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BIFURCATIONS AND EXACT SOLUTIONS OF
NONLINEAR SCHRÖDINGER EQUATION
WITH AN ANTI-CUBIC NONLINEARITY∗

Jianli Liang1 and Jibin Li1,2,†

Abstract In this paper, we consider the nonlinear Schrödinger equation with
an anti-cubic nonlinearity. By using the method of dynamical systems, we ob-
tain bifurcations of the phase portraits of the corresponding planar dynamical
system under different parameter conditions. Corresponding to different level
curves defined by the Hamiltonian, we derive all exact explicit parametric
representations of the bounded solutions (including periodic peakon solutions,
periodic solutions, homoclinic solutions, heteroclinic solutions and compacton
solutions).
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tion, homoclinic solution, nonlinear Schrödinger equation with an anti-cubic
nonlinearity.

MSC(2010) 34C37, 34C23, 74J30.

1. Introduction

Recently, Lü and Ma, et al. [9] stated that the Madelung fluid description theory
(see Auletta [1]) has been successfully used to discuss families of generalized one-
dimensional nonlinear Schrödinger equations containing a sum of cubic, anti-cubic
and quintic nonlinearities as

iµΨt + aΨxx = q0|Ψ|−4Ψ+ q1|Ψ|2Ψ+ q2|Ψ|4Ψ, (1.1)

with µ, a, q0, q1 and q2 as real constants. For this equation, the upper-shifted bright
envelope soliton-like solution has been studied by Fedele, et al. [5].

In this paper, it is different from [9] and [5]. Similar to Ref. [3], we consider the
solutions of equation (1.1) with the form

Ψ(x, t) = ϕ(ξ) exp(−kx+ ωt)i, ξ = x− ct, (1.2)
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where c, k and ω are constant parameters. Substituting (1.2) into (1.1) and decom-
posing into real and imaginary parts one obtains the real part as:

aϕ′′ − (µω + ak2)ϕ− q0
ϕ3

− q1ϕ
3 − q2ϕ

5 = 0 (1.3)

and the imaginary part as:

(cµ+ 2ak)ϕ′ = 0. (1.4)

From the imaginary part (1.4), upon setting the coefficient to zero, it gives

c = −2ak

µ
. (1.5)

Write that α1 = 1
a (µω + ak2), α3 = q1

a , α5 = q2
a , b = q0

a . Then, equation (1.3) is
equivalent to the following planar Hamiltonian system:

dϕ

dξ
= y,

dy

dξ
=

b+ ϕ4(α1 + α3ϕ
2 + α5ϕ

4)

ϕ3
(1.6)

with the first integral

H(ϕ, y) =
1

2
y2 − 1

2
α1ϕ

2 − 1

4
α3ϕ

4 − 1

6
α5ϕ

6 +
b

2ϕ2
= h. (1.7)

Clearly, system (1.6) is a singular traveling wave system of the first class defined
by Li and Chen [8] ( and see Li [7]) with the singular straight lines ϕ = 0. In fact, the
existence of the singular straight line leads to a dynamical behavior of solutions with
two scales, i.e. there exist periodic peakon solutions and compactons (see [4], [11]).

Because Refs. [5] and [3] did not study the dynamical behavior of system (1.6)
and did not obtain all exact explicit solutions of equation (1.1) under different
parameter conditions. In this paper, we use the dynamical system method to in-
vestigate the solutions of equation (1.1) having the form (1.2).

The paper is organized as follows. In section 2, we discuss the bifurcations of
phase portraits of system (1.6) depending on parameter group (b, α1, α3, α5). In
section 3 and section 4, we find all exact parametric representations of solutions
of system (1.6) in the case of there exist three equilibrium points. In section 5,
we calculate exact parametric representations of solutions of system (1.6) in the
cases of there exist two equilibrium points and there exists one equilibrium point of
system (1.6).

Our main conclusions are the following Theorem.

Theorem 1.1. For the nonlinear Schrödinger equation (1.1) with an anti-cubic
nonlinearity, considering the solutions with the form (1.2), then we have

(1) The function ϕ(ξ) satisfies singular nonlinear traveling wave system (1.6).
Under different parameter conditions stated in section 2, system (1.6) has the bi-
furcations of phase portraits shown in Fig.1-Fig.4.

(2) Equation (1.1) has 26 exact explicit solutions given by (1.2), where ϕ(ξ) are
given by (3.2)-(5.9).

(3) System (1.6) has periodic solutions, periodic peakon solutions, solitary wave
solutions, quasi-peakon solutions as well as kink wave solutions and bounded solu-
tions, which are given by (3.2)-(5.9), respectively.

The proof of the results of this theorem can be seen in next sections.
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2. Bifurcations of phase portraits of system (1.6)

We consider the associated regular system of system (1.6) as follows:

dϕ

dζ
= ϕ3y,

dy

dζ
= b+ ϕ4(α1 + α3ϕ

2 + α5ϕ
4), (2.1)

where dξ = ϕ3dζ. For ϕ ̸= 0, this system has the same first integral as system (1.6).
The dynamics of system (2.1) and (1.6) are different in the neighborhood of the
straight line ϕ = 0. Specially, under some parameter conditions, the variable ζ is
a fast variable while the variable ξ is a slow variable in the sense of the geometric
singular perturbation theory.

