5r1(r2−r4)

6 .

It follows from equation (1.9) that,

Θ(ξ) =

(
1

2
(2ν − µ)− ĥ2√

r4
+
βr4

3λ

)
ξ +

β

3λ
Π

(
arcsinh(sn(ω2ξ, k)),

α2
1

α2
1 − 1

, k

)

+
ĥ2

α1
√
r4

ln

(
sn(ω2ξ, k)

cn(ω2ξ, k)+dn(ω2ξ, k)

)
+
α
√
r4

4λ

∫ Ψ

0

(
1− 1

1−α2
1sn2(ω2ξ, k)

) 1
2

dξ

+
ar

3
2
4

λ

∫ Ψ

0

(
1− 1

1− α2
1sn2(ω2ξ, k)

) 3
2

dξ. (3.6)

Hence, we have the following solution equation (1.1):

A(x, t) = i

(
r4

(
1− 1

1− α2
1sn2(ω2ξ, k)

)) 1
4

× exp [−iΘ + i(νx− λt)] , (3.7)

where, Θ(ξ) is given by equation (3.6).
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(ii) The level curve defined by H(Φ, y) = h1, have two hetroclinic orbits. In this
case Φ2 = −Φ1 and the origin is a center. Now, from equation (2.1) we have

y2 =
8β5

3

(
6h

β5
Ψ +

3β1

β5
Ψ2 +

3β3

2β5
Ψ3 + Ψ4

)
=

8β5

3
(Ψ2 −Ψ)2Ψ(Ψ− r1),

where 0 < r1 < Ψ2 = Φ2
2.

Then, the hetroclinic orbit has a parametric representations:

Φ(ξ) = ±
√

Ψ(ξ) = ±

(
Ψ2 −

2Ψ2(Ψ2 − r1)

r1cosh(
√

(Ψ2 − r1)Ψ2ξ) + (2Ψ2 − r1)

) 1
2

. (3.8)

It follows from equation (1.9) that,

Θ(ξ) =

(
1

2
(2ν−µ)+

β

3λ
Ψ2

)
ξ− 2β

3λ

√
(Ψ2−r1)Ψ2 arctan

√
Ψ2−r1

Ψ2
tan

√
(Ψ2−r1)Ψ2

2
ξ

+
ĥ2√
Ψ2

∫ Ψ

0

√
r1cosh(

√
(Ψ2 − r1)Ψ2ξ) + r1 − 2Ψ2

r1cosh(
√

(r1 −Ψ2)Ψ2ξ) + Ψ2

dξ

+
α
√

Ψ2

4λ

∫ Ψ

0

(
r1cosh(

√
(Ψ2 − r1)Ψ2ξ + Ψ2

r1cosh(
√

(Ψ2 − r1)Ψ2ξ) + (2Ψ2 − r1)

) 1
2

dξ

+
a
√

Ψ2

λ

∫ Ψ

0

(
r1cosh(

√
(Ψ2 − r1)Ψ2ξ + Ψ2

r1cosh(
√

(Ψ2 − r1)Ψ2ξ) + (2Ψ2 − r1)

) 3
2

dξ. (3.9)

Hence, we have the following solution equation (1.1):

A(x, t) = i

(
Ψ2−

2Ψ2(Ψ2 − r1)

r1cosh(
√

(Ψ2 − r1)Ψ2ξ) + (2Ψ2 − r1)

) 1
4

×exp [−iΘ + i(νx−λt)] ,

(3.10)

where, Θ(ξ) is given by equation (3.9).
(2) β5 < β3 <

4
3

√
3β1β5, 0 < h1 <∞ (see [Fig. 3(b)]).

(i) Corresponding to the level curves defined by H(Φ, y) = h, h ∈ (0, h1), there
exist three families of periodic orbits of system (1.16), enclosing the equilibrium
points E1(−Φ1, 0) and E4(Φ1, 0), E0(0, 0) respectively.

Now, equation (3.1) has the forms√
8β5

3
ξ =

∫ Ψ

r2

dΨ√
(Ψ− r3)(Ψ− r2)Ψ(r1 −Ψ)

and √
8β5

3
ξ =

∫ Ψ

0

dΨ√
Ψ(r3 −Ψ)(r2 −Ψ)(r1 −Ψ)

,

where 0 < r3 < r2 < Φ1 < r1.
Therefore, the periodic orbits enclosing the equilibrium points E1(−Φ1, 0) and

E4(Φ1, 0) has a parametric representations:

Φ(ξ) = ±
√

Ψ(ξ) = ±
(
r3 +

r2 − r3

1− α2
1sn2(ω3ξ, k)

) 1
2

, (3.11)
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where k2 = (r1−r2)r3
(r1−r3)r2

, α2
2 = r1−r2

r1−r3 , ω3 =
√

β5r2(r1−r3)
6 .

