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GROUND STATE SOLUTION FOR A CLASS
FRACTIONAL HAMILTONIAN SYSTEMS∗

Ying Lv1, Chunlei Tang1,† and Boling Guo2

Abstract In this paper, we consider a class of Hamiltonian systems of the
form tD

α
∞(−∞Dα

t u(t)) + L(t)u(t)−∇W (t, u(t)) = 0 where α ∈ ( 1
2
, 1), −∞Dα

t

and tD
α
∞ are left and right Liouville-Weyl fractional derivatives of order α on

the whole axis R respectively. Under weaker superquadratic conditions on the
nonlinearity and asymptotically periodic assumptions, ground state solution
is obtained by mainly using Local Mountain Pass Theorem, Concentration-
Compactness Principle and a new form of Lions Lemma respect to fractional
differential equations.
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1. Introduction

Consider the following fractional Hamiltonian systems

tD
α
∞(−∞Dα

t u(t)) + L(t)u(t)−∇W (t, u(t)) = 0 (1.1)

where α ∈
(
1
2 , 1
)
, L : R → RN2

is a symmetric matrix valued function, W ∈
C1(R×RN , R) and ∇W (t, x) = (∂W/∂x)(t, x).

Fractional differential equations both ordinary and partial ones are applied in
mathematical modeling of processes in physics, mechanics, control theory, bio-
chemistry, bioengineering and economics. Fractional differential operators have
got attention from many researchers that is mainly due to its application as a
model for physical phenomena exhibiting anomalous diffusion. Therefore the the-
ory of fractional differential equations is an area intensively developed during last
decades [1, 7, 15, 20, 23]. The monographs [9, 14, 17] enclose a review of methods of
solving which is an extension of procedures from differential equations theory.

In [8], for the first time, Jiao and Zhou showed that the critical point theory is
an effective approach to tackle the existence of solutions for the following fractional
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boundary value problem tD
α
T (0D

α
t u(t)) = ∇W (t, u(t),

u(0) = u(T ).
(1.2)

The authors study the existence of problem (1.2) by establishing corresponding
variational structure in some suitable fractional space and applying the least action
principle and Mountain Pass theorem. Motivated by the above work, more and more
authors began considering fractional Hamiltonian systems, see [4, 16, 21, 24–26]. In
[21], the author shows system (1.1) possesses a nontrivial solution via the mountain
pass theorem, by assuming that L and W satisfy the following hypotheses:

(L′) L ∈ C(R,RN2

) is a symmetric and positively definite matrix for all t ∈ R
and there exists a continuous function l : R → R such that l(t) > 0 for all t ∈ R
and

(L(t)x, x) ≥ l(t)|x|2, l(t) → ∞ as |t| → ∞.

(AR) there exists a constant µ > 2 such that,

0 < µW (t, x) ≤ (∇W (t, x), x)

for all t ∈ R and x ∈ RN\{0}.
(H1) there exits W̄ ∈ C(RN , R) such that

|W (t, x)|+ |∇W (t, x)| ≤ |W̄ (x)|

for all x ∈ RN and x ∈ R.
After then, some authors are interested in the existence of solutions for (1.1)

under some new super-quadratic conditions instead of (AR), see [4, 16, 24]. In [24]
and [25, 26], the authors consider the subquadratic case by assuming W (t, x) =
a(t)V (x), where a ∈ C(R,R+), a(t) → 0 as |t| → ∞ and V satisfies

(H2) V (x) ≥ b1(t)|x|s and |∇V (x)| ≤ b2(t)|x|s for all (t, x) ∈ R × RN , where
1 < s < 2 is a constant, b1 : R → R+ is a bounded continuous function, and
b2 : R → R+ is a continuous function with proper integrability on R.

To our best knowledge, so far no study has conducted on the existence of ground
state solutions (i.e., nontrivial solutions with least possible energy) for the fractional
Hamiltonian systems. Our interests mainly concentrate on the existence of ground
state solutions of system (1.1) under general superquadratic potentials.

The following conditions are assumed.
(L) (L(t)x, x) := (L∞(t)x, x)−(L0(t)x, x), where L∞(t) and L0(t) are symmet-

ric measurable matrix functions and L∞ is T -periodic in t, there exist 0 < l0 < l∞

0 ≤ (L(t)x, x) ≤ (L∞(t)x, x) ≤ l∞|x|2, l0|x|2 ≤ (L∞(t)x, x) (1.3)

for all (t, x) ∈ R × RN , where L0 : R → RN2

such that for every ε > 0, the set{
t ∈ R : supx ̸=0

|L0(t)x|
|x| ≥ ε

}
has finite Lebesgue measure.

(W0) |∇W (t, x)| = o(|x|) as |x| → 0 uniformly in t ∈ R, W (t, 0) ≡ 0 and
W (t, x) ≥ 0 for all (t, x) ∈ R×RN .

(W1) F (t, x) ≥ 0, there exist η ≥ 1 and b ∈ L1(R,R \R−) such that

F (t, ςx) ≤ ηF (t, ζx) + b(t)
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for all (t, x) ∈ R×RN and 0 ≤ ς ≤ ζ, where F (t, x) = 1
2 (∇W (t, x), x)−W (t, x).

(W2) There exists s0 > 0 such that

1− s2

2
(∇W (t, x), x) ≥

∫ 1

s

(∇W (t, x), θx)dθ = W (t, x)−W (t, sx)

for all (t, x) ∈ R×RN and s ∈ [0, s0].
(W3) There existsW∞ ∈ C(R×RN , R) such that (∇W (t, x), x) ≥ (∇W∞(t, x), x)

and |∇W 0(t, x)| ≤ h(t)|x|p−1 for all (t, x) ∈ R×RN , where∇W 0(t, x) = ∇W (t, x)−
∇W∞(t, x), 2 < p < +∞, h ∈ L∞(R,R) such that for every ε > 0, the set
{t ∈ R : |h(t)| ≥ ε} has finite Lebesgue measure.

(W4) W∞(t, x) is T -periodic in t.

(W5) lim|x|→+∞
|∇W∞(t,x)|

|x| = +∞ uniformly in t ∈ R.

(W6) The mapping τ →
(

∇W∞(t,τx)
τ , x

)
is strictly increasing in τ ∈ (0, 1] for

all x ̸= 0 and t ∈ R.

Theorem 1.1. Assume (L), (W0), one of (W1) or (W2), and (W3)-(W6). Then
problem (1.1) possesses a nontrivial ground state solution.

If L0 = 0,W 0 = 0, systems (1.1) reduces to the periodic case. As a corollary of
Theorem 1.1, Theorem 1.2 is still a new result.

Theorem 1.2. Assume (W0) and

(L′′) L(t) ∈ C(R,RN2

) is T-periodic in t and there are constants 0 < λ1 < λ2 such
that

λ1|x|2 ≤ (L(t)x, x) ≤ λ2|x|2 for all (t, x) ∈ R×RN .

(W7) W ∈ C1(R×RN , R) is T-periodic in t.

(W8)
W (t,x)
|x|2 → ∞ uniformly in t as |x| → ∞.

(W9) τ → (∇W (t,τx),x)
τ is strictly increasing of τ > 0 for all x ̸= 0 and t ∈ R.

Then problem (1.1) possesses a nontrivial ground state solution.

Remark 1.1. It seems Theorem 1.1 is the first result on the existence of ground
state solution for the fractional Hamiltonian system. Linking theorem and the
Nehari manifold methods are two most commonly methods to obtain ground state
solutions. Since we remove the strictly monotonic condition on W and the technical
space decomposable condition, so the Linking theorem and the Nehari manifold
methods are invalid here. Our methods are different from the ones in previous
papers on ground state solutions.

2. Preliminary Results

2.1. Liouville-Weyl Fractional Calculus

Definition 2.1. The left and right Liouville-Weyl fractional integrals of order 0 <
α < 1 on the hole axis R are defined by

−∞Iαt u(t) :=
1

Γ(α)

∫ t

−∞
(t− h)α−1u(h)dh
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tI
α
∞u(t) :=

1

Γ(α)

∫ ∞

t

(h− t)α−1u(h)dh

respectively, where t ∈ R.

Definition 2.2. The left and right Liouville-Weyl fractional derivatives of order
0 < α < 1 on the hole axis R are defined by

−∞Dα
t u(t) :=

d

dt
−∞I1−α

t u(t),

tD
α
∞u(t) :=

d

dt
tI

1−α
∞ u(t),

respectively, where t ∈ R.

The Definition 2.1 and 2.2 may be written in an alternative form:

−∞Dα
t u(t) :=

α

Γ(1− α)

∫ ∞

0

u(t)− u(t− h)

hα+1
dh,

tD
α
∞u(t) :=

α

Γ(1− α)

∫ ∞

0

u(t)− u(t+ h)

hα+1
dh.

Recalling that the Fourier transform F(u)(ξ) of u(t) is defined by

F(u)(ξ) :=

∫ ∞

−∞
e−itξu(t)dt.