Let F (X) = b+X2f(X), f(X) = α1 + α3X + α5X
2, where X = ϕ2. F ′(X) =

(2α1 + 3α3X + 4α5X
2)X. F ′(X) has three real zeros at X = 0, X = X1 =

−3α3−
√
∆

8α5
, X = X2 = −3α3+

√
∆

8α5
, when ∆ = 9α2

3 − 32α1α5 ≥ 0. We have that

F (X1) =
−128a21a

2
5 + 144a1a

2
3a5 − 27a43 + 512ba35 + (32a1a3a5 − 9a33)

√
∆

512a35
, (2.2)

F (X2) = −128a21a
2
5 − 144a1a

2
3a5 + 27a43 − 512ba35 + (32a1a3a5 − 9a33)

√
∆

512a35
. (2.3)

Clearly, let zj is a positive real zero of function F (X), then, in the positive
ϕ−axis of the phase plane, system (2.1) has an equilibrium point Ej(

√
zj , 0).

It is easy to show the following conclusion.
(i) When α1α5 > 0, α3α5 < 0 and ∆ > 0, F ′(X) has two positive real zeros.

Thus, if bα5 < 0, and F (X1)F (X2) < 0, then F (X) has three positive real zeros
zj (j = 1, 2, 3) satisfying 0 < z1 < X1 < z2 < X2 < z3 for α5 > 0 and 0 < z1 <
X2 < z2 < X1 < z3 for α5 < 0.

If bα5 < 0, and F (X1) = 0 or F (X2) = 0, then F (X) has a double positive real
zero and a simple positive real zero.

If bα5 < 0, and F (X1)F (X2) > 0, then F (X) has a positive real zero.
(ii) When α1α5 > 0, α3α5 < 0 and ∆ > 0, F ′(X) has two positive real zeros. If

bα5 > 0,and F (X1) > 0, F (X2) < 0, then F (X) has two positive real zeros zj (j =
1, 2) satisfying 0 < X1 < z1 < X2 < z2 for α5 > 0 and 0 < X2 < z1 < X1 < z2 for
α5 < 0.

If bα5 > 0, and F (X1) = 0 or F (X2) = 0, then F (X) has a double positive real
zero.

(iii) When α1α5 < 0 and ∆ > 0, F ′(X) has one positive real zero and one
negative real zero. If bα5 > 0,and F (X1) > 0, F (X2) < 0, then F (X) has two
positive real zeros. If bα5 > 0, and F (X1) = 0 or F (X2) = 0, then F (X) has a
double positive real zero.

If bα5 < 0, then F (X) has a positive real zero.
(iv) When α1α5 > 0, α3α5 > 0 and ∆ > 0, F ′(X) has two negative real zeros.

If bα5 < 0, then F (X) has a positive real zero.
(v) When ∆ ≤ 0, if bα5 < 0, then F (X) has a positive real zero.
Let M(ϕj , 0) be the coefficient matrix of the linearized system of system (8) at

an equilibrium point Ej(ϕj , 0), ϕj =
√
zj , and J(ϕj , 0) = detM(ϕj , 0). We have

J(ϕj , 0) = −2ϕ4
jF

′(zj). (2.4)
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Write hj = H(ϕj , 0), where H is given by (1.7).
By the theory of planar dynamical systems (see Li [7]), for an equilibrium point

of a planar integrable system, if J < 0, then the equilibrium point is a saddle point;
if J > 0 and (TraceM)2 − 4J < 0(> 0), then it is a center point (a node point); if
J = 0 and the Poincaré index of the equilibrium point is 0, then this equilibrium
point is a cusp.

By using the above information to do qualitative analysis, we have the following
bifurcations of the phase portraits of system (1.6) shown in Fig.1-Fig.4.

1. The case of there exist three equilibrium points (including double points) of
system (1.6) in the positive ϕ−axis.
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Figure 1. Bifurcations of phase portraits of system (1.6) when F (X) has three positive zeros and
α5 > 0
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Figure 2. Bifurcations of phase portraits of system (1.6) when F (X) has three positive zeros and
α5 < 0
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Figure 2. Bifurcations of phase portraits of system (1.6) when F (X) has three positive zeros and
α5 < 0(continued)

2. The case of there exist two equilibrium points (including double points) of
system (1.6) in the positive ϕ−axis.
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Figure 3. Bifurcations of phase portraits of system (1.6) when F (X) has two positive zeros

3. The case of there exists one equilibrium point of system (1.6) in the positive
ϕ−axis.
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Figure 4. Bifurcations of phase portraits of system (1.6) when F (X) has one positive zero

3. Explicit exact parametric representations of so-
lutions of system (1.6) in the case of there exist
three equilibrium points and α5 > 0

We are interested in the bounded solutions of system (1.6). It is known that for
a given real h, the function H(ϕ, y) = h given by (1.7) defines level curves of
system (1.6), which can have different branches. We see from (1.7) that y2 =
1
ϕ2 (−b + 2hϕ2 + α1ϕ

4 + 1
2α3ϕ

6 + 1
3α5ϕ

8). Hence, by using the first equation of

system (1.6) we obtain

ξ =

∫ ϕ

ϕ0

ϕdϕ√
−b+ 2hϕ2 + α1ϕ4 + 1

2α3ϕ6 + 1
3α5ϕ8

=

∫ X

X0

dX

2
√
−b+ 2hX + α1X2 + 1

2α3X3 + 1
3α5X4

, (3.1)

where X = ϕ2.

By using (3.1), we can calculate the parametric representations of the orbits of
system (1.6).

3.1. The parametric representations of the bounded orbits
given by Fig.1 (a).

In this case, in the right half-phase plane, as h is varied, the changes of level curves
defined by H(ϕ, y) = h are shown in Fig.5 (a)-(f).