Thus, we have from equation (1.9) that

Θ(ξ) =

(
1

2
(2ν − µ) +

βr4

3λ

)
ξ +

β(r2 − r3)

3λ
×Π

(
arcsinh (sn (ω3ξ, k)) , α2

2, k
)

+ĥ2

∫ Ψ

r2

(
1−α2

2sn2(ω3ξ, k)

r2−r3α2
2sn2(ω3ξ, k)

) 1
2

dξ+
a

λ

∫ Ψ

r2

(
r3+

r2 − r3

1− α2
2sn2(ω3ξ, k)

) 3
2

dξ.

(3.12)

Hence, we have the following solution equation (1.1):

A(x, t) = i

(
r3 +

r2 − r3

1− α2
2sn2(ω3ξ, k)

) 1
4

× exp [−iΘ + i(νx− λt)] , (3.13)

where, Θ(ξ) is given by equation (3.12).
The periodic orbits enclosing the equilibrium points E0(0, 0) has the parametric

representation:

Φ(ξ) = ±
√

Ψ(ξ) = ±
(
r1 −

r1

1− α2
2sn2(ω3ξ, k)

) 1
2

, (3.14)

where k2 = (r1−r2)r3
(r1−r3)r2

, α2
3 = r3

|r3−r1| .

Thus, we have from equation (1.9) that

Θ(ξ) =

(
1

2
(2ν − µ) +

βr1

3λ

)
ξ − βr1

3λ
Π
(
arcsinh(sn(ω3ξ, k)), α2

3, k
)

+
ĥ2√
r1

∫ Ψ

0

√
1

1− 1
1−α2

3sn2(ω3ξ,k)

dξ +
α
√
r1

4λ

∫ Ψ

0

√
1− 1

1− α2
3sn2(ω3ξ, k)

dξ

+
a

λ

∫ Ψ

0

(
r1 −

r1

1− α2
3sn2(ω3ξ, k)

) 3
2

dξ. (3.15)

Hence, we have the following solution equation (1.1):

A(x, t) = i

(
r1 −

r1

1− α2
3sn2(ω3ξ, k)

) 1
4

× exp [−iΘ + i(νx− λt)] , (3.16)

where, Θ(ξ) is given by equation (3.15).
(ii) The level curves defined by H(Φ, y) = h1 there exist two homoclinic orbits

of system (1.16), enclosing the equilibrium points E1(−Φ1, 0) and E4(Φ1, 0); two
hetroclinic orbits connecting E2(−Φ2, 0) and E3(Φ2, 0), enclosing the equilibrium
point E0(0, 0).

Corresponding to the two homoclinic orbits, equation (3.1) becomes√
8β5

3
ξ = ±

∫ ΨM

Ψ

dΨ

(Ψ−Ψ3)
√

(ΨM −Ψ)Ψ
,

where, 0 < Φ3 < Φ4 < ΦM , and ω4 =
√

2β5Ψ3|Ψ3−ΨM |
3 .
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Thus, we obtain the parametric representations of the homoclinic orbit:

Φ(ξ) = ±
√

Ψ(ξ) = ±
(

Ψ3 +
2Ψ3(ΨM −Ψ3)

ΨM cosh(ω4ξ)− (ΨM − 2Ψ3)

) 1
2

. (3.17)

Thus, we have from equation (1.9) that

Θ(ξ) =

(
1

2
(2ν−µ)+

β

3λ
Ψ3

)
ξ+

β

3λ

√
Ψ3(ΨM−Ψ3)arctan

√ |Ψ3−ΨM |
Ψ3

tanh

(
1

2
ω4ξ

)

+ ĥ2

∫ ΨM

Ψ

(
ΨM cosh(ω4ξ) + (2Ψ3 −ΨM )

Ψ3ΨM cosh(ω4ξ) + ΨMΨ3)

) 1
2

dξ

+
α

4λ

∫ ΨM

Ψ

(
Ψ3ΨM cosh(ω4ξ) + ΨMΨ3)

