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UNIQUENESS OF SOLUTIONS FOR AN
INTEGRAL BOUNDARY VALUE PROBLEM

WITH FRACTIONAL Q-DIFFERENCES∗

Yaqiong Cui1, Shugui Kang1,† and Huiqin Chen1

Abstract This paper deals with uniqueness of solutions for integral boundary

value problem

 (Dα
q u)(t) + f(t, u(t)) = 0, t ∈ (0, 1),

u(0) = Dqu(0) = 0, u(1) = λ
∫ 1

0
u(s)dqs,

where α ∈ (2, 3],

λ ∈ (0, [α]q), D
α
q denotes the q-fractional differential operator of order α. By

using the iterative method and one new fixed point theorem, we obtain that
there exist a unique nontrivial solution and a unique positive solution.
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1. Introduction

Recently, great attention has been devoted to the existence and multiplicity of
positive solutions for fractional difference boundary value problems by applying the
cone fixed point theory, see [1,3,4,10,11,13]. And we notice that Cabada et al. [3,4]
obtained the existence of at least one positive solution with integral boundary value
conditions and the authors [10, 11] dealt with the existence of positive solutions to
fractional q-difference equations. At the same time, the existence and uniqueness
of solutions also has been studied extensively, see, for example, [2, 5, 8]. Especially,
under the condition that the Lipschitz constant of the nonlinear term is related
to the first eigenvalues corresponding to the relevant u0-positive operator, Cui [2]
obtained the uniqueness of solutions by using the iterative methods.

Inspired by the papers mentioned above, we are interested in studying the
uniqueness results for the integral boundary value problem (BVP) (Dα

q u)(t) + f(t, u(t)) = 0, t ∈ (0, 1),

u(0) = Dqu(0) = 0, u(1) = λ
∫ 1

0
u(s)dqs,

(1.1)

where α ∈ (2, 3], λ > 0, Dα
q denotes the q-fractional differential operator of order α.

By using the iterative method which resembles [2] and a new fixed point theorem in
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a normal cone, we obtain that there exist a unique nontrivial solution and a unique
positive solution.

2. Preliminary and Green’s function

We first present some formulas and definitions on fractional q-derivative and
fractional q-integral that will be used in what follows.

Let q ∈ (0, 1), α ∈ R and tDq denotes the derivative with respect to variable t.
Then

tDq(t− s)(α) = [α]q(t− s)(α−1);(
tDq

∫ t

0

f(t, s)dqs

)
(t) =

∫ t

0
tDqf(t, s)dqs+ f(qt, t).

The q-integral of a function f defined on [0, b] is defined by

(Iqf)(t) =

∫ t

0

f(s)dqs = t(1− q)

∞∑
k=0

f(tqk)qk, t ∈ [0, b].

Definition 2.1 ( [7]). Let f be a function defined on [0, 1]. The fractional q-integral
of the Riemann-Liouville type is given by

(Iαq f)(t) =
1

Γ(α)

∫ t

0

(t− qs)(α−1)f(s)dqs, α > 0, t ∈ [0, 1].

Lemma 2.1 ( [7]). Let n be a positive integer. Then

(Iαq D
n
q f)(t) = (Dn

q I
α
q f)(t)−

n−1∑
k=0

tα−n+k

Γq(α+ k − n+ 1)
(Dk

q f)(0), α > 0.

Let E be a Banach space and P ⊂ E be a cone.

Definition 2.2 ( [9]). A bounded linear operator T : E → E is u0-positive on cone
P if there exists u0 ∈ P\{θ} such that for each u ∈ P\{θ} there exist n ∈ N and
positive constants α(u), β(u) such that

α(u)u0 ⩽ Tnu ⩽ β(u)u0.

Recall that φ∗ is called a positive eigenfunction of a linear operator T if φ∗ ∈
P\{θ} and there exists λ0 > 0 such that λ0Tφ

∗ = φ∗.

Lemma 2.2 ( [9]). Let T : E → E be linear completely continuous and T (P ) ⊂ P .
If there exist ψ ∈ E\(−P ) and a constant c > 0 such that cTψ ⩾ ψ, then the
spectral radius r(T ) ̸= 0 and T has a positive eigenfunction φ corresponding to its
first eigenvalue λ1 = (r(T ))−1, i.e. φ = λ1Tφ.

The following lemma will be used to prove one of our results.

Lemma 2.3 ( [6]). Let P ⊂ E be a normal cone, A : P → P be a completely
continuous and decreasing operator satisfying the following two conditions:

(i) Aθ > θ,A2θ ⩾ ε0Aθ, where ε0 ∈ (0, 1);
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(ii) For each 0 < u ⩽ Aθ and k ∈ (0, 1), there exists a constant η > 0 such that

A(ku) ⩽ [k(1 + η)]−1Au.