(i) Corresponding to the level curves defined by H(ϕ, y) = h, h ∈ (−∞, h2),
there exist two families of open orbits of system (1.6) (see Fig.5 (a)). Because there
is a singular straight line ϕ = 0 of system (1.6), by using the theorem of finite
time interval given by Li and Chen [8], the open orbit family near the straight line
ϕ = 0 gives rise to a family of compacton solutions. Now, (3.1) can be written
as −2

√
α5

3 ξ =
∫ r2
X

dX√
(r1−X)(r2−X)[(X−b1)2+a2

1]
. Therefore, we obtain the parametric

representation of the family of compacton solutions (see Fig.6 (a)) of system (1.6)
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Figure 5. The changes of level curves defined by H(ϕ, y) = h in Fig.1 (a)

as follows:

ϕ(ξ) =

(
r1Ã− r2B̃ − (r2B̃ + r1Ã)cn(Ω0ξ, k)

(Ã− B̃)− (Ã+ B̃)cn(Ω0ξ, k)

) 1
2

, ξ ∈ (−ξ01, ξ01), (3.2)

where Ã2 = (r2 + b1)
2 + a21, B̃

2 = (r1 + b1)
2 + a21, k

2 = (Ã+B̃)2−(r1−r2)
2

4ÃB̃
,Ω0 =

2
√

1
3α5ÃB̃, ξ01 = 1

Ω0
cn−1

(
r1Ã−r2B̃
r2B̃+r1Ã

, k
)
, cn(·, k), sn(·, k),dn(·, k) are Jacobian ellip-

tic functions (see [2]).
(ii) Corresponding to the level curves defined by H(ϕ, y) = h, h ∈ (h2, h1), there

exist a family of periodic orbits and two families of open orbits of system (1.6) (see
Fig.5 (b)). For the family of periodic orbits, (3.1) can be written as 2

√
α5

3 ξ =∫X

r3
dX√

(r1−X)(r2−X)(X−r3)(X−r4)
. Thus, we obtain the parametric representation of

the family of periodic solutions of system (1.6) as follows:

ϕ(ξ) =

(
r4 +

r3 − r4
1− α̃2

1sn
2(Ω1ξ, k)

) 1
2

, (3.3)

where α̃2
1 = r2−r3

r2−r4
, k2 =

α̃2
1(r1−r4)
r1−r3

,Ω1 =
√

1
3α5(r1 − r3)(r2 − r4).

For the family of open orbits which tend to the singular straight line ϕ = 0 when
|y| → +∞, (3.1) can be written as −2

√
α5

3 ξ =
∫ r4
X

dX√
(r1−X)(r2−X)(r3−X)(r4−X)

.

Hence, we have the following compacton solution family of system (1.6):

ϕ(ξ) =

(
r3 −

r3 − r4
1− α̃2

2sn
2(Ω1ξ, k)

) 1
2

, ξ ∈ (−ξ02, ξ02), (3.4)
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where α̃2
2 = r1−r4

r1−r3
, k2 =

α̃2
2(r2−r3)
r2−r4

, ξ02 = 1
Ω1

sn−1

(√
r4

r3α̃2
2
, k

)
.

(iii) The level curves defined by H(ϕ, y) = h1 are a homoclinic orbit to the
equilibrium point (ϕ1, 0), a stable manifold and an unstable manifold of the saddle
point (ϕ1, 0), which tend to the singular straight line ϕ = 0 when |y| → +∞ (see
Fig.5 (c)). For the homoclinic orbit enclosing the equilibrium point (ϕ2, 0), (3.1) can

be written as −2
√

α5

3 ξ =
∫XM

X
dX

(X−ϕ2
1)
√

(Xa−X)(XM−X)
. It follows the parametric

representations of the bright envelope soliton solution of system (1.6):

ϕ(ξ) =

(
ϕ2
1 +

2(Xa − ϕ2
1)(XM − ϕ2

1)

(Xa −XM ) cosh(ω0ξ) + (Xa +XM − 2ϕ2
1))

) 1
2

, (3.5)

where ω0 = 2
√

1
3α5(Xa − ϕ2

1)(XM − ϕ2
1). This is so call bright envelope soliton

solution of system (1.6).
For the stable manifold of the saddle point (ϕ1, 0) which tends to the singular

straight line ϕ = 0 when |y| → +∞, now (3.1) becomes

2
√

α5

3 ξ =
∫X

0
dX

(ϕ2
1−X)

√
(Xa−X)(XM−X)

= −
∫ u

ϕ2
1

du

u
√

F̃ (u)
, where F̃ (u) = (Xa−ϕ2

1)(XM−

ϕ2
1) + (Xa + XM − 2ϕ2

1)u + u2. Thus, we have the following bounded solution of
system (1.6):

ϕ(ξ) =

(
ϕ2
1 −

4(Xa − ϕ2
1)(XM − ϕ2

1)P1

P 2
1 e

ω1ξ + (Xa −XM )2e−ω1ξ − 2(Xa +XM − 2ϕ2
1)P1

) 1
2

, ξ ∈ (0,∞),

(3.6)

where ω1 = 2
√

1
3α5(Xa − ϕ2

1)(XM − ϕ2
1), P1 = 1

ϕ2
1[

2
√
(Xa − ϕ2

1)(XM − ϕ2
1)XaXM + (Xa +XM − 2ϕ2

1)ϕ
2
1 + 2(Xa − ϕ2

1)(XM − ϕ2
1)
]
.

