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Abstract Starting from the practical problems of integrated pest manage-
ment, we establish a predator-prey model for pest control with multi-state
dependent impulsive, which adopts two different control methods for two dif-
ferent thresholds. By applying geometry theory of impulsive differential equa-
tions and the successor function, we obtain the existence of order one periodic
solution. Then the stability of the order one periodic solution is studied by
analogue of the Poincaré criterion. Finally, some numerical simulations are
exerted to show the feasibility of the results.
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1. Introduction

Plutella xylostella as a worldwide leading pest brings a great impact on the pro-
duction of vegetables including the yield and quality. Its prevention often applies
chemical pesticides while the abuse of pesticides shall kill natural enemies of plutella
xylostella, thereby causing the pest to reproduce in great numbers. The increase of
the number of plutella xylostella requires more chemical use, which shall lead to its
resistance to chemicals. Then to keep ecological balance in a low cost, how to set
up a practical mathematical model for plutella xylostella control is an interesting
problem.

Impulsive differential equation is often used to describe such changes in an in-
stant or a short time as cancer radiotherapy, impulsive injection of drugs, fish fry
putting and breakout of locusts, which is much preciser than the common differen-
tial equation. Many scholars have studied the systems with impulsive differential
equations including periodic impulse system [1, 6, 10, 13, 14, 16, 20–28] and state-
dependent impulse system [2,7,17,19,29–33], and obtained some good results. For
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integrated pest management (IPM), Tang and Cheke [18] first presented the state-
dependent impulsive “Volterra” model concerning the existence and stability of
order-one and order-two periodic solutions. Recently, Liu et al. [11] investigated a
Holling I pest management model with time pulse, and an asymptotic stability of
periodic solution was proved when the impulsive period is less than some critical
value. Jiang and Jiao et al. [8, 9] proposed a stage-structured pest control model
with state impulse and phase structure, which obtained the existence and attrac-
tivity of periodic solution. Nie et al. [15] established the pest management system
with two state-dependencies



x′(t) = x(t)(r − by(t)),

y′(t) = y(t)

(
λbx(t)

1 + bcx(t)
− p

)
,

 x ̸= h1, h2,

△x(t) = 0,

△y(t) = κ,

 x = h1,

△x(t) = −αx(t),

△y(t) = −βy(t) + δ,

 x = h2,

(1.1)

and investigated the existence and the stability of periodic solution for the model
by Poincaré map and the properties of the Lamber M function.

The advantage of system (1.1) is that it assumes two economic injury levels,
which gives a new idea to control pests. However, it can be seen from system
(1.1), when x = h1, the natural enemy y(t) is released with κ, and then its density
reaches the level y(t) + κ and the amount of pests keeps at h1 by the third and
fourth equations of (1.1). The number of natural enemy is released with κ again,
and its density reaches the level y(t) + 2κ. Similarly, the above process is repeated
n times, then y(t) comes to y(t) + nκ. If n → ∞, then y(t) + nk → ∞. Actually,
this situation is unreasonable in reality.

When the density of plutella xylostella population x(t) reaches the minor eco-
nomic injury level h1, namely, plutella xylostella can not constitute a serious harm,
only to release its natural enemy population y(t) to control as much as possible to
reduce the damage to the ecological environment. The above process is repeated un-
til the quantity of the natural enemy population of the plutella xylostella is greater
than a certain level, that is, the number of natural enemy is enough to maintain
the ecological balance, the first strategy should be cancelled, the natural enemy of
the plutella xylostella and the plutella xylostella will propagate on the basis of the
natural order. When the density of plutella xylostella population x(t) reaches the
greater level h2, that is plutella xylostella number can cause devastating damage,
only the release of natural enemy can not significantly reduce the damage, so we
have to spray a certain pesticide at the same time.