We establish the Fourier transform properties of the fractional integral and frac-
tional differential operators as follows

F(−∞Iαt u)(ξ) := (iξ)−αF(ϕ)(ξ),

F(tI
α
∞u)(ξ) := (−iξ)−αF(ϕ)(ξ),

F(−∞Dα
t u)(ξ) := (iξ)αF(ϕ)(ξ),

F(tD
α
∞u)(ξ) := (−iξ)αF(ϕ)(ξ).

2.2. Fractional Derivative Spaces

In this section we introduce some fractional spaces for more detail see [5,6]. Let us
recall that for any α > 0, the semi-norm

|u|Iα
−∞

:= ∥−∞Dα
t u∥L2

and norm

∥u∥Iα
−∞

:=
(
∥u∥2L2 + |u|2Iα

−∞

) 1
2

and let the space Iα−∞(R,RN ) denote the completion of C∞
0 (R,RN ) with respect

to the norm ∥ · ∥Iα
−∞

, i.e.,

Iα−∞(R,RN ) = C∞
0 (R,RN )

∥·∥Iα−∞ .
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Next we define the fractional Sobolev space Hα(R,RN ) in terms of the Fourier
transform. For 0 < α < 1, define the semi-norm

|u|α := ∥|ξ|αF(u)∥L2

and the norm

∥u∥Hα :=
(
∥u∥2L2 + |u|2α

) 1
2

and let

Hα(R,RN ) := C∞
0 (R,RN )

∥·∥α
.

We note that a function u ∈ L2(R,RN ) belongs to Iα−∞(R,RN ) if and only if

|ξ|αF(u) ∈ L2(R,RN ).

In particular, it follows from the integral property of Fourier transform that

|u|Iα
−∞

= ∥−∞Dα
t u∥L2 = ∥|ξ|αF(u)∥L2 = |u|α.

Therefore Iα−∞(R,RN ) and Hα(R,RN ) are equal and have equivalent semi-norm
and norm.

Analogous to Iα−∞(R,RN ), we introduce Iα∞(R,RN ). Let the semi-norm

|u|Iα
∞

:= ∥tDα
∞u∥L2

and norm

∥u∥Iα
∞

:=
(
∥u∥2L2 + |u|2Iα

∞

) 1
2

,

and let

Iα∞ = C∞
0 (R,RN )

∥·∥Iα∞ .

Moreover, Iα−∞(R,RN ) and Iα∞(R,RN ) are equivalent, with equivalent semi-norm
and norm.

Let α ∈ (0, 1) and r ∈ (1,+∞). We define the fractional Sobolev space
Wα,r(R,RN ) as follows

Wα,r(R,RN ) =

{
u ∈ Lr(R,RN ) :

∫
R

∫
R

|u(t)− u(t− h)|r

|h|1+αr
dhdt < ∞

}
.

The space Wα,r is endowed with the norm

∥u∥α,r =

(
∥u∥rLr +

∫
R

∫
R

|u(t)− u(t− h)|r

|h|1+αr
dhdt

)1/r

.

It follows from the Proposition 4.24 of [5] that the space Wα,r(R,RN ) is a Banach
space.

The space Hα(R,RN ) coincide with the space Wα,2(R,RN ), which follows from
the following proposition.

Lemma 2.1. For 0 < α < 1 and r > 1,
∫
R
||ξ|αF(u)(ξ)|rdξ < ∞ if and only if∫

R

∫
R

|u(t)−u(t−h)|r
|h|1+αr dhdt < ∞. Especially, for r = 2 we can get that u ∈ Hα(R,RN )

if and only if u ∈ Wα,2(R,RN ).
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Proof. Using |1− eiω| = 2 sin
(
ω
2

)
, we have∫

R

∫
R

|u(t)− u(t− h)|r

h1+rα
dhdt =

∫
R

1

h1+rα

∫
R

|e2iπhξ − 1|r|F(u)(ξ)|rdξdh

=

∫
R

|F(u)(ξ)|rdξ
∫
R

2r sinr(πhξ)

h1+rα
dhdξ

=

∫
R

(πξ)rα|F(u)(ξ)|rdξ
∫
R

2r sinr(l)

l1+rα
dl (2.1)

< ∞

because the integral
∫
R

sinr(l)
l1+rα dl convergences for α ∈ (0, 1) and r > 1. Conversely,

these computations show that∫
R

∫
R

|u(t)− u(t− h)|r

|h|1+αr
dhdt < ∞ ⇒

∫
R

||ξ|αF(u)(ξ)|rdξ < ∞.

Lemma 2.2 (Theorem 4.47, [5]). Let α ∈ (0, 1) and r ∈ (1,+∞). We have

(i) If αr < 1, then Wα,r(R,RN ) ↪→ Ls(R,RN ) for every r < s < r
1−αr ;

(ii) If αr = 1, then Wα,r(R,RN ) ↪→ Ls(R,RN ) for every r < s < ∞;

(iii) If αr > 1, then Wα,r(R,RN ) ↪→ L∞(R,RN ).

If α > 1
2 , it follows from Lemma 2.1 and Lemma 2.2 that Hα(R,RN ) ↪→

L∞(R,RN ). Since ∫
R

|u(t)|sdt ≤ ∥u∥s−2
L∞ ∥u∥2L2

for all s ∈ [2,+∞), which together with Lemma 2.2 implies that Hα(R,RN ) ↪→
Ls(R,RN ) for all s ∈ [2,∞]. In particular, for all s ∈ [2,+∞) and s = +∞, there
exist constants Cs and C∞ such that

∥u∥Ls ≤ Cs∥u∥Hα , (2.2)

∥u∥L∞ ≤ C∞∥u∥Hα (2.3)

for all u ∈ H1(R,RN ). Here Ls(R,RN )(2 ≤ s < +∞) denote the Banach spaces of
function on R with values in RN under the norms

∥u∥Ls =

(∫
R

|u|sdt
)1/s

.

L∞(R,RN ) is the Banach space of essentially bounded functions from R into RN

equipped with the norm

∥u∥∞ = ess sup{|u| : t ∈ R}.

In order to establish our result via critical point theory, we firstly introduce a
new fractional space

Eα :=

{
u ∈ Hα(R,RN ) :

∫
R

(
|−∞Dα

t u(t)|2 + (L(t)u(t), u(t))
)
dt < ∞

}
.
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The space Eα is a Hilbert space with the inner product

⟨u, v⟩Eα =

∫
R

[(−∞Dα
t u(t),−∞ Dα

t u(t)) + (L(t)u(t), u(t))] dt

and the corresponding norm

∥u∥2Eα = ⟨u, u⟩Eα.

Lemma 2.1 in [21] shows that Eα is continuously embedded in Hα(R,RN ) if L
is positively bounded from below. Since in our Theorem 1.1 L is not continuous
and does not have positive lower bounds, it is not obvious that ∥ · ∥Eα and ∥ · ∥Hα

are equivalent, which will be proved in following Lemma 2.3.

Lemma 2.3. Suppose L satisfies (L). Then there exist two positive constants d1
and d2 such that d1∥u∥2Hα ≤ ∥u∥2Eα ≤ d2∥u∥2Hα for all u ∈ Eα.

Proof. Since 0 ≤ (L(t)x, x) ≤ (L∞(t)x, x) ≤ l∞|x|2 for all (t, x) ∈ R × RN ,
one has ∥u∥2Eα ≤ max{1, l∞}∥u∥2Hα . Thus we can choose d2 = max{1, l∞}. Set

Ωε =
{
t ∈ R : supx ̸=0

|L0(t)x|
|x| ≥ ε

}
and Ωε(T ) =

{
R \BT : supx ̸=0

|L0(t)x|
|x| ≥ ε

}
. It

follows from (L) that meas(Ωε) < ∞ for any ε > 0. We claim that

meas(Ωε(T )) → 0 as T → ∞. (2.4)

In order to prove (2.4), it suffices to prove

lim
n→∞

meas(Ωε ∩ (R \BTn)) = 0

for each sequence {Tn} ⊂ R such that Tn → ∞. Consider the real function f : R →
R given by f(t) = χΩε(t), that is

f(t) =

1 for t ∈ Ωε

0 for t ̸∈ Ωε.

Then f ∈ L1(R,R) and ∥f∥L1 =
∫
R
|f |dt = meas(Ωε). Moreover, defining the

sequence of functions fn : R → R by fn(t) = χΩε∩(R\BTn )(t), it follows from that
|fn| ≤ |f |. Since fn → 0 almost everywhere in R as n → ∞, our claim follows from
Lebesgue’s Dominated Convergence Theorem.