(iv) The level curves defined by H(ϕ, y) = h, h ∈ (h1, h3) are two open curve
families, for which one curve family tends to the singular straight line ϕ = 0 when
|y| → +∞ (see Fig.5 (d)). It gives rise to a compacton solution family (see Fig.6
(b)) having the same parametric representation as (3.2).
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Figure 6. Two families of compacton solutions defined by H(ϕ, y) = h in Fig.1 (a)

(v) The level curves defined by H(ϕ, y) = h3 are two stable manifolds and two
unstable manifolds of the saddle point (ϕ3, 0), for which two manifolds tend to the
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singular straight line ϕ = 0 when |y| → +∞ (see Fig.5 (e)). For the left stable

manifold, now (3.1) becomes 2
√

α5

3 ξ =
∫X

0
dX

(ϕ2
3−X)

√
(X+a3)(X+b3)

= −
∫ u

ϕ2
3

du

u
√

F̃1(u)
,

where F̃1(u) = (ϕ2
3+a3)(ϕ

2
3+b3)−(a3+b3+2ϕ2

3)u+u2. Thus, we have the following
bounded solution of system (1.6):

ϕ(ξ) =

(
ϕ2
3 −

4(ϕ2
3 + a3)(ϕ

2
3 + b3)P2

P 2
2 e

ω2ξ + (a3 − b3)2e−ω2ξ + 2(a3 + b3 + 2ϕ2
3)P2

) 1
2

, ξ ∈ (0,∞),

(3.7)

where ω2 = 2
√

1
3α5(a3 + ϕ2

3)(b3 + ϕ2
3),

P2 = 1
ϕ2
3

[
2
√

(ϕ2
3 + a3)(ϕ2

3 + b3)a3b3 − (a3 + b3 + 2ϕ2
3)ϕ

2
3 + 2(a3 + ϕ2

3)(b3 + ϕ2
3)
]
.

3.2. The parametric representations of the bounded orbits
given by Fig.1 (b).

Now, we have h1 = h3.
(i) Corresponding to the level curves defined by H(ϕ, y) = h, h ∈ (h2, h1), there

exist a family of periodic orbits and two families of open orbits of system (1.6). The
family of periodic orbits has the same parametric representations as (3.3).

The open curve family tending to the singular straight line ϕ = 0 when |y| → +∞
has the same parametric representations as (3.4).

(ii) The level curves defined by H(ϕ, y) = h1 = h3 are two heteroclinic orbits
to the equilibrium points (ϕ1, 0) and (ϕ3, 0), and the stable manifolds and unstable
manifolds of these saddle points. For the above heteroclinic orbit enclosing the

equilibrium point (ϕ2, 0), (3.1) can be written as 2
√

α5

3 ξ =
∫X

ϕ2
2

dX
(ϕ2

3−X)(X−ϕ2
1)
. It

follows the parametric representations of the the envelope kink wave solution of
system (1.6):

ϕ(ξ) =

(
ϕ2
3 −

ϕ2
3 − ϕ2

1

1 +m0eω3ξ

) 1
2

, (3.8)

where m0 =
ϕ2
2−ϕ2

1

ϕ2
3−ϕ2

2
, ω3 = 2

√
1
3α5(ϕ

2
3 − ϕ2

1).

For the stable manifold of the saddle point (ϕ1, 0) which tends to the singular

straight line ϕ = 0 when |y| → +∞, now (3.1) becomes 2
√

α5

3 ξ =
∫X

0
dX

(ϕ2
1−X)(ϕ2

3−X)
.

Thus, we have the following bounded solution of system (1.6):

ϕ(ξ) =

(
ϕ2
1 +

ϕ2
3 − ϕ2

1

1−m1eω3ξ

) 1
2

, ξ ∈ (0,∞), (3.9)

where m1 =
ϕ2
3

ϕ2
1
, ω3 = 2

√
1
3α5(ϕ

2
3 − ϕ2

1).

3.3. The parametric representations of the bounded orbits
given by Fig.1 (c).

(i) Corresponding to the level curves defined by H(ϕ, y) = h, h ∈ (h2, h3), there
exist a family of periodic orbits and two families of open orbits of system (1.6). The
family of periodic orbits has the same parametric representations as (3.3).
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The open curve family tending to the singular straight line ϕ = 0 when |y| → +∞
has the same parametric representations as (3.4).

(ii) The level curves defined by H(ϕ, y) = h3 are a homoclinic orbit to the
equilibrium point (ϕ3, 0), a stable manifold and an unstable manifold of the sad-
dle point (ϕ3, 0), and a open orbit which tend to the singular straight line ϕ =
0 when |y| → +∞ and passes through the point (ϕc, 0). For the homoclinic
orbit enclosing the equilibrium point (ϕ2, 0), (3.1) can be written as 2

√
α5

3 ξ =∫X

Xm

dX

(ϕ2
3−X)

√
(X−Xc)(X−Xm)

, where Xc = ϕ2
c , Xm = ϕ2

m. It follows the parametric

representations of the dark envelope soliton solution of system (1.6):

ϕ(ξ) =

(
ϕ2
3 −

2(ϕ2
3 − ϕ2

m)(ϕ2
3 − ϕ2

c)

(ϕ2
m − ϕ2

c) cosh(ω4ξ) + (2ϕ2
3 − ϕ2

m − ϕ2
c))

) 1
2

, (3.10)

where ω4 = 2
√

1
3α5(ϕ2

3 − ϕ2
m)(ϕ2

3 − ϕ2
c).

