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PERIODIC ORBIT OF THE PENDULUM WITH
A SMALL NONLINEAR DAMPING∗

Minhua Cheng1 and Chengzhi Li1,2,†

Abstract We study the pendulum with a small nonlinear damping, which
can be expressed by a Hamiltonian system with a small perturbation. We
prove that a unique periodic orbit exists for any initial position between the
equilibrium point and the heteroclinic orbit of the unperturbed system, de-
pending on the choice of the bifurcation parameter in the damping. The main
tools are bifurcation theory and Abelian integral technique, as well as the
Zhang’s uniqueness theorem on Liénard equations.
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1. Introduction

We study the pendulum with a small nonlinear damping as follows

ẍ+ µ(x2 − λ)ẋ+ a2 sinx = 0, (1.1)

where µ > 0 is a small parameter. As usual, we change equation (1.1) to a system

dx

dt
= y,

dy

dt
= −a2 sinx− µ(x2 − λ)y.

(1.2)

If µ = 0, then we have a Hamiltonian system

dx

dt
= y,

dy

dt
= −a2 sinx.

(1.3)

It is well known that this is a mathematical model of the Simple Pendulum. The
variable x is the angular displacement, the constant a =

√
g
l , where g is acceleration

due to gravity, l is the length of the pendulum. The phase portraits of system (1.3)
are shown in Fig. 1.
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Figure 1. The phase portraits of system (1.3)

We let

H(x, y) =
y2

2
− a2 cosx, (1.4)

then a family of closed orbits of (1.3) can be expressed as

Γh = {(x, y) : H(x, y) = h,−a2 < h < a2,−π < x < π}, (1.5)

which is continuous on h, Γh shrinks to the equilibrium point O(0, 0) as h → −a2+0,
and Γh expands to the heteroclinic loop Γ̃ as h → a2 − 0.

Now we add the damping term and consider system (1.2), we have following two
theorems.

Theorem 1.1. If µ > 0 and λ ∈ (0, π2 − 8), then system (1.2) has at most one
closed orbit in the strip −π < x < π, and it is a stable and hyperbolic limit cycle if
it exists.

Theorem 1.2. For each λ ∈ (0, π2−8), there is a µλ > 0, such that for µ ∈ (0, µλ)
system (1.2) has a unique periodic orbit γµ,λ in the strip −π < x < π, and γµ,λ is a
stable and hyperbolic limit cycle. Moreover, when µ → 0, γµ,λ → ΓP−1(λ) of system
(1.3) (in Haursdorff distance), where λ = P (h) is a strictly increasing function for
h ∈ (−a2, a2] and limh→−a2+0 P (h) = 0, P (a2) = π2 − 8. Hence for small µ > 0, if
λ ∼ 0+ then γµ,λ is near the equilibrium point O(0, 0); and if λ ∼ (π2 − 8)− then

γµ,λ is close to the heteroclinic loop Γ̃ of system (1.3).

The proofs of these two theorems are given in the following two sections.

2. Proof of theorem 1.1

For the generalized Liénard equations

ẍ+ f(x)ẋ+ g(x) = 0, (2.1)

the Zhang’s theorem about the uniqueness of limit cycles can be stated below.
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Theorem 2.1 (Theorem 4.7 of [12]). Suppose that:

(1) g(x) is Lipshitz continuous; xg(x) > 0 for x ∈ (α, 0)∪(0, β), where α < 0 < β.

(2) f(x) is continuous; f(x)
g(x) is not decreasing when x ∈ (α, 0) ∪ (0, β), and f(x)

g(x)

is not a constant when |x| is small.

Then system (2.1) has at most one limit cycle in the strip α < x < β, and it is
stable and hyperbolic if exists.

Now we prove Theorem 1.1.

Proof. Comparing equation (1.1) with (2.1), we have that f(x) = µ(x2−λ), g(x) =
a2 sinx, hence the most conditions in Theorem 2.1 are satisfied, where α = −π and

β = π. We only need to check the monotonically increasing of f(x)
g(x) . Computation

shows that

d

dx

f(x)

g(x)
=

µ η(x)

a2 sin2 x
, η(x) = 2x sinx− (x2 − λ) cosx.