Based on the above analysis and the integrated pest management, the predator-
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prey system (1.1) with state-dependent impulse can be written as

x′(t) = x(t)(r − by(t)),

y′(t) = y(t)

(
λbx(t)

1 + bcx(t)
− p

)
,

 x ̸= h2 or x = h1, y > y∗,

△x(t) = 0,

△y(t) = κ,

 x = h1, y ⩽ y∗,

△x(t) = −αx(t),

△y(t) = −βy(t) + δ,

 x = h2,

(1.2)

where x(t) represents the density of the plutella xylostella at time t; y(t) represents
the density of the natural enemies of the plutella xylostella at time t. r, b, λ, h1, h2, δ
and p are all positive constants and h1 < h2, y

∗ = r
b . The numbers α, β ∈ (0, 1)

refer to the proportion of plutella xylostella and its natural enemies killed by the
pesticide, δ is the release quantity of natural enemies population of the plutella

xylostella. λbx(t)
1+bcx(t) is the per capita functional response of natural enemies of the

plutella xylostella. When the number of the plutella xylostella reaches the smaller
threshold h1 at time th1 , natural enemies of the plutella xylostella need to be released
and the quantity of natural enemies abruptly reaches y(th1)+κ. When the number
of the plutella xylostella reaches the larger threshold h2 at time th2 , pesticide is
sprayed and natural enemies are released at the same time, the number of plutella
xylostella and natural enemies of the plutella xylostella suddenly turn to (1−α)h2

and (1− β)y(th2) + δ, respectively.
The paper is structured as follows. In Section 2, some basic concepts and im-

portant lemmas as preliminaries are introduced. In the next section, the existence
of order one periodic solution of system (1.2) is proved by successor function. In
Section 4, by using analogue of the Poincaré criterion, we get the stable conditions
of periodic solution of (1.2) under impulse. Finally, we make a summary and the
feasibility of our results are illustrated by numerical simulations.

2. Preliminaries

Definition 2.1 ( [3] ). A triple (X,Π, R+) is called a semi-dynamical system if X
is a metric space, R+ is the set of all non-negative real and Π(Q, t) : X ×R+ → X
is a continuous map such that:

(i) Π(Q, 0) = Q for all P ∈ X;

(ii) Π(Π(Q, t), s) = Π(Q, t+ s) for all Q ∈ X and t, s ∈ R+.

Also a semi-dynamical system (X,Π, R+) is denoted as (X,Π).

Definition 2.2 ( [4] ). (X,Π;E, I) is called an impulsive semi-dynamical system
if the following conditions are satisfied:

(i) (X,Π) is a semi-dynamical system;

(ii) E is a nonempty subset of X;

(iii) function I : E → X is continuous and for any Q ∈ E, there exists a ε > 0
such that for any 0 < |t| < ε, Π(Q, t) /∈ E.
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For any Q ∈ X, the map ΠQ : R+ → X defined as ΠQ(t) = Π(Q, t) is continuous
and we call ΠQ(t) the orbit passing through point Q. The set C+(Q) = {Π(Q, t) |
0 ≤ t < +∞} and the set C−(Q) = {Π(Q, t) | −∞ < t ≤ 0} is called positive
semi-orbit and the negative semi-orbit of point Q, respectively.

Definition 2.3 ( [5] ). We consider the following state-dependent impulsive differ-
ential equations 

x′(t) = Φ(x, y),

y′(t) = Ψ(x, y),

 (x, y) /∈ M{x, y},

△x(t) = U(x, y),

△y(t) = V (x, y),

 (x, y) ∈ M{x, y},

(2.1)

there exists a continuous impulse function I : I(M) = N , here M is the impulsive
set, N is the phase set. M and N are the straight line or curve line on the plane.
We define the dynamical system as a semi-continuous dynamical system, which
is composed of the solution mapping defined by the state impulsive differential
equations (2.1) and it is denoted as (Ω, f, I,M).

Definition 2.4 ( [34]). Assuming that the pulse set M and the phase set N are
both straight lines, as shown in Figure 1. For any point A ∈ N , then Π(A, t) =
C ∈ M , I(C) = B ∈ N , we denote the ordinates of point A and B are yA and yB,
respectively. Then B is defined as the successor point of A, and f(A) = yB − yA is
the successor function of point A.

Definition 2.5 ( [5]). A trajectory Π(Q0, t) is called an order one periodic solution
with period t if there exists a point Q0 ∈ N and t > 0 such that Q = Π(Q0, t) ∈ M
and Q+ = I(Q) = Q0 ∈ N .

Figure 1. The geometric diagram of the successor function.