3.4. The parametric representations of the bounded orbits
given by Fig.1 (d).

In this case, h1 = h2, ϕ1 = ϕ2.

(i) Corresponding to the level curves defined by H(ϕ, y) = h, h ∈ (−∞, h1), in
the right self-pase plane, there exist two families of open orbits of system (1.6). The
open orbit family near the straight line ϕ = 0 gives rise to a family of compacton
solutions, which has the same parametric representation as (3.2).

(ii) Corresponding to the level curves defined by H(ϕ, y) = h1, in the right
self-pase plane, there exist a stable manifold of the cusp point (ϕ1, 0) and a open
curve which gives rise a unbounded solution. For the stable manifold, (3.1) can be

written as 2
√

α5

3 ξ =
∫X

0
dX

(ϕ2
1−X)

√
(Xa−X)(ϕ2

1−X)
, where Xa = ϕ2

a. It gives rise to the

following result:

ϕ(ξ) =

ϕ2
1 −

ϕ2
a − ϕ2

1(
ω5ξ +

ϕa

ϕ1

)2
− 1


1
2

, (3.11)

where ω5 =
√

1
3α5(ϕ

2
a − ϕ2

1).

(iii) The level curves defined by H(ϕ, y) = h, h ∈ (h1, h3) are two open curve
families, for which one curve family tends to the singular straight line ϕ = 0 when
|y| → +∞. It gives rise to a compacton solution family having the same parametric
representation as (3.2).

(iv) The level curves defined by H(ϕ, y) = h3 are two stable manifolds and two
unstable manifolds of the saddle point (ϕ3, 0), for which two manifolds tend to the
singular straight line ϕ = 0 when |y| → +∞ (see Fig.5 (e)). The left stable manifold
has the same parametric representation as (3.7).
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4. Explicit exact parametric representations of so-
lutions of system (1.6) in the case of there exist
three equilibrium points and α5 < 0

We consider the case α5 < 0 in this section.

4.1. The parametric representations of the bounded orbits
given by Fig.2 (a).

(i) Corresponding to the level curves defined by H(ϕ, y) = h, h ∈ (h3, h1), there
exists a family of periodic orbits enclosing the equilibrium point (ϕ3, 0) of system

(1.6). Now, (3.1) can be written as 2
√

|α5|
3 ξ =

∫X

r2
dX√

(r1−X)(X−r2)[(X−b1)2+a2
1]
. Thus,

we obtain the parametric representation of the family of periodic solutions of system
(1.6) as follows:

ϕ(ξ) =

(
(r1B̃ + r2Ã)− (r1B̃ − r2Ã)cn(Ω2ξ, k)

(Ã+ B̃) + (Ã− B̃)cn(Ω2ξ, k)

) 1
2

, (4.1)

where Ã2 = (r1 − b1)
2 + a21, B̃ = (r2 − b1)

2 + a21, k
2 = (r1−r2)

2−(Ã−B̃)2

4ÃB̃
,Ω2 =

2
√

1
3 |α5|ÃB̃.

(ii) Corresponding to the level curves defined by H(ϕ, y) = h, h ∈ (h1, h2), there
exist two families of periodic orbits of system (1.6), enclosing the equilibrium point
(ϕ3, 0) and (ϕ1, 0), respectively. Now, for the left family of periodic orbits enclosing

the center (ϕ1, 0), (3.1) can be written as 2
√

|α5|
3 ξ =

∫X

r4
dX√

(r1−X)(r2−X)(r3−X)(X−r4)
.

Thus, we obtain the parametric representation of this family of periodic solutions
of system (1.6) as follows:

ϕ(ξ) =

(
r1 −

r1 − r4
1− α̃2

3sn
2(Ω3ξ, k)

) 1
2

, (4.2)

where k2 = (r1−r2)(r3−r4)
(r1−r3)(r2−r4)

, α̃2
3 = r4−r3

r1−r3
,Ω3 =

√
1
3 |α5|(r1 − r3)(r2 − r4).

We notice that when h approaches h2, the periodic orbit in the left family
defined by H(ϕ, y) = h tends to the left homoclinic loop which is close to the
singular straight line ϕ = 0. Therefore, the left homoclinic orbit gives rise to an
envelope quasi-peakon solution and periodic orbit family gives rise to a periodic
peakon family (see Fig.6 (a), (b).)

For the right family of periodic orbits enclosing the center (ϕ3, 0), (3.1) can

be written as 2
√

|α5|
3 ξ =

∫X

r2
dX√

(r1−X)(X−r2)(X−r3)(X−r4)
. Hence, we obtain the

parametric representation of this family of periodic solutions of system (1.6) as
follows (see Fig.6 (d)):

ϕ(ξ) =

(
r3 +

r2 − r3
1− α̃2

4sn
2(Ω3ξ, k)

) 1
2

, (4.3)

where k2 = (r1−r2)(r3−r4)
(r1−r3)(r2−r4)

, α̃2
4 = r1−r2

r1−r3
,Ω3 =

√
1
3 |α5|(r1 − r3)(r2 − r4).
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(iii) Corresponding to the level curves defined by H(ϕ, y) = h2, there ex-
ist two homoclinic orbits of system (1.6) to the saddle point (ϕ2, 0), enclosing
the equilibrium point (ϕ3, 0) and (ϕ1, 0), respectively. For the right homoclinic

orbit, (3.1) can be written as −2
√

|α5|
3 ξ =

∫XM

X
dX

(X−ϕ2
2)
√

(XM−X)(X−Xm)
, where

XM = ϕ2
M , Xm = ϕ2

m. It follows the parametric representation of the bright enve-
lope soliton solution of system (1.6) as follows:

ϕ(ξ) =

(
ϕ2
2 +

2(ϕ2
M − ϕ2

2)(ϕ
2
2 − ϕ2

m)

(ϕ2
M − ϕ2

m) cosh(ω6ξ)− (ϕ2
M + ϕ2

m − 2ϕ2
2)

) 1
2

, (4.4)

where ω6 = 2
√

1
3 |α5|(ϕ2

M − ϕ2
2)(ϕ

2
2 − ϕ2

m).