It follows from (2.4) that we can find Tε > 0 such that meas(Ωε(Tε)) < ε.
Consequently,∫

R

(L0(t)u, u)dt =

∫
BTε

(L0(t)u, u)dt+

∫
R\BTε

(L0(t)u, u)dt

=

∫
BTε

(L0(t)u, u)dt+

∫
{
t∈R\BTε :supx̸=0

|L0(t)x|
|x| <ε

}(L0(t)u, u)dt

+

∫
{
t∈R\BTε :supx̸=0

|L0(t)x|
|x| ≥ϵ

}(L0(t)u, u)dt

≤
∫
BTε

(L0(t)u, u)dt+ ε

∫
R\BTε

|u|2dt+ l∞
∫
Ωε(Tε)

|u|2dt
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≤
∫
BTε

(L0(t)u, u)dt+ ε

∫
R\BTε

|u|2dt

+ l∞meas(Ωε(Tε))
1/3

(∫
Ωε(Tε)

|u|3dt

)2/3

≤
∫
BTε

(L0(t)u, u)dt+ ε

∫
R\BTε

|u|2dt

+ l∞C2
3ε

1
3

∫
R\BTε

(|−∞Dα
t u|2 + |u|2)dt. (2.5)

Since L(t) is positive definite in BTε , there exits lε > 0 such that (L(t)x, x) ≥ lε|x|2
for all (t, x) ∈ BTε ×RN , which together with (2.5) that

∥u∥2Eα =

∫
R

|−∞Dα
t u|2dt+

∫
R

(L∞(t)u, u)dt−
∫
R

(L0(t)u, u)dt

≥
∫
R

|−∞Dα
t u|2dt+

∫
R

(L∞(t)u, u)dt−
∫
BTε

(L0(t)u, u)dt

−ε

∫
R\BTε

|u|2dt− l∞C2
3ε

1
3

∫
R\BTε

(|−∞Dα
t u|2 + |u|2)dt

=

∫
BTε

|−∞Dα
t u|2dt+

∫
BTε

((L∞(t)− L0(t))u, u)dt+

∫
R\BTε

|−∞Dα
t u|2dt

+

∫
R\BTε

(L∞(t)u, u)dt− ε

∫
R\BTε

|u|2dt− l∞C2
3ε

1
3

∫
R\BTε

(|−∞Dα
t u|2 + |u|2)dt

≥
∫
BTε

|−∞Dα
t u|2dt+ lε

∫
BTε

|u|2dt

+(1− l∞C2
3ε

1
3 )

∫
R\BTε

|−∞Dα
t u|2dt+ (l0 − l∞C2

3ε
1
3 − ε)

∫
R\BTε

|u|2dt. (2.6)

Choose an appropriate ε0 > 0 such that a := 1−l∞C2
3ε

1
3
0 > 0 and b := l0−l∞C2

3ε
1
3
0 −

ε0 > 0. Then it follows from (2.6) that

∥u∥2Eα ≥ min{1, a, b, lε0}
∫
R

(|−∞Dα
t u|2 + |u|2)dt.

Thus we can choose d1 = min{1, a, b, lε0} and the proof of Lemma 2.3 is completed.

Remark 2.1. It follows from Lemma 2.2 and Lemma 2.3 that Eα ↪→ Ls(R,RN )
for any s ∈ [2,+∞]. In particular, there exist constants which still denoted by Cs

and C∞ such that

∥u∥Ls ≤ Cs∥u∥Eα , ∥u∥L∞ ≤ C∞∥u∥Eα , ∀u ∈ Eα.

Lemma 2.4. Suppose (L), (W3) hold. Assume un is bounded in Eα and un → 0
in Ls

loc(R,RN ), for any s ∈ [2,+∞]. Then up to a sequence, one has∫
R

(W (t, un)−W∞(t, un))dt → 0 (2.7)
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and ∫
R

(∇W (t, un)−∇W∞(t, un), un)dt → 0 (2.8)

as n → ∞.

Proof. We just prove (2.7), and the proof of (2.8) is similar with (2.7). By the
mean value theorem, there exists sn ∈ [0, 1] such that

W (t, un)−W∞(t, un) = (∇W 0(t, snun), un).

Set Ωε = {t ∈ R : |h(t)| ≥ ε} and Ωε(Tε) = {t ∈ R \BTε : |h(t)| ≥ ε}. Since for any
ε > 0, meas(Ωε) < ∞, (2.4) can still be proved. It follows that there exists Tε > 0
such that meas(Ωε(Tε)) < ε. Therefore, one has∫

R

|(W (t, un)−W∞(t, un))|dt =
∫
R

|(∇W 0(t, snun), un)|dt ≤
∫
R

h(t)|un|p

=

∫
BTε

h(t)|un|pdt+
∫
{t∈R\BTε :|h(t)|<ε}

h(t)|un|pdt

+

∫
{t∈R\BTε :|h(t)|≥ε}

h(t)|un|pdt

≤ I1 + I2 + I3. (2.9)

It is clear that

I1 ≤ ∥h∥L∞

∫
BTε

|un|pdt = on(1),

which is deduced by un → 0 in Lp
loc(R,RN ) for all p ∈ [2,+∞]. Moreover,

I2 =

∫
{t∈R\BTε :|h(t)|<ε}

h(t)|un|pdt

≤ ε∥un∥pLp ,

I3 ≤ ∥h∥L∞

∫
Ωε(Tε)

|un|pdt

≤ ∥h∥L∞meas(Ωε(Tε))
1/2

(∫
R

|un|2pdt
)1/2

≤ ∥h∥L∞ε1/2∥un∥pL2p .

To summarize, ∫
R

|(W (t, un)−W∞(t, un))|dt

≤ on(1) + ε∥un∥pLp + ∥h∥L∞ε1/2∥un∥pL2p

→ 0

as n → ∞, for the arbitrary of ε.

Lemma 2.5. Assume (L) and (W3). If {un} is bounded in Eα and |yn| → +∞,
for any φ ∈ C∞

0 (R,RN ), one has∫
R

((L(t)− L∞(t))un, φ(t− yn))dt = on(1), (2.10)
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R

(∇W (t, un)−∇W∞(t, un), φ(t− yn))dt = on(1). (2.11)

Proof. (i) Set

Ωε =

{
t ∈ R : sup

x̸=0

|L0(t)x|
|x|

≥ ε

}
and Ωε(T ) =

{
R \BT : sup

x ̸=0

|L0(t)x|
|x|

≥ ε

}
.

It follows from (2.4) that we can find Tε > 0 such that meas(Ωε(Tε)) < ε. Then,
we have ∫

{
t∈R:

|L0(t)x|
|x| ≥ε

} |u|2dt

=

∫
{
t∈BTε :

|L0(t)x|
|x| ≥ε

} |u|2dt+
∫
{
t∈R\BTε :

|L0(t)x|
|x| ≥ε

} |u|2dt

≤
∫
BTε

|u|2dt+meas(Ωε(Tε))
1/3

(∫
Ωε(Tε)

|u|3dt

)2/3

≤
∫
BTε

|u|2dt+ C2
3ε

1
3 ∥u∥2Eα . (2.12)

By using reduction to absurdity, we can conclude from (L) that

sup
|x|̸=0

|L0(t)x|
|x|

≤ A

for some A > 0 and all t ∈ R, which together with (2.12) implies∫
R

∣∣(L0(t)un(t), φ(t− yn)
)
|dt

≤
∫
{
t∈R:supx̸=0

|L0(t)x|
|x| ≥ε

} A|un(t)||φ(t− yn)|dt

+

∫
{
t∈R:supx̸=0

|L0(t)x|
|x| <ε

} ε|un(t)||φ(t− yn)|dt

≤ A∥un∥L2

(∫
{
t∈R:supx̸=0

|L0(t)x|
|x| ≥ε

} |φ(t− yn)|2dt

) 1
2

+ ε∥un∥L2∥φ∥L2

≤ A∥un∥L2

(∫
BTε

|φ(t− yn)|2dt+ C2
3ε

1
3 ∥φ∥2Eα

) 1
2

+ ε∥un∥L2∥φ∥L2

≤ Cε
1
6 + Cε+ on(1)

for some constant C > 0, in which∫
BTε

|φ(t− yn)|2dt = on(1) (2.13)

is obtained by using the Lebesgue’s dominated convergence theorem. In view of the
arbitrary of ε, we complete the proof of (2.10).
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(ii) Similarly with (2.9), we obtain that∫
R

|(∇W (t, un)−∇W∞(t, un), φ(t− yn))|dt

≤
∫
BTε

h(t)|un|p−1|φ(t− yn)|dt+
∫
{t∈R\Bε(Tε):|∇W 0(t,un)|<ε}

h(t)|un|p−1|φ(t− yn)|dt

+

∫
Ωε(Tε)

h(t)|un|p−1|φ(t− yn)|dt

= I4 + I5 + I6.

It is clear that

I4 ≤ ∥h∥L∞∥un∥p−2
L∞ ∥un∥L2

(∫
BTε

|φ(t− yn)|2dt

)1/2

= on(1),

which is deduced by (2.13). Moreover,

I5 =

∫
{t∈R\BTε :|h(t)|<ε}

h(t)|un|p−1|φ(t− yn)|dt

≤ ε∥un∥p−2
L∞

(∫
R

|un|2
)1/2(∫

R

|φ(t− yn)|2
)1/2

≤ ε∥un∥p−2
L∞ ∥un∥L2∥φ∥L2 ,

I6 ≤ ∥h∥L∞∥un∥p−1
L∞

∫
Ωε(Tε)

|φ(t− yn)|dt

≤ ∥h∥L∞∥un∥p−1
L∞ meas(Ωε(Tε))

1/2

(∫
R

|φ(t− yn)|2dt
)1/2

≤ ε1/2∥h∥L∞∥un∥p−1
L∞ ∥φ∥L2 .