We get the following Lemmas from the continuity of composite function and the
property of continuous function:

Lemma 2.1 (Lemma 2.6, [3]). Successor function defined in Definition 2.4 is con-
tinuous.

Lemma 2.2 (Lemma 2.8, [12]). In system (1.2), if there exist A ∈ N, B ∈ N
satisfying successor function f(A)f(B) < 0, then there must exist a point Q(Q ∈ N)
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satisfying Q between point A and point B such that f(Q) = 0, then system (1.2)
has an order one periodic solution.

Lemma 2.3 (Theorem 2.3, [34]). ( Analogue of the Poincaré criterion ) The τ -
periodic solution x = ξ(t), y = η(t) of the system



x′(t) = Φ(x, y),

y′(t) = Ψ(x, y),

 if Γ(x, y) ̸= 0,

△x(t) = U(x, y),

△y(t) = V (x, y),

 if Γ(x, y) = 0

is orbital asymptotic stability, if the multiplier µ2 satisfies the condition |µ2| < 1,
where

µ2 = Πq
i=1∆i exp

∫ τ

0

[
∂Φ

∂x
(ξ(t), η(t)) +

∂Ψ

∂y
(ξ(t), η(t))]dt,

∆i =
Φ+(

∂V
∂y

∂Γ
∂x − ∂V

∂x
∂Γ
∂y + ∂Γ

∂x ) + Ψ+(
∂U
∂x

∂Γ
∂y − ∂U

∂y
∂Γ
∂x + ∂Γ

∂y )

Φ∂Γ
∂x +Ψ∂Γ

∂y

,

and Φ,Ψ, ∂U
∂x ,

∂U
∂y ,

∂V
∂x ,

∂V
∂y ,

∂Γ
∂x ,

∂Γ
∂y are calculated at the point (ξ(τi), η(τi)) and Φ+ =

Φ(ξ(τ+i ), η(τ+i )), Ψ+ = Ψ(ξ(τ+i ), η(τ+i )).

In Section 3 and Section 4, we use these concepts and lemmas to geometrically
discuss the existence and the stability of periodic solution of system (1.2).

Next we only consider the system (1.2) with no impulsive effects:


x′(t) = x(t)(r − by(t)),

y′(t) = y(t)

(
λbx(t)

1 + bcx(t)
− p

)
.

(2.2)

As is known to all, the system (2.2) has two equilibrium points O(0, 0) and
R( p

b(λ−pc) ,
r
b ) = R(x∗, y∗)(λ > pc), where O is a saddle point and R is a stable

centre. There is an unique closed orbit which through any point in the first quadrant
including the point R.

In present paper, we assume that λ > pc holds. To be the biological meaningful
of system (1.2), we restrict the region D = {(x, y) : x ≥ 0, y ≥ 0}. Vector graph of
system (2.2) as shown in the following figure (see Figure 2).

3. Existence of the Periodic Solution

In this section, we show the existence of order one periodic solution of system
(1.2) by using the successor function defined in Section 2 and qualitative theory of
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Figure 2. Illustration of vector graph of system (2.2).

differential equation. Now, we denote that

M1 =
{
(x, y) | x = h1, 0 ≤ y ≤ r

b

}
,

M2 = {(x, y) | x = h2, y ≥ 0},

N1 = I(M1) =
{
(x, y) | x = h1,

r

b
< y ≤ r

b
+ κ

}
,

N2 = I(M2) = {(x, y) | x = (1− α)h2, y ≥ δ},

where the line M1 and the line N1 are the first impulsive set and of (1.2) and the
corresponding phase set, respectively; M2 and N2 are the second impulsive set and
of (1.2) and the corresponding phase set, respectively.

In system (1.2), the isoclinic line x′(t) = 0 and the isoclinic line y′(t) = 0 are
denoted by L1 and L2, respectively, i.e.,

L1 =
{
(x, y) | y =

r

b
, x ≥ 0

}
,

L2 =

{
(x, y) | x =

p

b(λ− pc)
, y ≥ 0

}
.