ΨM cosh(ω4ξ) + (2Ψ3 −ΨM )

) 1
2

dξ

+
a

λ

∫ ΨM

Ψ

(
Ψ3ΨM cosh(ω4ξ) + ΨMΨ3)

ΨM cosh(ω4ξ) + (2Ψ3 −ΨM )

) 3
2

dξ, (3.18)

Hence, we have the following solution equation (1.1):

A(x, t) = i

(
Ψ3 +

2Ψ3(ΨM −Ψ3)

ΨM cosh(ω4ξ)− (ΨM − 2Ψ3)

) 1
4

× exp [−iΘ + i(νx− λt)] ,

(3.19)

where, Θ(ξ) is given by equation (3.18).
Next, for the two hetroclinic orbits, equation (3.1) becomes√

8β5

3
ξ = ±

∫ Ψ

0

dΨ

(Ψ3 −Ψ)
√

(ΨM −Ψ)Ψ
.

Thus, we obtain the parametric representation of a hetroclinic orbits as follows:

Φ(ξ) = ±
√

Ψ(ξ) = ±
(

Ψ3 −
2Ψ3(ΨM −Ψ3)

ΨM cosh(ω4ξ) + (ΨM − 2Ψ3)

) 1
2

, ξ ∈ (0,∞).

(3.20)

Thus, we have from equation (1.9) that

Θ(ξ) =

(
1

2
(2ν−µ)+

βΨ3

3λ

)
ξ+

β

3λ

√
Ψ3(ΨM−Ψ3)arctan

(√
Ψ3

ΨM−Ψ3
tanh(

1

2
ω5ξ)

)

+
α

4λ

∫ Ψ

0

(
Ψ3 −

2(ΨM −Ψ3)Ψ3

ΨM cosh(ω5ξ) + (ΨM − 2ψ3)

) 1
2

+
a

λ

∫ Ψ

0

(
Ψ3 −

2(ΨM −Ψ3)Ψ3

ΨM cosh(ω5ξ) + (ΨM − 2ψ3)

) 3
2

dξ

− Σ(ξ)ĥ2, (3.21)

where ω5 =
√

2β5Ψ3|ΨM−Ψ3|
3 .
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Hence, we have the following solution equation (1.1):

A(x, t) = i

(
Ψ3 −

2Ψ3(ΨM −Ψ3)

ΨM cosh(ω4ξ) + (ΨM − 2Ψ3)

) 1
4

× exp [−iΘ + i(νx− λt)] ,

(3.22)

where, Θ(ξ) is given by equation (3.21).
(iii) Corresponding to the level curves defined by H(Φ, y) = h, h ∈ (h1,∞),

there exists a family of periodic orbits of system (1.16), enclosing five equilibrium
points. It has the same parametric representation as equation (3.4).

(3) β3 = 8
3

√
3β1β5, β5 < 0 (see [Fig. 3 (d)])

In this case, we have that h2 < 0 < h1.
(i) Corresponding to the level curves defined by H(Φ, y), h ∈ (h2, 0], there exists

a family of two periodic orbits of system (1.16), enclosing the equilibrium point
E1(−Φ1, 0) and E4(Φ1, 0). It has the same parametric representation as equation
(3.13).

(ii) Corresponding to the level curves defined by H(Φ, y) = h, h ∈ (0, h1), there
exist three families of periodic orbits of system (1.16), enclosing the equilibrium
points E1(−Φ1, 0), E4(Φ1, 0) and E0(0, 0) respectively. They have the same para-
metric representation as equation (3.13) and equation (3.16).

(iii) Corresponding to the level curves defined by H(Φ, y) = h1, there exist two
homoclinic orbits of system (1.16), enclosing the equilibrium points E1(−Φ1, 0) and
E4(Φ1, 0), and two hetroclinic orbits, enclosing the equilibrium point E0(0, 0). They
have the same parametric representation as equation (3.19) and equation (3.22).

(iv) Corresponding to the level curves defined by H(Φ, y) = h, h ∈ (h1,∞), there
exists a family of periodic orbits of system (1.16), enclosing five equilibrium points.
It has the same parametric representation as equation (3.4).

(4) β3 > 0, β5 < 0. (see [Fig. 3(e)])
In this case, we have that ∆ = 0, h2 < 0 < h1.
(i) For h ∈ (h2, 0), the level curves defined by H(Φ, y) = h, there exists a family

of periodic orbits of system (1.16), enclosing the equilibrium point E0(0, 0). It has
the same parametric representation as equation (3.4).