To summarize,∫
R

|(W (t, un)−W∞(t, un))|dt

≤ on(1) + ε∥un∥p−2
L∞ ∥un∥L2∥φ∥L2 + ε1/2∥h∥L∞∥un∥p−1

L∞ C2∥φ∥Eα

→ 0

as n → ∞, for the arbitrary of ε.
In the proof of our results, we shall use the following lemma by Lions ( [11,12])

which is well known as the concentration-compactness principle.

Lemma 2.6 (Lemma 1.1, [11]). Let ρn be a sequence in L1(R,R) satisfying ρn ≥ 0
in R and

∫
R
ρndt → η which is a fixed constant. Then there exists a subsequence

which we still denote by ρn satisfying one of the three following possibilities

(i) (Vanishing):

lim
n→∞

sup
y∈R

∫ y+l

y−l

ρndt = 0

for all l > 0;
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(ii) (Compactness): There exists {yn} ⊂ R satisfying ∀ε > 0, ∃l > 0 such that∫ yn+l

yn−l

ρndt ≥ η − ε

for all n;

(iii) (Dichotomy): There exist α ∈ (0, η), ρ1n ≥ 0, ρ2n ≥ 0, and ρ1n, ρ
2
n ∈ L1(R,R)

such that

(a) ∥ρn − (ρ1n + ρ2n)∥L1 → 0 as n → ∞,

(b)
∫
R
ρ1ndt → α as n → ∞,

(c)
∫
R
ρ2ndt → η − α as n → ∞,

(d) dist(supp ρ1n, supp ρ2n) → ∞ as n → ∞.

If α = 1, the following lemma corresponds to Lemma 1.1 in [12], which is well
known as Lions Lemma.

Lemma 2.7. Let un be a bounded sequence in Lq(R,RN )∩L∞(R,RN ), 1 ≤ q < ∞
such that F(−∞Dα

t un) (0 < α < 1) is bounded in Lp(R,RN ), 1
α < p < ∞. If, in

addition, there exists l > 0 such that

sup
y∈R

∫ y+l

y−l

|un|qdt → 0

as n → ∞, then un → 0 in Ls(R,RN ), for all s ∈ (q,∞).

Proof. Since {un} is bounded in L∞(R,RN ), then clearly we have for all β ≥ q

sup
y∈R

∫ y+l

y−l

|un|βdt → 0 (2.14)

as n → ∞. For 0 < β < q, by Hölder inequality we also have

sup
y∈R

∫ y+l

y−l

|un|βdt ≤ (2l)
q−β
q

(
sup
y∈R

∫ y+l

y−l

|un|q
) β

q

→ 0 (2.15)

as n → ∞.
By Lemma 2.1 we have

∫
R

∫
R

|un(t)−un(t−h)|p
|h|1+pα dhdt is bounded. Cover R by in-

tervals (yi − l, yi + l), i ∈ N , in such a way that each point of R is contained in at
most 2 intervals. It follows from Lemma 2.2, Wα,p(R,RN ) ↪→ L∞(R,RN ), there
exists C independent of i such that

∥un∥L∞
[yi−l,yi+l]

≤ C

∫ yi+l

yi−l

(
|un|p +

∫
R

|un(t)− un(t− h)|p

|h|1+αp
dh

)
dt. (2.16)

If p ≥ q, it is clear that un is bounded in Lp(R,RN ). If p < q, it follows from Hölder
inequality that

∥un∥L∞
[yi−l,yi+l]

≤ C

∫ yi+l

yi−l

(
|un|q +

∫
R

|un(t)− un(t− h)|p

|h|1+αp
dh

)
dt. (2.17)
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Set θ = p if p ≥ q, θ = q if p < q. In view of (2.16) and (2.17), for s ∈ (q,∞) one
has∫

R

|un|sdt ≤
∞∑
i=1

∫ yi+l

yi−l

|un|sdt

≤
∞∑
i=1

∥un∥L∞
[yi−l,yi+l]

∫ yi+l

yi−l

|un|s−1dt

≤ C

∞∑
i=1

∫ yi+l

yi−l

|un|θdt
∫ yi+l

yi−l

|un|s−1dt

+C

∞∑
i=1

(∫ yi+l

yi−l

(∫
R

|un(t)− un(t− h)|p

|h|1+αp
dh

)
dt

)∫ yi+l

yi−l

|un|s−1dt

≤ 2C sup
i∈N

∫ yi+l

yi−l

|un|s−1dt

∫
R

|un|θdt

+2C sup
i∈N

∫ yi+l

yi−l

|un|s−1dt

∫
R

(∫
R

|un(t)− un(t− h)|p

|h|1+αp
dh

)
dt

→ 0 (2.18)

as n → ∞, which follows from (2.14), (2.15) and boundedness of
∫
R
|un|θdt,∫

R

(∫
R

|un(t)−un(t−h)|p
|h|1+αp dh

)
dt.

Now we introduce some notations and some necessary definitions which will
be used later. Let B be a real Banach space, I ∈ C1(B,R), which means that
I is continuously Frechet-differentiable functional defined on B. Recall that I ∈
C1(B,R) is said to satisfy the (PS) condition if any sequence {qn}n∈N ⊂ B, for
which {I(qn)} is bounded and I ′(qn) → 0 as n → +∞ possesses a convergent
subsequence in B.

Moreover, let Br be the open ball in B with the radius r and centered at 0 and
∂Br denotes its boundary, the following lemma is well known as Mountain Pass
Theorem [18].

Lemma 2.8 ( [18]). Let B be a real Banach space and I ∈ C1(B,R) satisfying the
(PS) condition. Suppose that I(0) = 0 and

(A1) there are constants ρ, α > 0 such that I|∂Bρ ≥ α;

(A2) there is an e ∈ B\B̄ρ such that I(e) < 0.

Then I possesses a critical value c ≥ α. Moreover c can be characterized as

c = inf
f∈Γ

max
s∈[0,1]

I(f(s)),

where
Γ = {f ∈ C([0, 1], B) : f(0) = 0, f(1) = e}. (2.19)

As shown in [3], a deformation lemma can be proved with the (Ce)c condition
replacing the usual (PS) condition, and it turns out that the Mountain Pass Theo-
rem in [18] hold true under the (Ce)c condition. So Lemma 2.8 is still true under
the weaker (Ce)c condition.
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In the proof of results, the following Local Mountain Pass Theorem is also
needed.

Lemma 2.9 (Theorem 2.3, [13]). Let E be a real Banach space and I ∈ C1(E,R)
satisfies I(0) = 0, (A1) and (A2). If there exists γ0 ∈ Γ, Γ defined by (2.19), such
that

c = max
s∈[0,1]

I(γ0(s)) > 0,

then I possesses a nontrivial point u at level c.

3. Proof of Theorem 1.1

Define the functional I : Eα → R by

I(u) =

∫
R

[
1

2
|−∞Dα

t u(t)|2 +
1

2
(L(t)u(t), u(t))−W (t, u(t))

]
dt

=
1

2
∥u∥2Eα −

∫
R

W (t, u(t))dt. (3.1)

Lemma 3.1. Assume (L), (W0) and (W3)-(W4). Then I ∈ C1(Eα, R) and for all
u, v ∈ Eα we have

⟨I ′(u), v⟩ =
∫
R

[(−∞Dα
t u(t),−∞ Dα

t v(t)) + (L(t)u(t), v(t))− (∇W (t, u(t)), v(t))] dt.

Proof. We firstly show that I : Eα → R. Let u ∈ Eα, then there exists k > 0 such
that ∥u∥L∞ ≤ k. In view of (W0) and (W3), it follows from standard arguments
that for any δ > 0 there exists Cδ > 0 and p > 2 such that

|∇W 0(t, x)| ≤ δ|x|+ Cδ|x|p−1 (3.2)

for all t ∈ R and x ∈ RN . Define

max
t∈[0,T ],0<|x|≤k

|∇W∞(t, x)|
|x|p−1

:= λ.

Then one has

|∇W (t, x)| ≤ |∇W∞(t, x)|+ |∇W 0(t, x)|
≤ δ|x|+ (λ+ Cδ)|x|p−1

≤ δ|x|+ λδ|x|p−1 (3.3)

and then

|W (t, x)| ≤ δ

2
|x|2 + λδ

2
|x|p (3.4)

for all t ∈ R and |x| ≤ k, where λδ = λ+ Cδ. Hence, one has
∫
R
W (t, u(t))dt < ∞

and I : E → R.
Next we prove that I ∈ C1(Eα, R). Rewrite I as following

I = I1 − I2
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where

I1 =

∫
R

[
1

2
|−∞Dα

t u(t)|2 +
1

2
(L(t)u(t), u(t))

]
dt,

I2 =

∫
R

W (t, u(t))dt.