If I ∈ Ω−M , F (I) is referred as the first intersection of C+(I) and M , namely,
there exists a tI ∈ R+ such that F (I) = Π(I, tI) ∈ M , and for 0 < t < tI , such that
Π(P, t)∩M = ∅. If J ∈ Ω−N,R(J) is the first intersection of C−(J) and N , namely,
there exists a tJ ∈ R+ such that R(J) = Π(J,−tJ) ∈ N , and for −tJ < t < 0, such
that Π(J, t) ∩N = ∅.

In order to facilitate the following narrative, we make some assumptions. For any
point Q, we set xQ as its abscissa and yQ as its ordinate. If the point Q(h, yQ) ∈ M ,
then the point Q+ ∈ N is the corresponding phase point of Q after the pulse.
Because of the actual meaning, in present paper we assume the impulsive set always
lies in the left side of the point R, i.e. h1 < p

b(λ−pc) and h2 < p
b(λ−pc) .

From Figure 2, the orbit with any initiating point of D = {(x, y) | x ≥ 0, y ≥ 0}
intersect at set N1 or N2 with time increasing. Hence, the following two cases are
considered.
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3.1. The orbit starting from the phase set N1

Let the point A(h1,
r
b ) is the intersection of L1 and N1, and the intersection of L1

and L2 be R( p
b(λ−pc) ,

r
b ). Take a point B1(h1,

r
b + ε) ∈ N1 above A, where ε > 0

is small enough, the orbit starting from B1 hits the point Q1(h1, yQ1) ∈ M1, pulse
occurs at the point Q1, then we obtain the successor point Q+

1 (h1, yQ1 + κ) of B1.
Because B1 is next to A, Q1 is next to A and Q+

1 must lies above A, i.e., r
b < yQ1+κ

holds, so the successor function f(B1) = yQ1 + κ− ( rb + ε) > 0.

By regulating κ, the position of Q+
2 has the following three cases:

Case I yQ1 + κ = r
b + ε

For this case, the successor point Q+
1 and B1 are completely coincident, so the

successor function f(B1) = yQ1 + κ− ( rb + ε) = 0. thus the curve ̂B1Q1Q
+
1 forms a

periodic solution of (1.2). (As shown in Figure 3(a))

On the other hand, the orbit Γ2 passing through the point Q+
1 intersects with

M1 at Q2(h1, yQ2), because any two orbits are disjoint, so we have yQ2 < yQ1 < r
b .

The point Q2 is influenced by pulse to Q+
2 (h1, yQ2 + κ).

Case II r
b < yQ2 + κ < yQ1 + κ

If the point Q+
1 lies above the point B1, thus the successor function f(B1) =

yQ1 + κ− ( rb + ε) > 0. In this case, the point Q+
2 is located above the point A and

under Q+
1 , then the successor function of Q+

1 is f(Q+
1 ) = yQ2 + κ− (yQ1 + κ) < 0.

Therefor, f(B1)f(Q
+
1 ) < 0. By Lemma 2.2, system(1.2) has an order one periodic

solution, whose initial point Q is between B1 and Q+
1 in set N1.( As shown in Figure

3(b))

Case III r
b ≥ yQ2 + κ

If point Q+
2 is below point A, i.e., Q+

2 ∈ M1, thus Q
+
2 jumps to Q++

2 (h1, yQ2+2κ)
after the effect of impulse.

If r
b < yQ2 +2κ < yQ1 +κ, i.e., Q++

2 is above point A, like the argument of Case
II, system (1.2) has an order one periodic solution.

If r
b > yQ2 + 2κ, i.e., Q++

2 is below point A, the above process is repeated until

there exists n ∈ Z+ such that Q++
2 jumps to Qn+

2 ((h1, yQ2 + nκ) after n− 2 times’
impulsive effects which satisfies r

b < yQ2 + nκ < yQ1 + κ. Similar to the Case II,
system (1.2) has an order one periodic solution (see Figure 3(c)).

Figure 3. The orbit starting from the phase set N1 (Case I, Case II and Case III in Section 3.1).
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According to the above analysis results, we get the following theorem.

Theorem 3.1. If λ > pc, 0 < h1 < p
b(λ−pc) , then the system (1.2) has an order one

periodic solution.