Then A has a single fixed point u∗ ∈ P .

Lemma 2.4. Let α ∈ (2, 3], λ ̸= [α]q and h ∈ C[0, 1]. Then the boundary value
problem (BVP)  (Dα

q u)(t) + h(t) = 0, t ∈ (0, 1),

u(0) = Dqu(0) = 0, u(1) = λ
∫ 1

0
u(s)dqs,

(2.1)

has a unique solution

u(t) =

∫ 1

0

G(t, qs)h(s)dqs, t ∈ [0, 1],

where Green’s function is represented in the form

G(t, qs)

=


tα−1(1− qs)(α−1)([α]q − λ+ λsqα)− ([α]q − λ)(t− qs)(α−1)

([α]q − λ)Γq(α)
, 0 ⩽ qs ⩽ t ⩽ 1;

tα−1(1− qs)(α−1)([α]q − λ+ λsqα)

([α]q − λ)Γq(α)
, 0 ⩽ t ⩽ qs ⩽ 1.

Proof. From le2.1, the equation (Dα
q u)(t) = −h(t) can be change into

u(t) = − 1

Γq(α)

∫ t

0

(t− qs)(α−1)h(s)dqs+ c1t
α−1 + c2t

α−2 + c3t
α−3, (2.2)

where c1, c2, c3 are constants. Condition u(0) = 0 shows that c3 = 0. Compute the
q-derivative both sides of (2.2),

(Dqu)(t) = − 1

Γq(α)

∫ t

0

[α−1]q(t−qs)(α−2)h(s)dqs+c1[α−1]qt
α−2+c2[α−2]qt

α−3.

Condition Dqu(0) = 0 implies c2 = 0. Using condition u(1) = λ
∫ 1

0
u(s)dqs, we have

from (2.2) that

c1 =
1

Γq(α)

∫ 1

0

(1− qs)(α−1)h(s)dqs+ λ

∫ 1

0

u(s)dqs.

Thus, u(t) becomes

u(t) = − 1

Γq(α)

∫ t

0

(t− qs)(α−1)h(s)dqs+
tα−1

Γq(α)

∫ 1

0

(1− qs)(α−1)h(s)dqs

+λtα−1

∫ 1

0

u(s)dqs. (2.3)
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Set C =
∫ 1

0
u(s)dqs. Applying q-integral to (2.3) on [0, 1], we get

C = − 1

Γq(α)

∫ 1

0

dqt

∫ t

0

(t− qs)(α−1)h(s)dqs

+
1

Γq(α)

∫ 1

0

tα−1dqt

∫ 1

0

(1− qs)(α−1)h(s)dqs+ λC

∫ 1

0

tα−1dqt.

Noticing that
∫ 1

0
tα−1dqt =

1
[α]q

and

∫ 1

0

dqt

∫ t

0

(t− qs)(α−1)h(s)dqs =
1

[α]q

∫ 1

0

(1− qs)(α)h(s)dqs,

thus

C = − 1

([α]q − λ)Γq(α)

∫ 1

0

(1− qs)(α)h(s)dqs

+
1

([α]q − λ)Γq(α)

∫ 1

0

(1− qs)(α−1)h(s)dqs.

In view of (a− b)(α) = (a− bqα−1)(a− b)(α−1), replacing the value of C in (2.3), we
deduce that

u(t) =− 1

Γq(α)

∫ t

0

(t− qs)(α−1)h(s)dqs+
tα−1

Γq(α)

∫ 1

0

(1− qs)(α−1)h(s)dqs

− λtα−1

([α]q − λ)Γq(α)

∫ 1

0

(1− qs)(α)h(s)dqs

+
λtα−1

([α]q − λ)Γq(α)

∫ 1

0

(1− qs)(α−1)h(s)dqs

=− 1

Γq(α)

∫ t

0

(t− qs)(α−1)h(s)dqs

+
tα−1

([α]q − λ)Γq(α)

∫ 1

0

(1− qs)(α−1)([α]q − λ+ λsqα)h(s)dqs

=

∫ 1

0

G(t, qs)h(s)dqs.

Lemma 2.5. Let α ∈ (2, 3] and λ ∈ (0, [α]q). The function G given above satisfies

(i) G(0, qs) = G(t, 1) = 0, t, s ∈ [0, 1];

(ii) G(t, qs) > 0, t, s ∈ (0, 1);

(iii) tα−1(1− qs)(α−1)λsqα ⩽ ([α]q − λ)Γq(α)G(t, qs) ⩽ [α]qt
α−1(1− qs)(α−1);

(iv) G : [0, 1]× [0, 1] → [0,+∞) is continuous.