It is easy to check that I1 ∈ C1(Eα, R) and

⟨I ′1(u), v⟩ =
∫
R

[(−∞Dα
t u(t),−∞ Dα

t v(t)) + (L(t)u(t), v(t))]dt.

It remains to show that I2 ∈ C1(Eα, R). By the Mean value Theorem, for any
u, v ∈ Eα and h ∈ [0, 1] we have

W (t, u(t) + hv(t))−W (t, u(t)) = (∇W (t, u(t) + hθ(t)v(t), v(t)),

where θ(t) ∈ (0, 1). Given u, v ∈ Eα, there exists a positive constant which still
denoted by k > 0, such that

|u(t)|+ |v(t)| < k

for all t ∈ R, so that,
|u(t) + hθ(t)v(t)| < k

for all t ∈ R, which together with (3.3) implies∫
R

max
h∈[0,1]

|(∇W (t, u(t) + hθ(t)v(t)), v(t))|dt

≤
∫
R

δ[|u(t)||v(t)|+ |v(t)|2]dt

+

∫
R

λδ2
p−1[|u(t)|p−1|v(t)|+ |v(t)|p]dt

≤ δ(∥u∥L2∥v∥L2 + ∥v∥2L2)

+λδ2
p−1(∥u∥p−2

L∞ ∥u∥L2∥v∥L2 + ∥v∥pLp)

< ∞.

Then by Lebesgue’s Convergence Theorem, we have

⟨I ′2(u), v⟩ = lim
h→0+

I2(u+ hv)− I2(u)

h

= lim
h→0+

∫
R

W (t, u(t) + hv(t))−W (t, u(t))

h
dt

= lim
h→0+

∫
R

(∇W (t, u(t) + hθ(t)v(t)), v(t))dt

=

∫
R

(∇W (t, u(t)), v(t))dt.

Now we show that I ′2 is continuous. Suppose un → u in Eα, by an easy computation,
one has

sup
∥v∥=1

|⟨I ′2(un)− I ′2(u), v⟩| = sup
∥v∥=1

∣∣∣∣∫
R

(∇W (t, un(t))−∇W (t, u(t)), v(t))dt

∣∣∣∣
≤ sup

∥v∥=1

∥∇W (t, un(t))−∇W (t, u(t))∥L2∥v∥L2

≤ C2∥∇W (t, un(t))−∇W (t, u(t))∥L2 .
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Since un → u in Eα, there exists a positive constant which still denoted by k > 0,
such that

sup
n∈N

∥un∥L∞ ≤ k, ∥u∥L∞ ≤ k. (3.5)

which together with (3.3) implies∫
R

|∇W (t, un(t))−∇W (t, u(t))|2dt

≤
∫
R

(|∇W (t, un(t))|+ |∇W (t, u(t))|)2dt

≤
∫
R

2δ2(|un|+ |u|)2 + 2λδ
2(|un|p−1 + |u|p−1)2dt

≤
∫
R

4δ2(|un|2 + |u|2) + 4λδ
2(|un|2(p−1) + |u|2(p−1))dt

< ∞ (3.6)

for all n ∈ N . By using Lebesgue’s Convergence Theorem, one has

⟨I ′2(un)− I ′2(u), v⟩ → 0

as n → ∞ uniformly with respect to v, which implies the continuity of I ′2. Now we
have proved I ∈ C1(Eα, R).

Define the Nehari manifold

N := {u ∈ Eα \ {0} : ⟨I ′(u), u⟩ = 0}

and set

m := inf
u∈N

I(u).

In order to prove Theorem 1.1, we study firstly the following periodic problem,
namely,

tD
α
∞(−∞Dα

t u(t)) + L∞(t)u(t)−∇W∞(t, u(t)) = 0. (3.7)

For system (3.7), we define the Nehari manifold

N∞ = {u ∈ Eα\{0} : ⟨I∞′(u), u⟩} = 0

and set

m∞ := inf
u∈N∞

I∞(u),

where

I∞(u) =
1

2

∫
R

(|−∞Dα
t u|2 + (L∞(t)u, u))dt−

∫
R

W∞(t, u)dt.

Lemma 3.2. Assume (L), (W0), (W3)-(W5). Then for each u ∈ Eα \ {0}, there
exists su > 0 such that suu ∈ N . Moreover, the maximum of I(su) for s ≥ 0 is
achieved at su.

Proof. It follows from (3.9) that for any δ > 0, there exists lδ > 0 such that

0 ≤ W (t, x) ≤ 1

2
δ|x|2
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for all t ∈ R and |x| < lδ. Fix u ∈ Eα \ {0}, then ∥u∥L∞ ≤ k for some k > 0. Take
0 < s < lδ

k , then |su(t)| < lδ for all t ∈ R, hence

f(s) =
s2

2
∥u∥2Eα −

∫
R

W (t, su(t))dt

≥ s2

2
∥u∥2Eα − δ

2
s2∥u∥2L2

=
s2

2
(1− δC2

2 )∥u∥2Eα .

Fix δ sufficiently small, then there exists s0 > 0, such that f(s0) > 0. Set Ω = {t ∈
R : |u(t)| > 0}, combining with Fatou’s Lemma and (W5), we have

lim inf
s→+∞

∫
Ω

W (t, su)

|su|2
dt ≥ lim inf

s→+∞

∫
Ω

W∞(t, su)

|su|2
dt = +∞.

Hence

lim sup
s→+∞

f(s)

s2
=

1

2
∥u∥2Eα − lim inf

s→+∞

∫
R

W (t, su)

|s|2
dt

=
1

2
∥u∥2Eα − lim inf

s→+∞

∫
R

W (t, su)

|su|2
|u|2dt

= −∞

which deduces f(s) → −∞ as s → +∞. So there exists su > 0 such that f(su) =
maxs>0 f(s) and hence f ′(su) = 0, i.e., I(suu) = maxs>0 I(su) and suu ∈ N .

In view of the proof of Lemma 3.2, the following remarks are obvious. The
functional I verifies the geometric conditions of the Mountain Pass Theorem.

Remark 3.1. Assume (L), (W0), (W3)-(W5) hold. Then I satisfies I(0) = 0 and

(A1) there exists ρ, α > 0 such that I(u) ≥ α for all ∥u∥ = ρ;

(A2) there exists e ∈ Eα with ∥e∥ > ρ such that I(e) ≤ 0.

Remark 3.2. The existence of su respect to I∞ is unique, i.e., for each u ∈ Eα,
there exists a unique su > 0 such that suu ∈ N∞ and the maximum of I∞(su) is
achieved at su. Assume that there exist s′u > su > 0 such that s′uu, suu ∈ N∞,
then we have

s2u∥u∥2Eα −
∫
R

(∇W∞(t, suu), suu)dt = 0,

and

s′
2
u∥u∥2Eα −

∫
R

(∇W∞(t, s′uu), s
′
uu)dt = 0.

It follows from that∫
R

(
∇W∞(t, s′uu)

s′u
− ∇W∞(t, suu)

su
, u

)
dt = 0,

without loss of generality we may assume 1 ≥ s′u > su > 0, which contradicts with
(W6).
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Lemma 3.3 (Proposition 3.11, [19]). Assume (L), (W0), (W3)-(W6) hold. Then

m∞ := inf
u∈N∞

I∞(u) = inf
u∈Eα\{0}

max
s>0

I∞(su). (3.8)

Lemma 3.4. Assume (L), (W0), (W1), (W3)-(W5) and suppose that {un} is a
Cerami sequence at a level c > 0 for the function I. Then ∥un∥Eα is bounded.

Proof. Let {un} be a Cerami sequence at some level c > 0, that is,

I(un) → c, (3.9)

(1 + ∥un∥Eα)∥I ′(un)∥ → 0 (3.10)

as n → ∞. Arguing by contradiction, we assume ∥un∥Eα → ∞. Define vn =
2
√
c(un/∥un∥Eα), then

∥vn∥Eα = 2
√
c (3.11)

and there exists v ∈ Eα such that vn ⇀ v in Eα, vn → v in L2
loc(R) and vn(t) → v(t)

a.e. in R. For any n ∈ N , there exists kn ∈ N such that ∥vn(· + knT )∥L∞ =
maxt∈R |vn(t)| occurs in [0, T ]. Let v̄n := vn(· + knT ). Since {v̄n} is also bounded
in Eα, passing to a subsequence, we may assume that v̄n ⇀ v̄ in Eα, v̄n → v̄ in
Ls
loc(R), s ∈ [2,+∞] and v̄n(t) → v̄(t) a.e. in R.
Case 1: v̄ ̸≡ 0.
In this case meas{Ω} > 0, where Ω = {t ∈ R : |v̄(t)| > 0}. Therefore

|un(t+ knT )| =
|v̄n(t)|
2
√
c

∥un∥Eα → +∞

as n → ∞, then by Fatou’s Lemma, we have

lim inf
n→∞

∫
R

W (t, un)

|un|2
|vn|2dt = lim inf

n→∞

∫
R

W (t+ knT, un(t+ knT ))

|un(t+ knT )|2
|vn(t+ knT )|2dt

≥ lim inf
n→∞

∫
Ω

W (t+ knT, un(t+ knT ))

|un(t+ knT )|2
|vn(t+ knT )|2dt

≥ lim inf
n→∞

∫
Ω

W∞(t, un(t+ knT ))

|un(t+ knT )|2
|v̄n|2dt

= +∞.