(ii) For h ∈ (0, h1), the level curves defined byH(Φ, y) = h, there exist three fam-
ilies of periodic orbits of system (1.16), enclosing the equilibrium points E1(−Φ1, 0)
and E4(Φ1, 0), and E0(0, 0), respectively. They have the same parametric represen-
tation as equation (3.19) and equation (3.22).

(iii) Corresponding to the level curves defined by H(Φ, y) = h1, there exist two
homoclinic orbits of system (1.16), enclosing the equilibrium points E1(−Φ1, 0) and
E4(Φ1, 0) and two hetroclinic orbits, enclosing the equilibrium point E0(0, 0). They
have the same parametric representation as equation (3.13) and equation (3.16).

(iv) For h ∈ (h1,∞), to the level curves defined by H(Φ, y) = h, there exists a
family of periodic orbits of system (1.16), enclosing five equilibrium points. It has
the same parametric representation as equation (3.4).

(5) β3 < 0, β5 > 0. (see [Fig. 3(f)])
In this case, we have that Φ1 = Φ2, h2 = h1.
(i) For h ∈ (0, h1)

⋃
(h1,∞) the level curves defined by H(Φ, y) = h, there exists

a family of periodic orbits of system (1.16), enclosing the equilibrium point E0(0, 0).
It has the same solution as equation (3.4).

(ii) Corresponding to the level curves defined by H(Φ, y) = h1, there exist two
hetroclinic orbits connecting the equilibrium point (cusp) E2(−Φ2, 0) and E3(Φ2, 0).
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For two hetroclinic orbits, equation (3.1) becomes√
8β5

3
ξ = ±

∫ Ψ

0

dΨ

(Ψ2 −Ψ)
√

(Ψ2 −Ψ)Ψ
,

where, Φ2 = ±
√

Ψ2. Then, we have the following parametric representation of Φ(ξ):

Φ(ξ) = ±
√

Ψ(ξ) = ±
√

Ψ2

(
1− 4

4− (Ψ2ξ)2

) 1
2

, ξ ∈ (0,∞). (3.23)

Thus, we have from equation (1.9) that

Θ(ξ) =

(
1

2
(2ν − µ) +

β

2λ

)
ξ +

ĥ2

|Ψ2|

(√
4− (Ψ2ξ)2 − 2ln

(
2−

√
4− (Ψ2ξ)2

Ψ2ξ

))

+
β|Ψ2|

3λ

√
4−(Ψ2ξ)2+

α|Ψ2|
4λ

√
4−(Ψ2ξ)2+

a

λ

∫ Ψ

0

√(
1− 4

4− (Ψ2ξ)2

)3

dξ.

(3.24)

Hence, we have the following solution equation (1.1):

A(x, t) = i

(
1− 4

4− (Ψ2ξ)2

) 1
4

× exp [−iΘ + i(νx− λt)] , (3.25)

where, Θ(ξ) is given by equation (3.24).

3.3. Explicit parametric representations of the solutions of
system (1.16) when β1 > 0

In this section we consider case 4 of section 2, for β1 > 0. (see [Fig. 4(a)–4(g)])
(1) β3 > 0, β5 > 0, h2 < h1 = 0. (see [Fig. 4(a)])
(i) Corresponding to the level curves defined by H(Φ, y) = h, h ∈ (h2, h1), there

exist two families of periodic orbits of system (1.16). Equation (3.1) has the form√
8β5

3
ξ =

∫ Ψ

r2

dΨ√
(Ψ− r4)Ψ(Ψ− r2)(r1 −Ψ)

,

where r4 < 0 < r2 < r1. It gives rise to the parametric representations of two
families of the periodic orbits of system (1.16) as follows:

Φ(ξ) = ±
√

Ψ(ξ) = ±
(

r2

1− α2
3sn2(ω3ξ, k)

) 1
2

, (3.26)

where k2 = (r1−r2)|r4|
r1(r2−r4) , α

2
4 = r1−r2

r1
< 1, ω6 = 1

2

√
β5

6 r1(r2 − r4).