Note that η(x) is a even function, η(0) = λ > 0, η(π) = π2 − λ > 8, and η′(x) =

(2 + x2 − λ) sinx > 0 for λ ∈ (0, π2 − 8) and x ∈ (0, π), hence d
dx

f(x)
g(x) > 0 for

x ∈ (−π, 0) ∪ (0, π). By Theorem 2.1, Theorem 1.1 is proved.

3. Proof of theorem 1.2

The system (1.2) has the canonical form

dx

dt
=

∂H

∂y
+ µf(x, y),

dy

dt
= −∂H

∂x
+ µg(x, y),

(3.1)

where H is given in (1.4) and f(x, y) = 0, g(x, y) = −(x2 − λ)y. We first state two
general lemmas, which are useful in our discussion.

Lemma 3.1 (A partial result of Theorem 2.4 of part (II), in the book [4]). Suppose
that H, f, g are analytic in x and y, let

I(h) =

∮
Γ+
h

f(x, y)dy − g(x, y)dx,

where Γh ⊂ H−1(h) is a continuous family of closed orbits (for h ∈ (c, d)) of system
(3.1) with µ = 0, Γ+

h means the integral is taken counterclockwise. The following
statements hold:

(1) If there is an h∗ ∈ (c, d), satisfying I(h∗) = 0 and I ′(h∗) ̸= 0, then there
is a µh∗ > 0, such that system (3.1) has a unique periodic orbit γµ,h∗ for
µ ∈ (0, µh∗) with the property that γµ,h∗ tends to Γh∗ (in Hausdorff distance)
as µ → 0. In this case we say that γµ,h∗ bifurcates from Γh∗ .

(2) If system (3.1) has a limit cycle bifurcating from Γh∗ , then I(h∗) = 0.
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Remark 3.1. In Theorem 2.4 of part (II) of [4] it is supposed that H, f, g are
polynomials, but most results there, especially the results above, can be generalized
to the analytic case without any difficulty, because Theorem 2.4 is based on Theorem
2.1 of [4] (Poincaré-Pontryagin Theorem), which is valid in analytic case. This result
has been successfully applied to many problems, and is generalized to 3-dimensional
case in [9].

Lemma 3.2 (A simplified result of [10, Theorem 1]). Consider a Hamiltonian
function

H(x, y) =
y2

2
+ Φ(x), (3.2)

where Φ(x) is analytic, satisfying Φ′(x)x > 0 (or < 0) for x ∈ (α, 0) ∪ (0, β).
Let {Γh ⊂ H−1(h)} be a continuous family of closed ovals, surrounding the origin
(0, 0), for h ∈ (c, d), and uh and vh be the intersection points of Γh with the x−axis.
Hence for each Γh a unique function x̃ = x̃(x) can be defined by Φ(x̃) = Φ(x) for
uh < x < 0 < x̃ < vh. Along with a ratio of two Abelian integrals

P (h) =

∮
Γh

f2(x)y dx∮
Γh

f1(x)y dx
, (3.3)

we define a function

ξ(x) =
f2(x)Φ

′(x̃)− f2(x̃)Φ
′(x)

f1(x)Φ′(x̃)− f1(x̃)Φ′(x)

∣∣∣∣
x̃=x̃(x)

, (3.4)

where x ∈ (α, 0) and f1(x)f1(x̃(x)) > 0. Then ξ′(x) < 0 (> 0) for x ∈ (α, 0) implies
P ′(h) > 0 (< 0) for h ∈ (c, d).

Remark 3.2. Lemma 3.2 is used to study the number of zeros of Abelian integral
with 2 generating terms like I(h) = c1I1(h) + c2I2(h), it has been generalized to
the case that the Abelian integral has n generating terms in [5] and [11], see also
the application of [5] in [2].