Then

0 = lim sup
n→∞

I(un)

∥un∥2Eα

=
1

2
− 1

4c
lim inf
n→∞

∫
R

W (t, un)

|un|2
|vn|2dt → −∞,

which is a contradiction.
Case 2. v̄ ≡ 0.
Since v̄n → 0 in L∞

loc, in view of the definition of v̄n, we have

∥vn∥L∞ = ∥v̄n∥L∞ = ∥v̄n∥L∞
[0,T ]

→ 0

as n → ∞. Fixing θ > 0, for any given δ > 0, when n large enough

|θvn(t)| ≤ lδ
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for all t ∈ R. By (3.9), we have∫
R

W (t, θvn) dt ≤
δ

2
θ2∥vn∥2L2

when n large enough. Since δ is arbitrary and vn is bounded in Eα, we have∫
R

W (t, θvn) dt → 0 (3.12)

as n → ∞. Therefore,

I

(
2
√
cθ

∥un∥Eα

un

)
= I(θvn) =

1

2
∥θ2vn∥2Eα −

∫
R

W (t, θvn) dt ≥ 2θ2c+ on(1). (3.13)

Since ∥un∥Eα → ∞, then 2
√
cθ

∥un∥Eα
∈ (0, 1) for n sufficiently large, so

max
s∈[0,1]

I(sun) ≥ I

(
2
√
cθ

∥un∥Eα

un

)
≥ 2θ2c+ on(1). (3.14)

By the continuity of I, there exists sn ∈ [0, 1] such that I(snun) = maxs∈[0,1] I(sun).

Since 2
√
c

∥un∥Eα
∈ [0, 1] when n large enough, we have

I(snun) ≥ I(vn) = I

(
2
√
c

∥un∥Eα

un

)
= ∥vn∥Eα −

∫
R

W (t, vn)dt = 2c+ on(1).

Note that I(un) → c, so 0 < sn < 1 and ⟨I ′(snun), snun⟩ = on(1). Hence by (W1),
one has

I(snun) = I(snun)−
1

2
⟨I ′(snun), snun⟩+ on(1)

=

∫
R

(
1

2
(∇W (t, snun), snun)−W (t, snun)

)
+ on(1)

=

∫
R

F (t, snun) + on(1)

≤ η

∫
R

F (t, un) +

∫
R

b(t)dt+ on(1)

≤ η

(
I(un)−

1

2
⟨I ′(un), un⟩

)
+M1 + on(1)

≤ ηc+M1 + on(1) ≤ M2. (3.15)

It follows from (3.14) and (3.15) that

2θ2c+ on(1) ≤ max
s∈[0,1]

I(sun) = I(snun) ≤ M2

which is a contradiction when θ is sufficiently large. Summarize the two cases, we
have proved {un} ∈ Eα is bounded.

Lemma 3.5. Assume (L), (W0) and (W2)-(W5) and suppose that {un} is a Cerami
sequence at a level c > 0 for the function I. Then ∥un∥Eα is bounded.
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Proof. The proof of this lemma follows the same steps of Lemma 3.4, with a
change in the Case 2 where v̄ ≡ 0. Recalling (3.13) and keeping the same notations
as in the previous lemma, we have

I

(
2
√
cθ

∥un∥Eα

un

)
≥ 2θ2c+ on(1).

Indeed, taking 0 ≤ s ≤ s0 and using (W2) we obtain

I(u)−I(su)− 1−s2

2
⟨I ′(u), u⟩ = 1

2
∥u∥2Eα −

∫
R

W (t, u)dt− s2

2
∥u∥2Eα +

∫
R

W (t, su)dt

−1− s2

2
∥u∥2Eα +

1− s2

2

∫
R

(∇W (t, u), u)dt

=

∫ (
−W (t, u) +W (t, su) +

1− s2

2
(∇W (t, u), u)

)
dt

≥ 0. (3.16)

Since 2
√
cθ

∥un∥Eα
∈ [0, s0] when n large enough, as a consequence of the (3.16) we then

get

c+ on(1) = I(un) ≥ I

(
2
√
cθ

∥un∥Eα

un

)
≥ 2θ2c+ on(1).

Since θ can be chosen large enough, we produce a contradiction and the proof is
finished.

Lemma 3.6. Assume (L), (W0), one of (W1) or (W2), (W3)-(W5). Then I satisfies
the (Ce)c condition for all 0 < c < m∞.

Proof. Let {un} be a Cerami sequence at the level 0 < c < m∞,

I(un) =
1

2
∥un∥2Eα −

∫
R

W (t, un)dt → c, (3.17)

⟨I ′(un), ϕ⟩ =
∫
R

(−∞Dα
t un,−∞ Dα

t ϕ) + (L(t)un, ϕ)dt−
∫
R

(∇W (t, un), ϕ)dt

= on(1)∥ϕ∥, ∀ϕ ∈ Eα. (3.18)

Then ∥un∥Eα are bounded by Lemma 3.4 and Lemma 3.5. Without loss of gener-
ality, we may assume that ∥un∥Eα → a.

Claim 1: a > 0.
If not, assuming by contradiction that ∥un∥Eα → 0, now we will deduce a

contradiction. It follows from ∥un∥Eα → 0 that ∥un∥L∞ → 0. For any given δ > 0,
when n large enough, |un(t)| ≤ lδ for all t ∈ R. Recalling (3.4), one has∫
R

|W (t, un)|dt ≤
1

2

∫
R

δ|un|2dt+
1

2

∫
R

λδ|un|pdt ≤
δ

2
C2

2∥un∥2Eα+
λδ

2
Cp

p∥un∥pEα → 0

as n → ∞, which is a contradiction. Now we finish the proof of Claim 1.
Next, we will check each one of the possible alternatives of Lemma 2.6 for ρn =

|−∞Dα
t un|2 + l∞|un|2.

Step 1. Vanishing:

lim
n→∞

sup
y∈R

∫ y+l

y−l

|−∞Dα
t un|2 + l∞|un|2dt = 0
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for all l > 0. Since un is bounded in Eα, there exists a constant k > 0 such that

sup
n∈N

∥un∥L∞ ≤ k. (3.19)

Recalling ∥−∞Dα
t un∥L2 = ∥F(−∞Dα

t un)∥L2 , by Lemma 2.7, we have un → 0 in
Ls(R,RN ) for all s > 2, which together with (3.3) and (3.19) implies

0 ≤
∫
R

(∇W (t, un), un)dt ≤ δ∥un∥2L2 + λδ∥un∥pLp → 0

as n → ∞, for the arbitrary of δ. Taking ϕ = un in (3.18), it follows that

on(1) = ⟨I ′(un), un⟩ = ∥un∥2Eα −
∫
R

(∇W (t, un), un)dt = ∥un∥2Eα + on(1)

which is a contradiction. Now we can exclude this alternative.
Step 2. Dichotomy: There exists α0(0 < α0 < α) such that for any given

ε > 0, there is R0 > 0 and sequences {yn} ⊂ R, {Rn} ⊂ R+, with R0 < R1 < · · · <
Rn < Rn+1 → ∞, such that

α0 − ε <

∫
|t−yn|≤R0

2

(|−∞Dα
t un|2 + l∞|un|2)dt < α0 + ε,

∫
|t−yn|≥3Rn

(|−∞Dα
t un|2 + l∞|un|2)dt > α− α0 − ε, (3.20)

and in particular ∫
R0
2 <|t−yn|<3Rn

(|−∞Dα
t un|2 + l∞|un|2)dt < 2ε. (3.21)

Picking ξ ∈ C∞
0 (R), ξ(t) = 1 for |t| ≤ 1, ξ(t) = 0 for |t| ≥ 2, and φ = 1− ξ, set

u1
n = ξ

(
· − yn
R0

)
un, u2

n = φ

(
· − yn
Rn

)
un.

