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ON EQUALITIES OF BLUES FOR A
MULTIPLE RESTRICTED PARTITIONED
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Abstract For the multiple restricted partitioned linear model M = {y,X1

β1 + · · · + Xsβs | A1β1 = b1, · · · , Asβs = bs,Σ}, the relationships between
the restricted partitioned linear model M and the corresponding s small re-
stricted linear models Mi = {y,Xiβi | Aiβi = bi,Σ}, i = 1, · · · , s are studied.
The necessary and sufficient conditions for the best linear unbiased estimators
(BLUEs) under the full restricted model to be the sums of BLUEs under the s
small restricted model are derived. Some statistical properties of the BLUEs
are also described.
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composition of estimation, Moore-Penrose inverse.
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1. Introduction

Consider a general linear regression model denoted by

M = {y,Xβ = X1β1 + · · ·+Xsβs,Σ}, (1.1)

where Xi is a known n × pi matrix of arbitrary rank with X = [X1, · · · , Xs],
i = 1, · · · , s, βi is a pi × 1 vector of unknown parameters to be estimated and β =
[β′

1, · · · , β′
s]

′, i = 1, · · · , s, y is an n× 1 observable random vector with E(y) = Xβ
and Cov(y) = Σ, Σ is a known n×n nonnegative definite matrix of arbitrary rank.
For the full model (1.1), its s small models are given by

Mi = {y,Xiβi,Σ}, i = 1, · · · , s. (1.2)

The partitioned linear model in (1.1) is one of the most common representations
for modelling data in regression analysis and applications. Such kind of model
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frequently occurs in the estimations of partial parameter vectors β1, · · · , βs and
their parametric functions in regression models. Representations of a linear model
as some partitioned forms are also used in the study of the relationships between
the partitioned model (full model) and its various small or reduced models. This
subject was investigated from various aspects, see, e.g., Chu etc [4], Werner and
Yapar [26], Groß and Puntanen [8], Tian [21,22], Tian and Takane [24], Huang and
Zheng [9], Nurhonen and Puntanen [14], Wang and Liu [25].

Parameters in regression models often satisfy some restrictions, such as the natu-
ral restrictions, the stochastic restrictions and some well-known explicit restrictions.
The natural restrictions to the unknown parameter vector in a singular linear model
were proposed by Rao [17], Baksalary etc [2], Groß [7] and Tian etc [23]. Liu and
Wang [12] derived the representations of the BLUEs and the best linear unbiased
predictors (BLUPs) of a general mixed linear model through a particular construc-
tion from the mixed linear model which uses stochastic restriction. Besides the
natural restrictions and the stochastic restrictions, some discussions on well-known
explicit restrictions to the unknown parameters can be found in Werner and Ya-
par [27], Song and Wang [19], Song and Chang [18], Zhang and Tian [29], Jiang and
Sun [10]. There are s well-known explicit restrictions on the unknown parameters
β1, · · · , βs which are given by

A1β1 = b1, · · · , Asβs = bs, (1.3)

where Ai, i = 1, · · · , s are known mi × pi matrices with r(Ai) = mi, bi is a known
mi×1 vector and these s linear matrix equations are consistent. In such case, model
(1.1) together with (1.3) is called a restricted linear model. In the investigation
of linear models, parameter constraints are usually handled by transforming an
explicitly constrained model into an implicitly constrained model. In regression
theory, a constrained linear model is usually handled by transforming into certain
implicitly forms by model combination, model reduction by substitution, as well as
the Lagrangian multiplier method. Through block matrices, (1.1) and (1.3) can be
written as the following implicitly restricted model

Mr = {yr, Xrβ,Σr} = {yr, Xr1β1 + · · ·+Xrsβs,Σr}, (1.4)

where yr =


y

b1
...

bs

, Xr =



X1 X2 · · · Xs

A1 0 · · · 0

0 A2 · · · 0
...

...
. . .

...

0 0 · · · As


and Σr =


Σ 0 · · · 0

0 0 · · · 0
...
...
. . .

...

0 0 · · · 0

.

(1.2) and (1.3) can be written as the following s small implicitly restricted models

Mri = {yri , Xriβi,Σr}, i = 1, · · · , s, (1.5)
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where yr1 =



y

b1

0
...

0


, · · · , yrs =



y

0

0
...

bs


, Xr1 =



X1

A1

0
...

0


, · · · , Xrs =



Xs

0

0
...

As


.