For the left homoclinic orbit, (3.1) can be written as 2
√

|α5|
3 ξ =∫X

xm

dX

(ϕ2
2−X)

√
(XM−X)(X−Xm)

. It gives rise to the following parametric representation

of the dark envelope soliton solution of system (1.6):

ϕ(ξ) =

(
ϕ2
2 −

2(ϕ2
M − ϕ2

2)(ϕ
2
2 − ϕ2

m)

(ϕ2
M − ϕ2

m) cosh(ω6ξ) + (ϕ2
M + ϕ2

m − 2ϕ2
2)

) 1
2

. (4.5)

(iv) Corresponding to the level curves defined by H(ϕ, y) = h, h ∈ (h2,∞), there
exists a larger family of periodic orbits enclosing three equilibrium point (ϕj , 0), j =
1, 2, 3 of system (1.6). In this case, this family has the same parametric representa-
tion as (4.1). Because there exists a segment of every periodic orbit in this periodic
family for which it is very close to the singular straight line ϕ = 0. So that, this
larger periodic orbit loop gives rise to a periodic peakon solution of system (1.6)
(see Fig.6 (c)).
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Figure 7. The wave profiles of quasi-peakon and periodic peakons in Fig.2 (a)

4.2. The parametric representations of the bounded orbits
given by Fig.2 (b).

In this case, we have h1 = h3.
(i) Corresponding to the level curves defined by H(ϕ, y) = h, h ∈ (h1, h2), there

exist two families of periodic orbits of system (1.6), enclosing the equilibrium point
(ϕ3, 0) and (ϕ1, 0), respectively. Now, for the left family of periodic orbits enclosing

the center (ϕ1, 0), (3.1) can be written as 2
√

|α5|
3 ξ =

∫X

r4
dX√

(r1−X)(r2−X)(r3−X)(X−r4)
.
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By the symmetry of the phase portrait in Fig.2 (b), we have r1−r2 = r3−r4. Thus,
we obtain the parametric representation of this family of periodic orbits of system
(1.6) as follows:

ϕ(ξ) =

(
r1 −

r1 − r4
1− α̃2

3sn
2(Ω4ξ, k)

) 1
2

, (4.6)

where k = r1−r2
r1−r3

, α̃2
3 = r4−r3

r1−r3
,Ω4 =

√
1
3 |α5|(r1−r3). For the right family of periodic

orbits enclosing the center (ϕ3, 0), we obtain the parametric representation of this
family of periodic orbits of system (1.6) as follows:

ϕ(ξ) =

(
r3 +

r2 − r3
1− α̃2

4sn
2(Ω4ξ, k)

) 1
2

, (4.7)

where k = r1−r2
r1−r3

, α̃2
4 = r1−r2

r1−r3
,Ω4 =

√
1
3 |α5|(r1 − r3).

(ii) Corresponding to the level curves defined by H(ϕ, y) = h2, there exist two
symetric homoclinic orbits of system (1.6) to the saddle point (ϕ2, 0), enclosing
the equilibrium point (ϕ3, 0) and (ϕ1, 0), respectively. These orbits have the same
parametric representations as (4.4) and (4.5), where ϕM − ϕ2 = ϕ2 − ϕm.

(iii) Corresponding to the level curves defined by H(ϕ, y) = h, h ∈ (h2,∞),
there exists a larger family of periodic orbits enclosing three equilibrium point
(ϕj , 0), j = 1, 2, 3 of system (1.6). In this case, this family has the same parametric
representation as (4.1).

Similarly, we can study the parametric representations for the orbits shown in
Fig.2 (c).

4.3. The parametric representations of the bounded orbits
given by Fig.2 (e).

In this case, we have h1 = h2 > h3.
(i) Corresponding to the level curves defined by H(ϕ, y) = h, h ∈ (h3, h1), there

exists a family of periodic orbits of system (1.6), enclosing the equilibrium point
(ϕ3, 0). This family has the same parametric representation as (4.1).

(ii) Corresponding to the level curves defined by H(ϕ, y) = h1 = h2, there is a
homoclinic orbit to the cusp point (ϕ1, 0) = (ϕ2, 0), enclosing the equilibrium point

(ϕ3, 0). Now, (3.1) can be written as −2
√

|α5|
3 ξ =

∫XM

X
dX

(X−ϕ2
1)
√

(XM−X)(X−ϕ2
1)
,

where XM = ϕ2
M . It follows the parametric representation of the bright envelope

soliton solution of system (1.6):

ϕ(ξ) =

(
ϕ2
1 +

ϕ2
M − ϕ2

1

1 + (ω7ξ)2

) 1
2

, (4.8)

where ω7 =
√

1
3 |α5|(ϕ2

M − ϕ2
1).