We prove Theorem 1.2 below.
Proof. System (1.2) is a perturbation of the Hamiltonian system (1.3) for small
µ, we can use the Poincaré-Pontryagin theory to study the number of closed orbits,
bifurcating from the family of {Γh : h ∈ (−a2, a2)}, see, for example, Section 2.1 of
part (II) of [4]. The corresponding Abelian integral is given by

I(h) =

∮
Γh

(x2 − λ)y dx = I2(h)− λ I0(h) = I0(h)(P (h)− λ), (3.5)

where Ik(h) =
∮
Γh

xky dx, the orientation of the integral is clockwise by the first

equation of (1.2), and P (h) = I2(h)
I0(h)

. Since I0(h) is the area of the region surrounded

by Γh, I0(h) > 0 for h ∈ (−a2, a2], hence the zero of I(h) is given by λ = P (h). Let
us prove that

P (−a2) = lim
h→−a2+0

P (h) = 0, P (a2) = π2 − 8; P ′(h) > 0, h ∈ (−a2, a2). (3.6)

Changing the line integral along Γh to the definite integral with respect to x
from uh to vh, and by the mean-value theorem of integrals we have

P (h) =

∫ vh

uh
x2y dx∫ vh

uh
y dx

= θ2(h),
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where θ(h) is between uh and vh. When h → −a2+0, Γh shrinks to the equilibrium
point O(0, 0), hence (uh, vh) → (0, 0), and θ(h) → 0. This means that P (−a2) = 0.

When h → a2−0, Γh expands to the heteroclinic loop Γ̃, which has the equation
y = ±

√
2 a

√
1 + cosx, x ∈ (−π, π). Hence

P (a2) =

∫ π

0
x2

√
1 + cosx dx∫ π

0

√
1 + cosx dx

= π2 − 8.

We use Lemma 3.2 to show the monotonicity of P (h). The Hamiltonian function
is given in (3.2) with Φ(x) = −a2 cosx, satisfying Φ′(x)x = a2x sinx > 0 for
x ∈ (−π, 0) ∪ (0, π). For any x ∈ (−π, 0) there is a unique x̃ = −x ∈ (0, π) such
that Φ(x) = Φ(x̃). Now f1(x) = 1 and f2(x) = x2, from (3.4) we have

ξ(x) =
x2Φ′(x̃)− x̃2Φ′(x)

Φ′(x̃)− Φ′(x)

∣∣∣∣
x̃=−x

= x2.

Hence ξ′(x) = 2x < 0 for x ∈ (−π, 0). By Lemma 3.2 we obtain P ′(h) > 0 for
h ∈ (−a2, a2), and (3.6) is verified.

From (1.4) and (1.5) we can express Γh by the function y = y(x;h), and along
Γh,

∂y
∂h = 1

y , hence I
′
0(h) =

∮
Γh

1
ydx. By the first equation of (1.4) I ′0(h) is the period

T (h) of the motion along Γh. Thus, for any fixed h ∈ (−a2, a2), if I(h) = 0, i. e.
h = P−1(λ) by (3.5) and (3.6), then I ′(h) = I0(h)P

′(h) > 0, because I ′0(h) = T (h)
is finite.

Hence, by (3.5), (3.6) and Lemma 3.1 for any fixed λ ∈ (0, π2 − 8) there are
unique hλ = P−1(λ) ∈ (−a2, a2) and a µλ > 0, such that for µ ∈ (0, µλ) system
(1.2) has a unique limit cycle γµ,λ, bifurcating from Γhλ

. By Theorem 1.1, γµ,λ is
the unique periodic orbit globally, it is stable and hyperbolic, and γµ,λ tends to Γhλ

as µ → 0. Especially, for small µ > 0, if λ ∼ 0+ then γµ,λ is near the equilibrium

point O(0, 0); and if λ ∼ (π2 − 8)− then γµ,λ is close to the heteroclinic loop Γ̃ of
system (1.3).

The proof of Theorem 1.2 is finished.

Remark 3.3. For µ > 0 and λ ∼ 0 a Hopf bifurcation of order one happens at the
equilibrium point (0, 0). In fact, the eigenvalues of the linear part of system (1.2) at
(0, 0) are µ

2λ± 1
2

√
4a2 − (µλ)2 i where λ > 0 small, they become ±a i when λ = 0.