Proof. Results (i) and (iv) are obvious. Now we prove properties (ii) and (iii). In
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the case when 0 < qs ⩽ t < 1, the function

g1(t, s) =t
α−1(1− qs)(α−1)([α]q − λ+ λsqα)− ([α]q − λ)(t− qs)(α−1)

=tα−1(1− qs)(α−1)([α]q − λ+ λsqα)− tα−1([α]q − λ)(1− qs

t
)(α−1)

⩾tα−1(1− qs)(α−1)([α]q − λ+ λsqα)− tα−1([α]q − λ)(1− qs)(α−1)

=λsqαtα−1(1− qs)(α−1) > 0.

In the case when 0 < t ⩽ qs < 1, notice that [α]− λ > 0, then the function

g2(t, s) = tα−1(1− qs)(α−1)([α]q − λ+ λsqα) ⩾ λsqαtα−1(1− qs)(α−1) > 0

and

g2(t, s) = tα−1(1− qs)(α−1)([α]q − λ(1− sqα)) ⩽ [α]tα−1(1− qs)(α−1).

Furthermore, it is clear that g1(t, s) ⩽ g2(t, s) for all t, s ∈ [0, 1]. Thus, we finish
the proof.

From now on, we let E = C[0, 1] be endowed with the norm ∥u∥ = supt∈[0,1] |u(t)|
and cone P = {u ∈ E : u(t) ⩾ 0, t ∈ [0, 1]}, it is well known that P is a normal
cone.

Define operators T, A : E → E respectively by

Tu(t) =

∫ 1

0

G(t, qs)u(s)dqs, t ∈ [0, 1], (2.4)

Au(t) =

∫ 1

0

G(t, qs)f(s, u(s))dqs, t ∈ [0, 1]. (2.5)

Obviously, T : E → E(P → P ) is linear completely continuous.

Lemma 2.6. T is a u0-positive operator with u0 = tα−1.

Proof. For each u ∈ P\{θ}, by (iii) of le2.5, we have

Tu(t) =

∫ 1

0

G(t, qs)u(s)dqs ⩽
[α]qt

α−1

([α]q − λ)Γq(α)

∫ 1

0

(1− qs)(α−1)u(s)dqs

and

Tu(t) =

∫ 1

0

G(t, qs)u(s)dqs ⩾
λqαtα−1

([α]q − λ)Γq(α)

∫ 1

0

s(1− qs)(α−1)u(s)dqs.

The two inequalities above show that T is a u0-positive operator with u0 = tα−1.

Remark 2.1. Taking ψ(t) = tα−1, by le2.6, one may choose a number

c =
([α]q − λ)Γq(α)

λqα

(∫ 1

0

sα(1− qs)(α−1)dqs

)−1

> 0

such that cTψ ⩾ ψ. According to le2.2, we see that the spectral radius r(T ) ̸= 0 and
T has a positive eigenfunction corresponding to its first eigenvalue λ1 = (r(T ))−1.

Lemma 2.7. Assume φ∗ be the positive eigenfunction corresponding to λ1, namely,
λ1Tφ

∗ = φ∗. Then T is a φ∗-positive operator.
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3. Main results

In this section, based on the iterative method and a fixed point le2.3, we give the
existence of a unique nontrivial solution and a unique positive solution to BVP(1.1),
respectively.

Theorem 3.1. Suppose that f ∈ C([0, 1] × R,R) and f(t, 0) ̸≡ 0 for all t ∈ [0, 1].
If there exists K ∈ [0, 1) such that

|f(t, x1)− f(t, x2)| ⩽ Kλ1|x1 − x2|, t ∈ [0, 1], x1, x2 ∈ R, (3.1)

where λ1 is the first eigenvalue of T . Then BVP(1.1) has a unique nontrivial
solution u∗ in E, and for each u0 ∈ E, the iterative sequence un = Aun−1(n =
1, 2, . . .) converges to u∗.

Proof. One important fact is that A : E → E is completely continuous and a
nontrivial solution of BVP(1.1) in E is equivalent to a nonzero fixed point of A in
E.

First, we prove existence. Following the approach in [1], we need to construct
an iterative sequence. For any given u0 ∈ E, set un = Aun−1(n = 1, 2, · · · , ). By
le2.6 and le2.7, there exists a(|u1 − u0|) > 0 such that

T (|u1 − u0|)(t) ⩽ aφ∗(t), t ∈ [0, 1].