(iii) Corresponding to the level curves defined by H(ϕ, y) = h, h ∈ (h1,∞),
there exists a larger family of periodic orbits of system (1.6), enclosing the equi-
librium point (ϕ3, 0) and cusp point (ϕ1, 0). This family has the same parametric
representation as (4.1).
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5. Explicit exact parametric representations of so-
lutions of system (1.6) in the case of system (1.6)
has one or two equilibrium points

We first consider the exact parametric representations of solutions of system (1.6)
in the case of system (1.6) has two equilibrium points in the positive ϕ−axis (see
Fig.3).

5.1. The parametric representations of the bounded orbits
given by Fig.3 (b).

(i) Corresponding to the level curves defined by H(ϕ, y) = h, h ∈ (−∞, h2), there
exist a family of open orbits of system (1.6) which tends to the singular straight

line ϕ = 0 when |y| → +∞. Now, (3.1) can be written as −2
√

|α5|
3 ξ =∫ r1

X
dX√

(r1−X)(X+r2)[(X−b1)2+a2
1]
. Thus, we obtain the parametric representation of

the family of compacton solutions of system (1.6) as follows:

ϕ(ξ) =

(
(r1Ã− r2B̃) + (r1Ã+ r2B̃)cn(Ω5ξ, k)

(Ã+ B̃) + (Ã− B̃)cn(Ω5ξ, k)

) 1
2

, ξ ∈ (−ξ03, ξ03), (5.1)

where Ã2 = (r2 − b1)
2 + a21, B̃ = (r1 + b1)

2 + a21, k
2 = (r1+r2)

2−(Ã−B̃)2

4ÃB̃
,Ω5 =

2
√

1
3 |α5|ÃB̃, ξ03 = 1

Ω5
cn−1

(
r2B̃−r1Ã
r1Ã+r2B̃

, k
)
.

(ii) Corresponding to the level curves defined by H(ϕ, y) = h, h ∈ (h2, h1), there
exist a family of periodic orbits enclosing the equilibrium point (ϕ2, 0) of system
(1.6) and an open curve family which tends to the singular straight line ϕ = 0

when |y| → +∞. For the periodic family. Now, (3.1) can be written as 2
√

|α5|
3 ξ =∫X

r2
dX√

(r1−X)(X−r2)(X−r3)(X+r4)
. Thus, we obtain the parametric representation of

the family of periodic solutions of system (1.6) as follows:

ϕ(ξ) =

(
r3 +

r2 − r3
1− α̃2

5sn
2(Ω6ξ, k)

) 1
2

, (5.2)

where α̃2
5 = r1−r2

r1−r3
, k2 =

α̃2
5(r3+r4)
r2+r4

,Ω6 =
√

|α5|
3 (r1 − r3)(r2 + r4).

For the open curve family, (3.1) can be written as −2
√

|α5|
3 ξ =∫ r3

X
dX√

(r1−X)(r2−X)(r3−X)(X+r4)
. Hence, we have the parametric representation of

the compacton solution family of system (1.6) as follows:

ϕ(ξ) =

(
r2 −

r2 − r3
1− α̃2

6sn
2(Ω6ξ, k)

) 1
2

, ξ ∈ (−ξ04, ξ04), (5.3)

where α̃2
6 = r3+r4

r2+r4
, k2 =

α̃2
6(r1−r2)
r1−r3

,Ω6 =
√

|α5|
3 (r1 − r3)(r2 + r4), ξ04 = 1

Ω6
sn−1(√

r3
α̃2

6r2
, k

)
.



1208 J. Liang & J. Li

(iii) Corresponding to the level curves defined by H(ϕ, y) = h1, there exist a
homoclinic orbit of system (1.6) to the saddle point (ϕ1, 0), enclosing the equilibrium
point (ϕ2, 0) and a stable manifold, an unstable manifold of the saddle point (ϕ1, 0)
which tend to the singular straight line ϕ = 0 when |y| → +∞. For the homoclinic

orbit, (3.1) can be written as −2
√

|α5|
3 ξ =

∫XM

X
dX

(X−ϕ2
1)
√

(ϕ2
M−X))(X+r04)

. It gives

rise to the the parametric representation of the bright envelope soliton solution of
system (1.6):

ϕ(ξ) =

(
ϕ2
1 +

2(ϕ2
M − ϕ2

1)(ϕ
2
1 + r04)

(ϕ2
M + r04) cosh(ω8ξ)− (ϕ2

M − r04 − 2ϕ2
1)

) 1
2

, (5.4)

where ω8 = 2
√

|α5|
3 (ϕ2

M − ϕ2
1)(ϕ

2
1 + r04).

For the stable manifold of the saddle point (ϕ1, 0) which tends to the singular

straight line ϕ = 0 when |y| → +∞, (3.1) becomes 2
√

|α5|
3 ξ =

∫X

0
dX

(ϕ2
1−X)

√
(r1−X)(X+r2)

.

Thus, we have the following bounded solution of system (1.6):

ϕ(ξ) =

(
ϕ2
1 −

4(r1 − ϕ2
1)(ϕ

2
1 + r2)P3

P 2
3 e

ω9ξ + (r1 + r2)2e−ω9ξ − 2(ϕ2
1 + r2 − r1)P4

) 1
2

, ξ ∈ (0,∞),

(5.5)

where ω9 = −2
√

1
3 |α5|(r1 − ϕ2

1)(ϕ
2
1 + r2),

P3 = 1
ϕ2
1

[
2
√

(r1 − ϕ2
1)(ϕ

2
1 + r2)r1r2 + 2(r1 − ϕ2

1)(ϕ
2
1 + r2) + ϕ2

1(2ϕ
2
1 + r1 − r2)

]
.