By the definition of ξ and φ, there exists a constant M ′ > 0 such that |ui
n(t)| ≤

M ′|un(t)|, for all t ∈ R and i = 1, 2. On the other hand,

|−∞Dα
t u

1
n(t)| ≤

∫ ∞

0

|u1
n(t)− u1

n(t− h)|
|h|1+α

dh

≤
∫ ∞

0

∣∣∣ξ ( t−yn

R0

)
un(t)− ξ

(
t−yn−h

R0

)
un(t− h)

∣∣∣
|h|1+α

dh

≤
∫ ∞

0

∣∣∣ξ ( t−yn

R0

)
− ξ

(
t−yn−h

R0

)∣∣∣ |un(t)|

|h|1+α
dh

+

∫ ∞

0

∣∣∣ξ ( t−yn−h
R0

)∣∣∣ |un(t)− un(t− h)|

|h|1+α
dh

≤ |un(t)|(2M ′)1−α/2

∫ 1

0

∣∣∣ξ ( t−yn

R0

)
− ξ

(
t−yn−h

R0

)∣∣∣α/2
|h|1+α

dh
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+|un(t)|
∫ ∞

1

∣∣∣ξ ( t−yn

R0

)
− ξ

(
t−yn−h

R0

)∣∣∣
|h|1+α

dh

+M ′|−∞Dα
t un(t)|

≤ 1

R
α/2
0

|un(t)|(2M ′)1−α/2∥ξ̇∥α/2L∞

∫ 1

0

1

|h|1+α/2
dh

+
1

R0
|un(t)|∥ξ̇∥L∞

∫ ∞

1

1

|h|α
dh+M ′|−∞Dα

t un(t)|

≤ M ′|−∞Dα
t un(t)|+M ′′|un(t)|

for some M ′′ > 0, because of
∫ 1

0
1

|h|1+α/2 dh < ∞ and
∫∞
1

1
|h|α dh < ∞. Set M =

max{M ′,M ′′}, then we have

|u1
n(t)| ≤ M |un(t)|, |−∞Dα

t u
1
n(t)| ≤ M(|un(t)|+ |−∞Dα

t un(t)|) (3.22)

for all t ∈ R. Similarly, we can also get

|u2
n(t)| ≤ M |un(t)|, |−∞Dα

t u
2
n(t)| ≤ M(|un(t)|+ |−∞Dα

t un(t)|). (3.23)

It follows from (3.3) that |W (t, un)| ≤ δ
2 |un|2+ λδ

2 |un|p, which together with (3.21),
(3.22) and (3.23) implies

|I(un)− I(u1
n)− I(u2

n)|

≤
∫
R0≤|t−yn|≤2Rn

(|−∞Dα
t un|2 + (L(t)un, un) + |−∞Dα

t u
1
n|2 + (L(t)u1

n, u
1
n))dt

+

∫
R0≤|t−yn|≤2Rn

(|−∞Dα
t u

2
n|2 + (L(t)u2

n, u
2
n))dt

+

∫
R0≤|t−yn|≤2Rn

(|W (t, un)|+ |W (t, u1
n)|+ |W (t, u2

n)|)dt

≤ (1 + 6M2)

∫
R0≤|t−yn|≤2Rn

(|−∞Dα
t un|2 + l∞|un|2)dt

+
δ

2
(1 + 2M2)

∫
R0≤|t−yn|≤2Rn

|un|2dt+
λδ

2
(1 + 2MP )

∫
R0≤|t−yn|≤2Rn

|un|P dt

≤ 2(1 + 6M2)ε+
δ

l∞
(1 + 2M2)ε+

λδ

l∞
(1 + 2Mp)∥un∥p−2

L∞ ε

that is

I(un)− I(u1
n)− I(u2

n) = oε(1), (3.24)

where oε(1) → 0 as ε → 0. Similarly, we get∣∣∣∣⟨I ′(un), u
1
n⟩ − ∥u1

n∥2Eα +

∫
R

(∇W (t, u1
n), u

1
n)dt

∣∣∣∣
=

∣∣∣∣∣
∫
R0≤|t−yn|≤2Rn

(∇W (t, un), u
1
n)− (∇W (t, u1

n), u
1
n)dt

∣∣∣∣∣
= oε(1), (3.25)
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which together with (3.18) implies

∥u1
n∥2Eα −

∫
R

(∇W (t, u1
n), u

1
n)dt = on(1) + oε(1). (3.26)

Similarly, we obtain

∥u2
n∥2Eα −

∫
R

(∇W (t, u2
n), u

2
n)dt = on(1) + oε(1). (3.27)

We now consider the following two cases:
Case 1: {yn} ⊂ R is bounded.
Let Ω be a bounded domain in R. Since {yn} ⊂ R is bounded, for any given

t ∈ Ω, t−yn

Rn
≤ 1 when n large enough. In view of the definition of φ, we have

u2
n = φ

(
·−yn

Rn

)
un → 0 in Ls

loc for all s ∈ [2,+∞]. It follows from (2.8)∫
R

(∇W (t, u2
n)−∇W∞(u2

n), u
2
n)dt = on(1),

which together with (3.27) implies

⟨I∞′(u2
n), u

2
n⟩ = ∥u2

n∥2Eα −
∫
R

(
∇W∞(u2

n), u
2
n

)
dt = on(1) + oε(1). (3.28)

Similarly, we have ∫
R

W (t, u2
n)−W∞(t, u2

n)dt = on(1),

so that
I(u2

n) = I∞(u2
n) + on(1) + oε(1). (3.29)

Define w2
n := u2

n(σnt), where σn ∈ R is a undetermined parameter, then

⟨I∞′(w2
n), w

2
n⟩ = σ2α−1

n

∫
R

|−∞Dα
t u

2
n|2dt+ σ−1

n

(
⟨I∞′(u2

n), u
2
n⟩ −

∫
R

|−∞Dα
t u

2
n|2dt

)
= σ−1

n

(
(σ2α

n − 1)

∫
R

|−∞Dα
t u

2
n|2dt+ ⟨I∞′(u2

n), u
2
n⟩
)
.

We claim that
∫
R
|−∞Dα

t u
2
n|2dt > K > 0 for some K > 0, if not, we have∫

R

|−∞Dα
t u

2
n|2dt =

∫
R

||ξ|αF(u)(ξ)|2dξ = 0

which together with Lemma 2.1 implies∫
R

∫
R

|un(t)− un(t− h)|2

|h|1+2α
dhdt = 0

which means that un is a constant almost everywhere. Recalling the fact that
un ∈ Eα, we have un(t) = 0 a.e. t ∈ R, which is in contradiction with (3.20).
Therefore we can choose proper σn such that

(σ2α
n − 1)

∫
R

|−∞Dα
t u

2
n|2dt+ ⟨I∞′

(u2
n), u

2
n⟩ = 0,
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which gives w2
n = u2

n(σnt) ∈ N∞. Using (3.28), we obtain

σ2α
n − 1 = on(1) + oε(1),

which together with the arbitrary of ε shows σn → 1 as n → ∞. Now noting that

I∞(w2
n) = σ−1

n (σ2α
n − 1)

∫
R

|−∞Dα
t u

2
n|2dt+ (σ−1

n − 1)I∞(u2
n) + I∞(u2

n),

recalling (3.29) and the boundedness of I∞(u2
n) and

∫
R
|−∞Dα

t u
2
n|2dt, we have

I(u2
n) ≥ I∞(w2

n) + on(1) + oε(1) ≥ m∞ + on(1) + oε(1). (3.30)

On the other hand, in view of (3.26) and the fact that F (t, x) ≥ 0 we have

I(u1
n) =

1

2
∥u1

n∥2Eα −
∫
R

W (t, u1
n)dt

≥ 1

2

∫
R

(∇W (t, u1
n), u

1
n)dt−

∫
R

W (t, u1
n)dt+ on(1) + oε(1)

=
1

2

∫
R

F (t, u1
n)dt+ on(1) + oε(1)

≥ on(1) + oε(1). (3.31)

Finally, (3.24), (3.30) and (3.31) yield

I(un) = I(u1
n) + I(u2

n) + oε(1) ≥ m∞ + on(1) + oε(1)

which contradicts (3.17) for ε small and n large.

Case 2: {yn} ⊂ RN is not bounded.
Then, passing to a subsequence if necessary, we can assume that |yn| → ∞. In

this case the support of u1
n is going to infinity and arguing similarly as above with

the roles of u1
n and u2

n reversed, we gain a contradiction.