Thus, we have from equation (1.9) that

Θ(ξ) =
1

2
(2ν−µ)ξ+

βr2

3λ
Π
(
arcsin (sn (ω6ξ, k)) , α2

4, k
)
+

(
ĥ2√
r2

)∫ Ψ

r2

√
1−α2

4sn2(ω6ξ, k)dξ
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+
( α

4λ

√
r2

)∫ Ψ

r2

dξ√
1− α2

4sn2(ω6ξ, k)
+
(a
λ
r

3
2
2

)∫ Ψ

r2

dξ
3
√

1− α2
4sn2(ω6ξ, k)

.

(3.27)

Hence, we have the following solution equation (1.1):

A(x, t) = i

(
r2

1− α2
4sn2(ω6ξ, k)

) 1
4

× exp [−iΘ + i(νx− λt)] , (3.28)

where, Θ(ξ) is given by equation (3.27).
(ii) Corresponding to the level curves defined by H(Φ, y) = h1, there exist two

homoclinic orbits of system (1.16) to the multiple equilibrium point at E0(0, 0).
Equation (3.1) has the form√

8β5

3
ξ = ±

∫ ΨM

Ψ

dΨ

Ψ
√

Ψ
(

4
3 |β3| −Ψ

) .
Hence, we obtain the following parametric representations of system (1.16):

Φ(ξ) = ±
√

Ψ(ξ) = ±
(

12|β3|
9 + 16β2

3ξ
2

) 1
2

. (3.29)

Thus, we have from equation (1.9) that

Θ(ξ) =− 1

2
(µ−2ν)+

ĥ2

2
√

3β3

[√
9+16β2

3ξ
2+3ln

(
ξ+

√
9+16β2

3ξ
2

4β2
3

)]
+
β

3λ
arctan(4β3ξ)

+
α
√

3

8λ
√
β3

ln

(
ξ +

√
9 + 16β2

3ξ
2

4β3

)
+
a 3
√

12β3

λ

∫ ΨM

Ψ

dξ
3
√

9 + 16β2
3ξ

2
. (3.30)

Hence, we have the following solution equation (1.1):

A(x, t) = i

(
12|β3|

9 + 16β2
3ξ

2

) 1
4

× exp [−iΘ + i(νx− λt)] , (3.31)

where, Θ(ξ) is given by equation (3.30).
(iii) For h ∈ (0,∞), the level curves defined by H(Φ, y) = h, there exists a family

of periodic orbits of system (1.16), enclosing three equilibrium points. It has the
same parametric representation of solution as equation (3.4).

(2) 0 < β3 <
4
3

√
3β1β5, β5 < 0. (see [Fig. 4(b)])

(i) Corresponding to the level curves defined by H(Φ, y) = h, h ∈ (h2, 0), there
exist two families of periodic orbits of system (1.16). The parametric representations
of solution of equation (1.1) is the same as equation (3.28).

(ii) For h = 0, to the level curves defined by H(Φ, y) = h, there exist two
homoclinic orbits of system (1.16). Equation (3.1) has the form√

8β5

3
ξ =

∫ ΨM

Ψ

dΨ

Ψ
√

(ΨM −Ψ)(Ψ− r4)
,
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where r4 < 0 < ΨM , r4 = − 3β3+
√

∆
4β5

, ΨM = −3β3+
√

∆
4β5

, ∆ = 9β2
3 + 12β1|β5|. It gives

rise to the parametric representations of homoclinic orbit of system (1.3) as follows:

Φ(ξ) = ±
√

Ψ(ξ) = ±

 3β1
√

∆ cosh
(√

3β1

4β5
ξ
)

+ 3β3


1
2

. (3.32)

Thus, we have from equation (1.9) that

Θ(ξ) =
1

2
(2ν − µ)ξ +

β

18λβ1

√
|β5|

arctan

(
2
√

3β1|β5|
3β3 +

√
∆

)
tanh

(
1

4

√
3β1

|β5|
ξ

)

+
α

4λ

∫ ΨM

Ψ

 3β1
√

∆ cosh
(√

3β1

4β5
ξ
)

+ 3β3


1
2

dξ

+
ĥ2√
6β1

∫ ΨM

Ψ

√√√√3β3 +
√

∆cosh

(√
3β1

4β5
ξ

)
dξ

+
a

λ

∫ ΨM

Ψ

 3β1
√

∆ cosh
(√

3β1

4β5
ξ
)

+ 3β3


3
2

dξ. (3.33)

Hence, we have the following solution of equation (1.1):

A(x, t) = i

 3β1
√

∆ cosh
(√

3β1

4β5
ξ
)

+ 3β3


1
4

× exp [−iΘ + i(νx− λt)] , (3.34)

where, Θ(ξ) is given by equation (3.33).
(iii) Corresponding to the level curves defined by H(Φ, y) = h, h ∈ (0,∞), there

exists a family of periodic orbits of system (1.16), enclosing three equilibrium points.
It has the same parametric representation as equation (3.4).