(iv) Corresponding to the level curves defined by H(ϕ, y) = h, h ∈ (h1,+∞),
there exists an open curve family of system (1.6) which tends to the singular straight
line ϕ = 0 when |y| → +∞. It gives rise to a compacton solution family having the
same parametric representation as (5.1).

5.2. The parametric representations of the bounded orbits
given by Fig.3 (a).

(i) Corresponding to the level curves defined byH(ϕ, y) = h, h ∈ (h1, h2), there exist
a family of periodic orbits enclosing the equilibrium point (ϕ1, 0) of system (1.6) and
an unbounded open orbit. For the periodic family, (3.1) can be written as 2

√
α5

3 ξ =∫X

r3
dX√

(r1−X)(r2−X)(X−r3)(X+r4)
. Thus, we obtain the parametric representation of

the family of periodic orbits of system (1.6) as follows:

ϕ(ξ) =

(
−r4 +

r3 + r4
1− α̃2

7sn
2(Ω7ξ, k)

) 1
2

, (5.6)

where α̃2
7 = r2−r3

r2+r4
, k2 =

α̃2
7(r1+r4)
r1−r3

,Ω7 =
√

α5

3 (r1 − r3)(r2 + r4).
(ii) Corresponding to the level curves defined by H(ϕ, y) = h2, there exists a

homoclinic orbit of system (1.6) to the saddle point (ϕ2, 0), enclosing the equilibrium

point (ϕ1, 0). (3.1) can be written as 2
√

α5

3 ξ =
∫X

rm
dX

(ϕ2
2−X)

√
(X−rm)(X+r2)

. It gives

rise to the the parametric representation of the dark envelope soliton solution of
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system (1.6):

ϕ(ξ) =

(
ϕ2
2 −

2(ϕ2
2 − rm)(ϕ2

2 + r2)

(rm + r2) cosh(ω10ξ)− (rm − r2 − 2ϕ2
2)

) 1
2

, (5.7)

where ω10 = 2
√

α5

3 (ϕ2
2 − rm)(ϕ2

2 + r2).

5.3. The parametric representations of the bounded orbits
given by Fig.3 (d).

(i) Corresponding to the level curves defined by H(ϕ, y) = h1, there exist a stable
manifold and an unstable manifold of the cusp point (ϕ1, 0) which tends to the

singular straight line ϕ = 0 when |y| → +∞. (3.1) can be written as 2
√

|α5|
3 ξ =∫X

0
dX√

(ϕ2
1−X)3(X+r4)

. Thus, we obtain the parametric representation of a bounded

solution of system (1.6) as follows:

ϕ(ξ) =

 ϕ2
1 + r4

1 + (
√

r4
ϕ2
1
+ ω11ξ)2

 1
2

, (5.8)

where ω11 =
√

|α5|
3 (ϕ2

1 + r4).

(ii) Corresponding to the level curves defined by H(ϕ, y) = h, h ∈ (−∞, h1) and
h ∈ (h1,∞), respatively, there exist two families of open orbits of system (1.6).
They have the same parametric representation of the family of compacton solutions
as (5.1).

Finally, we consider the exact parametric representations of solutions of system
(1.6) in the case of system (1.6) has only one equilibrium point in the positive
ϕ−axis (see Fig.4).

5.4. The parametric representations of the bounded orbits
given by Fig.4 (a).

(i) Corresponding to the level curves defined by H(ϕ, y) = h, h ∈ (−∞, h1), there
exist two families of open orbits of system (1.6). The open orbit family near the
straight line ϕ = 0 gives rise to a family of compacton solutions of system (1.6).
Now, (3.1) can be written as 2

√
α5

3 ξ =
∫ r2
X

dX√
(r1−X)(r2−X)[(X−b1)2+a2

1]
. We obtain

the same parametric representation of the family of compacton solutions of system
(1.6) as (3.2).

(ii) Corresponding to the level curves defined by H(ϕ, y) = h1, there exist
two stable manifolds and two unstable manifolds of the saddle point (ϕ1, 0) of
system (1.6). For the left stable manifold, (3.1) can be written as 2

√
α5

3 ξ =∫X

0
dX

(ϕ2
1−X)

√
(X−b1)2+a2

1

. It gives rise to the the parametric representation of the

homoclinic orbit of system (1.6):

ϕ(ξ) =

(
ϕ2
1 −

4((ϕ2
1 − b1)

2 + a21)P4

P 2
4 e

ω12ξ − 4a21e
−ω12ξ + 4(ϕ2

1 − b1)P4

) 1
2

, ξ ∈ (0,∞), (5.9)
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where P4 = 1
ϕ2
1

[
2
√

((ϕ2
1 − b1)2 + a21)(a

2
1 + b21) + 2(a21 + b21)− 2b1ϕ

2
1

]
,

ω12 = 2
√

1
3α5((ϕ2

1 − b1)2 + a21).

5.5. The parametric representations of the bounded orbits
given by Fig.4 (b).

Corresponding to the level curves defined by H(ϕ, y) = h, h ∈ (h1,+∞), there exists
a family of periodic orbits enclosing the equilibrium point (ϕ1, 0) of system (1.6).

Now, (3.1) can be written as 2
√

|α5|
3 ξ =

∫X

r2
dX√

(r1−X)(X−r2)[(X−b1)2+a2
1]
. Thus, we

obtain the same parametric representation of the family of periodic orbits of system
(1.6) as (4.1).
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