Step 3. Compactness: There exists a sequence {yn} ⊂ R satisfying for any
ε > 0 there exists l > 0 such that(∫ yn−l

−∞
+

∫ +∞

yn+l

)
(|−∞Dα

t un|2 + l∞|un|2)dt < ε (3.32)

for all n ∈ N . As in the case of dichotomy, if |yn| → ∞ (for some subsequence),
we can get a contradiction to I(un) → c < m∞. Therefore {yn} ⊂ R is a bounded
sequence, and for every ε > 0, we can find l′ > 0 such that(∫ −l′

−∞
+

∫ +∞

l′

)
(|−∞Dα

t un|2 + l∞|un|2)dt < ε. (3.33)

Since {un} is bounded, then un ⇀ u for some u ∈ Eα. Noting the fact that
Eα ↪→ L∞(R,RN ) is continuous, there exists l′′ > l′ such that(∫ −l′′

−∞
+

∫ +∞

l′′

)
|un|sdt <

ε

2
and

(∫ −l′′

−∞
+

∫ +∞

l′′

)
|u|sdt < ε

2
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for all s ≥ 2. On the other hand, it is clear that un → u in Ls([−l′′, l′′], RN ). Hence∫
R

|un − u|sdt =

(∫ −l′′

−∞
+

∫ +∞

l′′

)
|un − u|sdt+

∫ l′′

−l′′
|un − u|sdt

≤ 2s−1

(∫ −l′′

−∞
+

∫ +∞

l′′

)
(|un|s + |u|s)dt+

∫ l′′

−l′′
|un − u|sdt

≤ 2s−1ε+ on(1), (3.34)

which together with the arbitrary of ε implies un → u in Ls(R,RN ) for all s ≥ 2.
Taking ϕ = un − u in (3.18), we have

on(1) = ⟨I ′(un), un − u⟩

= ∥un − u∥2Eα +

∫
R

(−∞Dα
t u,−∞ Dα

t (un − u))

+(L(t)u, un − u)dt−
∫
R

(∇W (t, un), un − u)dt. (3.35)

Since {un} is bounded in Eα, it follows from (3.3) that∣∣∣∣∫
R

(∇W (t, un), un − u)dt

∣∣∣∣ ≤ ∫
R

δ|un||un − u|+ λδ|un|p−1|un − u|dt

≤ (δ + λδ∥un∥p−2
L∞ )∥un∥2L2∥un − u∥2L2 → 0 (3.36)

as n → ∞. We easily conclude from (3.35) and (3.36) that ∥un − u∥Eα → 0, that
is, un → u in Eα. The proof of Lemma 3.5 is completed.

Proof of Theorem 1.1. We divide two steps to prove systems (1.1) possesses a
nontrivial ground state solution.

(a) By Remark 3.1 there exists {un} ∈ Eα such that

I(un) → c ≥ a > 0 and (1 + ∥un∥Eα)I ′(un) → 0, as n → ∞.

If 0 < c < m∞, applying Lemma 3.5 and Lemma 2.8, we conclude that I possesses
a critical point at level c. Otherwise c ≥ m∞. Let u∞ ∈ N∞ satisfying I∞(u∞) =
m∞. It follows from Remark 3.2 that the maximum of I∞(su∞) for s > 0 is only
reached at s = 1, that is, maxs≥0 I

∞(su∞) = I∞(u∞) = m∞. In view the proof of
Lemma 3.2, there exits s0 > 0 such that I(s0u

∞) < 0. Define a path γ̂ : [0, 1] → Eα

by γ̂(s) = ss0u
∞, it is clear that γ̂ ∈ Γ. Consequently,

c = inf
γ∈Γ

max
s∈[0,1]

I(γ(s)) ≤ max
s∈[0,1]

I(γ̂(s)) ≤ max
s≥0

I(su∞) = I∞(u∞) = m∞ ≤ c.

(3.37)
Thus

c = max
s∈[0,1]

I(γ̂(s)).

By using Lemma 2.9, we obtain that I possesses a critical point at level c.
(b) In view of the above existence result it is well defined

m := inf
u∈N

I(u).
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Let {un} ∈ Eα be a minimizing sequence for I, by Ekeland’s variational principle
we may assume

I(un) → m, I ′(un) → 0 (3.38)

as n → ∞. In this step we prove that m is achieved. Since un is a Cerami sequence,
it follows from Lemma 3.4 that {un} is bounded in Eα, then there exists u ∈ Eα

such that up to a subsequence un ⇀ u in Eα, un → u in Ls
loc(R) for all s ∈ (2,+∞),

un(t) → u(t) a.e. in R.
Case 1. u ̸= 0.
It is clear that I(u) ≥ m. On the other hand, by using Fatou’s Lemma, we have

m = lim inf
n→∞

(
I(un)−

1

2
⟨I ′(un), un⟩

)
= lim inf

n→∞

∫
R

(
1

2
(∇W (t, un), un)−W (t, un)

)
dt

≥
∫
R

(
1

2
(∇W (t, u), u)−W (t, u)

)
dt

= I(u)− 1

2
⟨I ′(u), u⟩

= I(u).

Hence I(u) = m and I ′(u) = 0.
Case 2. u = 0.
Define

β := lim
n→∞

sup
y∈R

∫ y+1

y−1

u2
ndt.

If β = 0, by Lemma 2.7, un → 0 in Ls(R,RN ) for all s ∈ (2,+∞). Since {un} is
bounded in Eα, it follows from (3.3) that∣∣∣∣∫

R

W (t, un)dt

∣∣∣∣ ≤ δ

2
∥un∥2L2 +

λδ

2
∥un∥pLp → 0,∣∣∣∣∫

R

(∇W (t, un), un)dt

∣∣∣∣ ≤ δ∥un∥2L2 + λδ∥un∥pLp → 0

as n → ∞, for the arbitrary of δ. Hence

c = I(un)−
1

2
⟨I ′(un), un⟩+ on(1)

=

∫
R

(
1

2
(∇W (t, un), un)−W (t, un)

)
dt+ on(1) = on(1)

which is a contradiction. Thus β > 0. In view of the definition of supermum, up to
a subsequence there exists {yn} such that∫ 1

−1

un(t+ yn)
2dt =

∫ yn+1

yn−1

u2
ndt ≥

β

2
. (3.39)

Define vn := un(· + yn). Thus there exists a nonnegative function v ∈ Eα such
that up to a subsequence, vn ⇀ v in Eα, vn → v in Ls

loc for all s ∈ [2,+∞] and
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vn(t) → v(t) a.e. in R. Obviously, v ̸= 0. If {yn} is bounded, there exists R̂ > 0
such that ∫ R̂

−R̂

u2
ndt ≥

∫ yn+1

yn−1

|un|2dt >
β

2
,

which contradicts to un → 0 in L2
loc(R,RN ). Thus {yn} is unbounded, without loss

of generality, we may assume |yn| → ∞. For any φ ∈ C∞
0 (R,RN ), it follows from

(2.10) and (2.11) that

on(1) = ⟨I ′(un), φ(· − yn)⟩

=

∫
R

(−∞Dα
t un,−∞ Dα

t φ(· − yn))dt+

∫
R

(L(t)un, φ(· − yn))dt

−
∫
R

(∇W (t, un), φ(· − yn))dt

=

∫
R

(−∞Dα
t un,−∞ Dα

t φ(· − yn))dt+

∫
R

(L∞(t)un, φ(· − yn))dt

−
∫
R

(∇W∞(t, un), φ(· − yn))dt

=

∫
R

(−∞Dα
t vn,−∞ Dα

t φ)dt+

∫
R

(L∞(t)vn, φ)dt−
∫
R

(∇W∞(t, vn), φ)dt

=

∫
R

(−∞Dα
t v,−∞ Dα

t φ)dt+

∫
R

(L∞(t)v, φ)dt−
∫
R

(∇W∞(t, v), φ)dt

which means v is a solution of (3.7). It follows from (2.7), (∇W (t, x), x) ≥ (∇W∞(t, x), x)
and Fatou’s Lemma that

m = I(un)− ⟨I ′(un), un⟩+ on(1) =

∫
R

(
1

2
(∇W (t, un), un)−W (t, un)

)
+ on(1)

≥
∫
R

(
1

2
(∇W∞(t, un), un)−W∞(t, un)

)
+ on(1)

=

∫
R

(
1

2
(∇W∞(t, vn), vn)−W∞(t, vn)

)
+ on(1)

≥
∫
R

(
1

2
(∇W∞(t, v), v)−W∞(t, v)

)
+ on(1)

= I∞(v)− ⟨I∞′(v), v⟩+ on(1) = I∞(v)

≥ m∞ (3.40)

For any u ∈ Eα \ {0}, by Lemma 3.2, there exists su > 0 such that suu ∈ N and
the maximum of I(su) for s > 0 is achieved at su and then I(suu) ≥ m. Combining
with the fact that (L(t)x, x) ≤ (L∞(t)x, x) and W (t, x) ≥ W∞(t, x), one has

m ≤ I(suu) ≤ I∞(suu) ≤ max
s>0

I∞(su).

In view of the arbitrary of u and (3.8), we obtain

m ≤ inf
u∈Eα\{0}

max
s>0

I∞(su) = m∞. (3.41)

Combining (3.40) and (3.41), we have I∞(v) = m∞ = m. Since v is a solution of
(3.7), by Remark 3.2 we have

max
s>0

I∞(sv) = I∞(v).



Ground state solution for a class fractional Hamiltonian systems 647

By Lemma 3.2, there exists s1 > s2 > 0 such that I(s1v) < 0 and s2v ∈ N . Define
a path γ̃ : [0, 1] → Eα by γ̃(s) = ss1v, it is clear that γ̃ ∈ Γ. Therefore one has

m ≤ I(s2v) ≤ max
s∈[0,1]

I(γ̃(s)) ≤ max
s∈[0,1]

I∞(γ̃(s)) ≤ max
s>0

I∞(sv) = I∞(v) = m

which means that

m = max
s∈[0,1]

I(γ̃(s)).

By using Lemma 2.9, we obtain that I possesses a critical point at level m. Summa-
rize the above two cases, we obtain that (1.1) has a nontrivial ground state solution
in Eα.
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