For any n ∈ N and t ∈ [0, 1], it follows from (2.4), (2.5) and (3.1) that

|un+1(t)− un(t)| =
∣∣∣∣∫ 1

0

G(t, qs)f(s, un(s))dqs−
∫ 1

0

G(t, qs)f(s, un−1(s))dqs

∣∣∣∣
⩽
∫ 1

0

G(t, qs)|f(s, un(s))− f(s, un−1(s))|dqs

⩽Kλ1T (|un − un−1|)(t)
⩽ · · · ⩽ Knλn1T

n(|u1 − u0|)(t)
⩽Knλn1T

n−1(aφ∗(t))

=Knaλ1φ
∗(t).

So for any given n, p ∈ N, we have

|un+p(t)− un(t)|
⩽|un+p(t)− un+p−1(t)|+ |un+p−1(t)− un+p−2(t)|+ · · ·+ |un+1(t)− un(t)|
⩽aλ1(Kn+p−1 + · · ·+Kn)φ∗(t)

=aλ1
Kn(1−Kp)

1−K
φ∗(t).

Since K ∈ [0, 1), then

∥un+p − un∥ <
aλ1K

n

1−K
∥φ∗∥ → 0, n→ ∞.

According to the completeness of E, there exists u∗ ∈ E such that limn→∞ un = u∗.
Since A is continuous and un = Aun−1, we get that u∗ is a fixed point of A in E.
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Now we prove uniqueness. If there exists the other point u ∈ E also satisfying
Au = u. For each n ∈ N,

∥u∗ − u∥ = ∥Anu∗ −Anu∥ ⩽ Knbλ1∥φ∗∥, (3.2)

where b(|u∗ − u|) > 0. From (3.2), there is ∥u∗ − u∥ → 0 as n → ∞. This implies
that u∗ = u, namely, A has at most one fixed point in E. The condition f(t, 0) ̸≡ 0
for all t ∈ [0, 1] guarantees that u∗ is a nonzero fixed point. Therefore, BVP(1.1)
has a unique nontrivial solution in E.

Theorem 3.2. Suppose there exist functions α, β ∈ C([0, 1], (0,+∞)) such that

f(t, x) = [α(t) + β(t)x]−1, t ∈ [0, 1], x ∈ (0,+∞). (3.3)

Then BVP(1.1) has a unique positive solution.

Proof. According to the premise of f , it is easy to show that A : P → P is com-
pletely continuous and decreasing and the positive solution of BVP(1.1) is equivalent
to the fixed point of A in P .

We verify the all conditions of le2.3.
(1) Using the positivity of α, it follows from the condition (3.3) and (ii) of le2.5

that

(Aθ)(t) =

∫ 1

0

G(t, qs)[α(s)]−1dqs > 0, t ∈ (0, 1)

and

(A2θ)(t) =

∫ 1

0

G(t, qs)[α(s) + β(s)(Aθ)(s)]−1dqs

=

∫ 1

0

G(t, qs)[α(s)]−1[1 + β(s)(Aθ)(s)(α(s))−1]−1dqs

⩾ 1

1 +M
Aθ(t), t ∈ [0, 1],

where M = ∥β(Aθ)α−1∥. Let ε0 = 1
1+M , then ε0 ∈ (0, 1) and A2θ ⩾ ε0Aθ. Hence,

the condition (i) holds.
(2) For each u ∈ P and k ∈ (0, 1), we have

A(ku)(t) =

∫ 1

0

G(t, qs)[α(s) + kβ(s)u(s)]−1dqs

=
1

k

∫ 1

0

G(t, qs)[k−1α(s) + β(s)u(s)]−1dqs.

Noticing k−1α(s) + β(s)u(s) > α(s) + β(s)u(s) for all s ∈ [0, 1]. Let

1 + η = min
s∈[0,1]

k−1α(s) + β(s)u(s)

α(s) + β(s)u(s)
.

Then η > 0 and we deduce that

A(ku)(t) ⩽ 1

k(1 + η)

∫ 1

0

G(t, qs)[α(s) + β(s)u(s)]−1dqs

=
1

k(1 + η)
Au(t), t ∈ [0, 1].
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Hence, the condition (ii) holds. According to le2.3, A only has one fixed point in
P , and then BVP(1.1) has a unique positive solution.

Example 3.1. Let f(t, x) = [1 + t2 + x]−1, (t, x) ∈ [0, 1] × [0,+∞). it is obvious
that f satisfies all the conditions of th3.2. Hence, BVP(1.1) has a unique positive
solution.
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