(3) β3 > 0, β5 < 0. (see [Fig. 4(c)])
In this case h2 < 0 < h1, Φ1 = −Φ4 and Φ2 = −Φ3.
(i) Corresponding to the level curves defined by H(Φ, y) = h, h ∈ (h2, 0), there

exist two families of periodic orbits of system (1.16). The parametric representations
of solution of equation (1.1) is the same as equation (3.28).

(ii) Corresponding to the level curves defined by H(Φ, y) = 0, there exist two
homoclinic orbits of system (1.16) with the following parametric representation:

Φ(ξ) = ±
√

Ψ(ξ) = ±
(

2ΨMΨL

(ΨL −ΨM ) cosh(ω7ξ) + (ΨM + ΨL)

) 1
2

, (3.35)

where 0 < ΨM < ΨL.
Thus, we have from equation (1.9) that

Θ(ξ) =
1

2
(2ν − µ)ξ +

β

3λ
√

ΨMΨL

arccoth

(√
ΨM

ΨL

)
tanh

(
1

2

√
ΨMΨLξ

)
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+
ĥ2√

2ΨMΨL

∫ ΨM

Ψ

√
(ΨM + ΨL) + (ΨL −ΨM )cosh(ω7ξ)dξ

+
α

4λ

∫ ΨM

Ψ

(
2ΨMΨL

(ΨL −ΨM ) cosh(ω7ξ) + (ΨM + ΨL)

) 1
2

+
a

λ

∫ ΨM

Ψ

(
2ΨMΨL

(ΨL −ΨM ) cosh(ω7ξ) + (ΨM + ΨL)

) 3
2

dξ. (3.36)

Hence, we have the following solution equation (1.1):

A(x, t) = i

(
2ΨMΨL

(ΨL −ΨM ) cosh(ω7ξ) + (ΨM + ΨL)

) 1
4

× exp [−iΘ + i(νx− λt)] ,

(3.37)

where, ω7 =
√

β5ΨMΨL

6 and Θ(ξ) is given by equation (3.36).

(iii) For h ∈ (0, h1), the level curves defined by H(Φ, y) = h, there exists a family
of periodic orbits of system (1.16), enclosing three equilibrium points E1(−Φ1, 0),
E2(Φ2, 0), and E0(0, 0).

Now, equation (3.1) has the forms√
8β5

3
ξ =

∫ Ψ

0

dΨ√
(Ψ−Ψl)Ψ(r1 −Ψ)(ΨL −Ψ)

,

where Ψl < 0 < r1 < ΨL. Therefore, the periodic orbits has a parametric represen-
tations:

Φ(ξ) = ±
√

Ψ(ξ) = ±
(

Ψl −
Ψl

1− α2
2sn2(ω4ξ, k)

) 1
2

, (3.38)

where α2
5 = r1

r1−Ψl
, ω8 =

√
β5ΨL(r1−Ψl)

6 , k2 = α2
5

(
1− Ψl

ΨL

)
.

Thus, we have from equation (1.9) that

Θ(ξ) =

(
1

2
(2ν − µ) +

βΨl

3λ

)
ξ − βΨl

3λ
Π
(
arcsinh(sn(ω8ξ, k)), α2

5, k
)

+
ĥ2√
Ψl

∫ Ψ

0

√
1

1− 1
1−α2

5sn2(ω8ξ,k)

dξ +
α
√

Ψl

4λ

∫ Ψ

0

√
1− 1

1− α2
5sn2(ω8ξ, k)

dξ

+
a

λ

∫ Ψ

0

(
Ψl −

Ψl

1− α2
5sn2(ω8ξ, k)

) 3
2

dξ. (3.39)

Hence, we have the following solution equation (1.1):

A(x, t) = i

(
Ψl −

Ψl

1− α2
5sn2(ω8ξ, k)

) 1
4

× exp [−iΘ + i(νx− λt)] , (3.40)

where, Θ(ξ) is given by equation (3.39).
(iv) Corresponding to the level curves defined by H(Φ, y) = h1, there exist

two hetroclinic orbits, enclosing the equilibrium points E2(−Φ2, 0), E0(0, 0) and
E3(Φ2, 0) connecting the equilibrium points E1(−Φ1, 0) and E4(Φ1, 0).
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Then, we have the following parametric representation as system (1.16),

Φ(ξ) = ±
√

Ψ(ξ) = ±
(

Ψ1 −
2Ψ1(rM −Ψ1)

rM cosh (ω9ξ)− (2Ψ1 − rM )

) 1
2

, (3.41)

where ω9 =
√

β5Ψ1|rM−Ψ1|
6 , 0 < rM < Ψ1.