By using the formula (2.34) in Chapter 3 of [3], we find the first Lyapunov constant
is Re(C1) = − 1

8a2µ < 0 when λ = 0. Hence a Hopf bifurcation of order 1 happens:
there is a σ > 0 such that system (1.2) has a unique limit cycle for λ ∈ (0, σ), and
the limit cycle is stable, because the equilibrium point (0, 0) is unstable for λ > 0
and µ > 0.

Remark 3.4. If µ = 0 then system (1.2) becomes (1.3), which is a Hamiltonian
system and has a heteroclinic loop Γ̃, connecting the two saddles (−π, 0) and (π, 0).
In general, the number of zeros of Abelian integral can not control the number of
limit cycles, bifurcating from the heteroclinic loop, see [1] for example. But we can
use Theorem 2.6 of [7] to study the heteroclinic bifurcation. Note that we use µ
and λ respectively instead of the parameters α and δ in [7]. Since Γ̃ is symmetry
with respect to the x-axis and it has the equation y = y(x) =

√
2 a

√
1 + cosx for

y > 0, x ∈ (−π, π), the function M(λ) in [7] can be calculated as follows:

2

∫ +∞

−∞
(λ− x2(t))y2(t)dt = 2

∫ +π

−π

(λ− x2)y(x)dx = 16a[λ− (π2 − 8)].



654 M. Cheng & C. Li

Hence M(π2 − 8) = 0, M ′(π2 − 8) ̸= 0. On the other hand, ∆i(µ, λ) = µ(λ − π2)
for i = 1, 2, implying

∆1µ(0, π
2 − 8) + ∆2µ(0, π

2 − 8) = −16 ̸= 0.

Thus, by Theorem 2.6 of [7], a heteroclinic bifurcation of order one happens near Γ̃.
The same conclusion can be obtained by using Theorem 1.3 of [8]. See the recent
book [6] for more details.

Remark 3.5. Theorem 1.1 is useful to control globally the number of limit cycle
of system (1.2) , and Theorem 1.2 shows that the pendulum with the small damp-
ing in (1.1) can have periodic oscillation with the maximum angular displacement
between 0+ and π− depending on the value of λ between 0+ and (π2 − 8)−, which
is independent of the value of a2. This gives some nature of the pendulum.
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Verlag, 2007, Basel-Boston-Berlin.

[5] M. Grau, F. Mañosas and J. Villadelprat, A Chebyshev Criterion For Abelian
Integrals, Tran. A.M. S., 2011, 363, 109–129.

[6] M. Han, Bifurcation Theory of Limit Cycles, Science Press Beijing, Beijing;
Alpha Sciences International Ltd. Oxford, 2017.

[7] M. Han, D. Luo and D. Zhu, The uniquness of limit cycles, bifurcated from a
singular closed orbit, Acta Math. Sinica, 1992, 35(5), 673–684. (Chinese)

[8] M. Han and Z. Zhang, Cyclicity 1 and 2 Conditions for a 2-Polycycle of inte-
grable Systems on the Plane, J. Diff. Eqns., 1999, 155, 245–261.

[9] C. Li, Z. Ma and Y. Zhou, Periodic Orbits in 3-Dimensional Systems and
Application to a Perturbed Volterra System, J. Diff. Eqns., 2016, 260, 2750–
2762.

[10] C. Li and Z. Zhang, A criterion for determining the monotonicity of ratio of
two Abelian integrals, J. Diff. Eqns., 1996, 124, 407–424.

[11] F. Mañosas and J. Villadelprat, Bounding the number of zeros of certain
Abelian integrals, J. Diff. Eqns., 2011, 251, 1656–1669.

[12] Z. Zhang, T. Ding, W. Huang and Z. Dong, Qualitative Theory of Differential
Equations, Science Press, 1985 (Chenise); Transl. Math. Monographs, Vol. 101
Amer. Math. Soc., Providence RI, 1992 (English).


	Introduction
	Proof of theorem 1.1
	Proof of theorem 1.2