3.2. The orbit starting point from the phase set N2

Suppose point B is the intersection of L1 and N1 and point A is the intersection
of L1 and N2. On the one hand, take a point S ∈ N2 which is above A. The
trajectory starting from S of (1.2) becomes vertical only as it crosses B, and then it
goes through N2 from the left to the right, after reaching the point Q2 ∈ M2. The
orbit passes through point A which tangents to N2 at point A and intersects with
M2 at a point Q0(h2, yQ0). Since point Q0 ∈ M2, then pulses to point Q0, denote
Q+

0 as the phase point of Q0 after the effect of impulse.
According to the third and fourth equations of system (1.2), the following is gotxQ+

0
= (1− α)h2,

yQ+
0
= (1− β)yQ0 + δ.

By regulating δ, there are the following cases:
Case I yQ+

0
= r

b = yA

This moment, the successor point Q+
0 of A coincides with A, thus the curve

ÂQ0A forms a periodic orbit of (1.2) (see Figure 4(a)).
Case II r

b < (1− β)yQ0 + δ < yS
If point Q+

0 is below point S and above point A, take a point B1((1− α)h2, ε+
r
b ) ∈ N2 above A, where ε > 0 is small enough. Let F (B1) = Q1(h2, yQ1) ∈ M2,

then Q1 pulses to Q+
1 . Because of continuous dependence of the solution on time

and initial value, we can see yQ1 < yQ0 and point Q1 is close to Q0 enough, so point
Q+

1 is close to Q+
0 enough and yQ+

1
< yQ+

0
, then f(B1) = yQ+

1
− yB1 > 0.

On the other hand, since Q2(h2, yQ2) ∈ M2, then the phase point Q+
2 ((1 −

α)h2, yQ+
2
) is obtained. Due to the field and the disjointness of any two orbits, we

can see, Q+
2 must be below S, so the successor function f(S) = yQ+

2
− yS < 0.

According to Lemma 2.2, an order one periodic solution of system (1.2) is exis-
tent, which the initial point is between B1 and S in set N2. (As shown in Figure
4(b))

Case III (1− β)yQ0 + δ < r
b

If point Q+
0 is below A, that is (1− β)yQ0 + δ < r

b , then the successor function
f(A) = (1− β)yQ0

+ δ − r
b < 0.

On the other hand, take another point B1((1 − α)h2, ε) ∈ N2, where ε > 0 is
small enough. The orbit passes through point B1 hits point Q1(h2, yQ1) ∈ M2, and
then jumps onto the point Q+

1 ((1−α)h2, yQ+
1
) ∈ N2, because ε > 0 is small enough,

we have yQ+
1
> ε. Thus we have f(B1) = yQ+

1
− ε > 0.

According to Lemma 2.2, the order one periodic solution of system(1.2) is exis-
tent, which the initial point is between B1 and A in set N2. (As shown in Figure
4(c))

Case IV yS < (1− β)yQ0 + δ
Supposing point Q+

0 is above S, we consider the following two cases:
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(i) If yS ≥ yQ+
2
, then point Q+

2 is below point S, thus we obtain f(S) = yQ+
2
−

yS < 0. Thus the order one periodic solution of system (1.2) is existent, which
the initial point is between point B1 and point S in set N2. (As shown in
Figure 4(d))

(ii) If yS < yQ+
2
, then Q+

2 is above the point S. By the vector field of system

(1.2), we can see the orbit of system (1.2) with any initiating point on the
N2 will ultimately stay in Ω1 = {(x, y)|0 ≤ x ≤ h1, y ≥ 0} after one effect of
impulse. (As shown in Figure 4(e))

Figure 4. The orbit starting from the phase set N2 (Case I, Case II, Case III, Case IV(i) and Case
IV(ii) in Section 3.2).

According to the above analysis results, we get the following theorem.

Theorem 3.2. Based on the conditions λ > pc and 0 < h1 < h2 < p
b(λ−pc) ,

if yQ+
0
≤ yA, an order one periodic solution of the system (1.2) is existent;

if yQ+
0
> yA and yS > yQ+

2
, an order one periodic solution of the system (1.2) is

existent;
if yQ+

0
> yA and yS < yQ+

2
, the order one periodic solution of the system (1.2)

is nonexistent. The orbit of system (1.2) with any initiating point on the N2 will
ultimately stay in Ω1 = {(x, y) | 0 ≤ x ≤ h1, y ≥ 0} after one effect of impulse.
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4. The stability analysis of periodic solutions

By analysis on Section 3, we discuss the stability of order one periodic solutions by
the analogue of the Poincaré criterion.