Thus, from equation (1.9) we have

Θ(ξ) =

(
1

2
(2ν − µ) +

βΨ1

3λ

)
ξ − β

3λ
arctan

(√
Ψ1

|rM −Ψ1|

)
tanh

(
1

2
ω9ξ

)

+ ĥ2

∫ Ψ

0

(
rM cosh (ω9ξ)− (2Ψ1 − rM )

Ψ1rM cosh (ω9ξ)−Ψ1rM

) 1
2

dξ

+
α

4λ

∫ Ψ

0

(
Ψ1rM cosh (ω9ξ)−Ψ1rM
rM cosh (ω9ξ)− (2Ψ1 − rM )

) 1
2

dξ

+
a

λ

∫ Ψ

0

(
Ψ1rM cosh (ω9ξ)−Ψ1rM
rM cosh (ω9ξ)− (2Ψ1 − rM )

) 3
2

dξ. (3.42)

Hence, we have the following solution equation (1.1):

A(x, t) = i

(
Ψ1 −

2Ψ1(rM −Ψ1)

rM cosh (ω9ξ)− (2Ψ1 − rM )

) 1
4

× exp [−iΘ + i(νx− λt)] ,

(3.43)

where, Θ(ξ) is given by equation (3.42).
(4) 0 < β3 < 2

√
β1β5, β5 < 0. (see [Fig. 4 (d)])

In this case 0 < h1 <∞, Φ4 = −Φ1 and Φ3 = −Φ2.
(i) Corresponding to the level curves defined by H(Φ, y) = h, h ∈ (0, h1), there

exist two families of periodic orbits of system (1.16). The parametric representations
of solution of equation (1.1) is the same as equation (3.28).

(ii) Corresponding to the level curves defined by H(Φ, y) = h1, there exist pairs
of hetroclinic orbits connecting E0(0, 0) and E1(±Φ1, 0), enclosing the equilibrium
points E2(±Φ2, 0). Then, we have the following parametric representation as system
(1.16).

Φ(ξ) = ±
√

Ψ(ξ) = ±
(

Ψ4

1 + exp(Ψ4ξ)

) 1
2

. (3.44)

Thus, from equation (1.9) we have

Θ(ξ) =

(
1

2
(2ν − µ) +

βΨ4

3λ
− α
√

Ψ4

2λ

)
ξ − β

3λ
ln(1 + exp(Ψ4ξ))

− α

2λ
√

Ψ4

ln
(

1 +
√

1 + exp(Ψ4ξ)
)

+
ĥ2√
Ψ4

∫ Ψ

r0

√
1 + exp(Ψ4ξ)dξ

+
a

λ

∫ Ψ

r0

(
Ψ4

1 + exp(Ψ4ξ)

) 3
2

dξ. (3.45)
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Hence, we have the following solution equation (1.1)

A(x, t) = i

(
Ψ4

1 + exp(Ψ4ξ)

) 1
4

× exp [−iΘ + i(νx− λt)] , (3.46)

where, r0 ∈ (0,Ψ4) and Θ(ξ) is given by equation (3.45).
(5) β3 > 0, β5 < 0. (see [Fig. 4(e)])
In this case h2 < 0 < h1, Φ4 = −Φ1 and Φ3 = −Φ2.
(i) For h ∈ (h2, h1), the level curves defined by H(Φ, y) = h, there exist a pair

of periodic orbits, enclosing the equilibrium points E2(±Φ2, 0). Then, we have the
following parametric representation as system (1.16).

Φ(ξ) = ±
√

Ψ(ξ) = ±
(
r2 −

r2 − r4

1− α2
6sn(Ω1ξ, k)

) 1
2

, (3.47)

where r4 < Ψ2 < r3 < 0 < r2, α2
6 = |r4−r3|

r2−r3 k2 = r2
|r4|α

2
6 and Ω1 =

√
β5(r2−r3)|r4|

6 .