4.1. The orbit starting from the phase set N1

We assume x = ξ(t), y = η(t) be a τ -periodic solution of system (1.2) and ξ1 =
ξ(τ), η1 = η(τ); ξ0 = ξ(0), η0 = η(0); ξ+1 = ξ(τ+), η+1 = η(τ+), then we get

ξ+1 = ξ0 = h1, η
+
1 = η0 = η1 + κ.

According to Lemma 2.3, let Φ(x, y)=x(t)(r−by(t)),Ψ(x, y)=y(t)
(

λbx(t)
1+bcx(t)−p

)
,

U(x, y) = 0, V (x, y) = κ,Γ(x, y) = x− h1. Then

∂U

∂x
=

∂V

∂x
= 0,

∂U

∂y
=

∂V

∂y
= 0,

∂Γ

∂x
= 1,

∂Γ

∂y
= 0,

∆1 =
Φ+

(
∂V
∂y

∂Γ
∂x − ∂V

∂x
∂Γ
∂y + ∂Γ

∂x

)
+Ψ+

(
∂U
∂x

∂Γ
∂y − ∂U

∂y
∂Γ
∂x + ∂Γ

∂y

)
Φ∂Γ

∂x +Ψ∂Γ
∂y

=
Φ(ξ+1 , η

+
1 )(0× 1− 0× 0 + 1) + Ψ(ξ+1 , η

+
1 )(0× 0− 0× 1 + 0)

Φ(ξ1, η1)× 1 + Ψ(ξ1, η1)× 0

=
ξ0(r − bη0)

ξ1(r − bη1)

and ∫ τ

0

(
∂Φ

∂x
+

∂Ψ

∂y

)
dt =

∫ τ

0

[
r − by(t) +

λbx(t)

1 + bcx(t)
− p

]
dt

=

∫ τ

0

[
ẋ

x(t)
+

ẏ

y(t)

]
dt

=

∫ τ

0

d lnx(t)y(t)

= ln
ξ1η1
ξ0η0

.

Therefore,

µ2 =∆1 exp

∫ τ

0

[
∂Φ

∂x
(ξ(t), η(t)) +

∂Ψ

∂y
(ξ(t), η(t))

]
dt

=
ξ0(r − bη0)

ξ1(r − bη1)
× exp

(
ln

ξ1η1
ξ0η0

)
=
(r − bη0)(η0 − κ)

η0[r − b(η0 − κ)]
.

The following theorem is obtained.
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Theorem 4.1. If

λ > pc, h1 <
p

b(λ− pc)

and

r + bκ−
√
r2 + b2κ2

2b
< η0 <

r + bκ+
√
r2 + b2κ2

2b
,

then the periodic solution of system (1.2) is stable.

4.2. The orbit starting from the phase set N2

We assume x = x(t), y = y(t) be a τ -periodic solution to system (1.2) and x1 =
x(τ), y1 = y(τ);x0 = x(0), y0 = y(0);x+

1 = x(τ+), y+1 = y(τ+), then we get

x+
1 = x0 = (1− α)h2, y

+
1 = y0 = (1− β)y1 + δ.

According to Lemma 2.3, let Φ(x, y)=x(t)(r−by(t)),Ψ(x, y)=y(t)
(

λbx(t)
1+bcx(t)−p

)
,

U(x, y) = −αx, V (x, y) = −βy + δ,Γ(x, y) = x− h2.
Then

∂U

∂x
= −α,

∂U

∂y
= 0,

∂V

∂x
= 0,

∂V

∂y
= −β,

∂Γ

∂x
= 1,

∂Γ

∂y
= 0,

∆1 =
Φ+

(
∂V
∂y

∂Γ
∂x − ∂V

∂x
∂Γ
∂y + ∂Γ

∂x

)
+Ψ+

(
∂U
∂x

∂Γ
∂y − ∂U

∂y
∂Γ
∂x + ∂Γ

∂y

)
Φ∂Γ

∂x +Ψ∂Γ
∂y

=
Φ(x+

1 , y
+
1 )(−β × 1 + 0× 0 + 1) + Ψ(x+

1 , y
+
1 )(−α× 0 + 0× 1 + 0)