Thus, from equation (1.9) we have

Θ(ξ) =

(
1

2
(2ν − µ) +

βr2

3λ

)
ξ +

β

3λΩ1
(r4 − r2)×Π

(
arcsinh (sn (Ω1ξ, k)) , α2

6, k
)

+ ĥ2

∫ Ψ

r4

(
1− α2

6sn(Ω1ξ, k)

r4 − r2α2
6sn(Ω1ξ, k)

) 1
2

dξ +
α

4λ

∫ Ψ

r4

(
r4 − r2α

2
6sn(Ω1ξ, k)

1− α2
6sn(Ω1ξ, k)

) 1
2

dξ

+
a

λ

∫ Ψ

r4

(
r4 − r2α

2
6sn(Ω1ξ, k)

1− α2
6sn(Ω1ξ, k)

) 3
2

dξ. (3.48)

Hence, we have the following solution equation (1.1):

A(x, t) = i

(
r2 −

r2 − r4

1− α2
6sn(Ω1ξ, k)

) 1
4

× exp [−iΘ + i(νx− λt)] , (3.49)

where, Θ(ξ) is given by equation (3.48).
(ii) Corresponding to the level curves defined by H(Φ, y) = h1, there exist two

homoclinic orbits, enclosing the equilibrium points E2(−Φ2, 0) and E3(Φ2, 0) at
E1(−Φ1, 0) and E4(Φ1, 0), respectively.

Then, we have the following parametric representation of system (1.16).

Φ(ξ) = ±
√

Ψ(ξ) = ±
(

Ψ1 +
2Ψ1(ΨM −Ψ1)

ΨM cosh (Ω2ξ)− (2Ψ1 −ΨM )

) 1
2

, (3.50)

where Ψ1 < ΨM < 0 and Ω2 =
√

β5Ψ1(ΨM−Ψ1)
6 .

Thus, from equation (1.9) we have

Θ(ξ) =

(
1

2
(2ν − µ) +

βΨ1

3λ

)
ξ +

β

3λ
arctan

(√
Ψ1

ΨM −Ψ1

)
tanh

(
1

2
Ω2ξ

)

+ ĥ2

∫ Ψ

0

(
Ψ1ΨM cosh (Ω2ξ)− 4Ψ2

1 + 3Ψ1ΨM

ΨM cosh (Ω2ξ)− (2Ψ1 −ΨM )

) 1
2

dξ
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+
α

4λ

∫ Ψ

0

(
ΨM cosh (Ω2ξ)− (2Ψ1 −ΨM )

Ψ1ΨM cosh (Ω2ξ)− 4Ψ2
1 + 3Ψ1ΨM

) 1
2

+
a

λ

∫ Ψ

0

(
ΨM cosh (Ω2ξ)− (2Ψ1 −ΨM )

Ψ1ΨM cosh (Ω2ξ)− 4Ψ2
1 + 3Ψ1ΨM

) 3
2

dξ. (3.51)

Hence, we have the following solution equation (1.1):

A(x, t) = i

(
Ψ1 +

2Ψ1(ΨM −Ψ1)

ΨM cosh (Ω2ξ)− (2Ψ1 −ΨM )

) 1
4

× exp [−iΘ + i(νx− λt)] ,

(3.52)

where, Θ(ξ) is given by equation (3.51).

4. Conclusion

To sum up, we have proved the following Theorems:

Theorem 4.1. Suppose that the parametric conditions β5 6= 0, β2 = β4 = β6 =
0 of system (1.14) holds. Depending on the changes of system parameters, the
bifurcations of phase portraits of system (1.16) are shown in Fig.1–Fig.4.

Theorem 4.2. (i) By using the method of dynamical systems we have found four-
teen solutions depending on change of parameters regions of (β3, β5) for β1 < 0 and
β1 > 0, corresponding to the periodic, homoclinic and hetroclinic orbits of system
(1.16). The thirteenth order derivative nonlinear Schrödinger equation (1.1) has
sixteen exact solutions given by equations (3.4), (3.7), (3.10), (3.13), (3.16), (3.19),
(3.22), (3.25), (3.28), (3.31), (3.34), (3.37), (3.40), (3.43), (3.46), (3.49) and (3.52).

(ii) System (1.3) has sixteen exact explicit solutions φ(ξ) =
√

Φ sin Θ, and
ψ(ξ) =

√
Φ cos Θ, where φ(ξ) and ψ(ξ) are given in section 1.
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