Φ(x1, y1)× 1 + Ψ(x1, y1)× 0

=
(1− β)x0(r − by0)

x1(r − by1)
,

and ∫ τ

0

(
∂Φ

∂x
+

∂Ψ

∂y

)
dt =

∫ τ

0

[
r − by(t) +

λbx(t)

1 + bcx(t)
− p

]
dt

=

∫ τ

0

[
ẋ

x(t)
+

ẏ

y(t)

]
dt

=

∫ τ

0

d lnx(t)y(t)

= ln
x1y1
x0y0

.

Thus,

µ2 = ∆1 exp

∫ τ

0

[
∂Φ

∂x
(ξ(t), η(t)) +

∂Ψ

∂y
(ξ(t), η(t))

]
dt

=
(1− β)x0(r − by0)

x1(r − by1)
× exp

(
ln

x1y1
x0y0

)
=

y1(1− β)(r − by0)

y0(r − by1)
.

The following theorem is obtained.
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Theorem 4.2. If

λ > pc, h2 <
p

b(λ− pc)

and

ω −
√

ω2 − 4brδ(1− β)(2− β)

2b(2− β)
< y0 <

ω +
√
ω2 − 4brδ(1− β)(2− β)

2b(2− β)
,

where

ω = bδ(2− β) + 2r(1− β),

then the periodic solution of system (1.2) is stable.

5. Simulations and Conclusion

We enumerate the following two examples to verify the merit of our results.

x′(t) = x(t)(0.4− 0.5y(t)),

y′(t) = y(t)

(
0.25x(t)

1 + 0.1x(t)
− 0.6

)
,

 x ̸= h1, h2 or x = h1, y > y∗,

△x(t) = 0,

△y(t) = κ,

 x = h1, y ⩽ y∗,

△x(t) = −αx(t),

△y(t) = −βy(t) + δ,

 x = h2,

(5.1)

where α, β ∈ (0, 1), κ > 0, δ > 0, 0 < h1 < h2. Next the impulsive effect is
considered on the dynamics of system (5.1).

Example 5.1. Existence and stability of order one periodic solution with the orbits
starting from the phase set N1. We set h1 = 1, κ = 0.8, Figure 5(a) illustrates
that Theorem 3.1 hold, the order one periodic solution of system (5.1) is existent.
Figures 5(b) and 5(c) are the time series of x(t), y(t), respectively. This shows
that system (5.1) has an stable periodic solution when the amount of the plutella
xylostella population reaches the level h1, then the conditions of Theorem 4.1 hold.

Example 5.2. Existence and stability of positive periodic solution with the orbits
starting from the phase set N2. We set h1 = 0.7, α = 0.6, β = 0.8, δ = 0.8, h2 =
3.5, Figure 6(a) illustrates that Theorem 3.2 hold, the order one periodic solution
of system (5.1) is existent. Figures 6(b) and 6(c) are the time series of x(t), y(t),
respectively. This illustrates that system (5.1) has an stable periodic solution when
the amount of the plutella xylostella population reaches the level h2. Therefore the
conditions of Theorem 4.2 hold.

In this paper, using the method of successive function and geometric analysis
theory, there exists order one periodic solution for system (1.2) under impulsive
effects, and further using the analogue of Poincaré criterion to prove that the peri-
odic solution is stable. The system (1.2) has a wider range of application than the
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Figure 5. Description of behavior of periodic solutions of the system (5.1). (a) Existence of order one
periodic solution corresponding to Theorem 3.1. (b) Time series of x(t). (c) Time series of y(t).

Figure 6. Description of behavior of periodic solutions of the system (5.1). (a) Existence of order one
periodic solution corresponding to Theorem 3.2. (b) Time series of x(t). (c) Time series of y(t).
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conditions given by the [15]. From the research results and numerical simulation,
we can control the number of plutella xylostella is lower than its economic thresh-
old by applying impulsive effects once, twice, or a finite number of times. By using
the biological and chemical comprehensive control method, it greatly improves the
crop yield. And the method of theorems is more effective and easier to operate
than [8, 9, 11, 15,18], so they are worthy of further promotion.
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