In recent years, many works have been devoted to developing additive decompo-
sitions of estimators under linear models, such as Tian [21,22], Zhang and Tian [29],
Bhimasankaram and Saharay [3], Zhang etc [28], and so on. The necessary and suf-
ficient conditions for the BLUE of Xβ under the full model to be the sum of the
BLUEs of X1β1 and X2β2 under the two small models were derived by Tian [21].
Furthermore, Tian [22] gave the necessary and sufficient conditions for the BLUE
in a general multiple-partitioned linear model to be the sum of the BLUEs under
its k small models. While the necessary and sufficient conditions for the BLUE
under the full restricted model to be the sum of BLUEs under the corresponding
two small restricted models were derived in [29]. The main purpose of this paper
is to investigate the relations among the BLUEs in Mr and the s small models
Mr1 , · · · ,Mrs . In particular, we will derive the necessary and sufficient conditions
for

(I) BLUEMr
(Xβ) = BLUEMr1

(X1β1) + · · ·+BLUEMrs
(Xsβs);

(II) BLUEMr (Xrβ) = BLUEMr1
(Xr1β1) + · · ·+BLUEMrs

(Xrsβs)

to hold.

Throughout this paper, Rm×n stands for the collection of all m×n real matrices.
The symbols A′, r(A) and ℜ(A) stand for the transpose, rank and range (column
space) of a matrix A ∈ Rm×n, respectively. Im denotes the identity matrix of order
m. The symbol i+(A) denotes the number of positive eigenvalues of a symmetric
matrix A counted with multiplicity.

2. Preliminaries

For a given matrix K ∈ Rq×p, then the product Kβ is a vector of parametric
functions, or simply said a parametric function. The mean vectors Xβ and Xrβ in
Mr are two special cases of Kβ. The vector Kβ is said to be estimable under M
if there exists matrix L1 ∈ Rq×n such that E(L1y) = Kβ holds. It is well known
that Kβ is estimable under M if and only if

ℜ(K ′) ⊆ ℜ(X ′), (2.1)

see e.g., Alalouf and Styan [1]. Partition K as K = [K1, · · · ,Ks], where Ki is a
q × pi real matrix, i = 1, · · · , s. Then, Kβ = K1β1 + · · · + Ksβs. Applying (2.1)
and [29] to the model in (1.4), we get the following results.
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Lemma 2.1. Let Mr and Xr be as given in (1.4). Then Kβ is estimable un-

der model Mr if and only if ℜ(K ′) ⊆ ℜ(X ′
r), that is ℜ


K ′

1

K ′
2

...

K ′
s

 ⊆ ℜ


X ′

r1

X ′
r2

...

X ′
rs

 =

ℜ


X ′

1 A′
1 0 · · · 0

X ′
2 0 A′

2 · · · 0
...

...
... · · ·

...

X ′
s 0 0 · · · A′

s

. In this case, ℜ(K ′
i) ⊆ ℜ(X ′

ri), then Kiβi is estimable un-

der model Mri , i = 1, · · · , s.

The partial parametric functions Xiβi and Xriβi in Mri are two special cases
of Kiβi. It can be seen from Lemma 2.1 that Xiβi and Xriβi are both estimable
under model Mri . The BLUE of Kβ under M , denoted by BLUEM (Kβ), is defined
to be a linear estimator Gy such that E(Gy) = Kβ and Cov(G1y) − Cov(Gy) is
nonnegative definite for any other unbiased estimator G1y of Kβ.

The Moore-Penrose inverse of A ∈ Rm×n, denoted by A†, is defined to be the
unique solution G satisfying the four matrix equations

(i) AGA = A, (ii) GAG = G, (iii) (AG)′ = AG, (iv) (GA)′ = GA.

Further, the symbols PA = AA†, EA = Im − AA† and FA = In − A†A stand
for the three orthogonal projectors onto the range of A, the null spaces of A′ and
A, respectively. The general solution of the linear matrix equation AX = B can
be clearly expressed by the Moore-Penrose inverse of its coefficient matrix, see
Penrose [15].

Lemma 2.2 (Theorem 2, [15]). The linear matrix equation AX = B is consistent
if and only if r[A,B] = r(A), or equivalently, AA†B = B. In this case, the general
solution of the equation can be written as X = A†B + (I − A†A)U , where U is an
arbitrary matrix.

Some well-known results about the BLUE of an estimable Kβ under model M
were established by Drygas [5] and Rao [17]. The following Lemma will give a new
formulation of the BLUE, see Dong etc [6] and Lu etc [11].

Lemma 2.3 (Lemma 1.2, [6], Lemma 2.2, [11]). Let M be as given in (1.1), and
assume that Kβ is estimable under M and E(L0y) = Kβ. Then

max
E(Ly)=Kβ

i+[Cov(L0y)− Cov(Ly)] = r

L0Σ

X ′

− r(X) = r(L0ΣEX). (2.2)

Hence,

E(L0y) = Kβ and Cov(L0y) is minimal ⇔ L0[X,ΣEX ] = [K, 0]. (2.3)

In this case, the general expression of L0, denoted by PK;X;Σ, and BLUEM (Kβ)
can be expressed as

BLUEM (Kβ) = PK;X;Σy = ([K, 0][X,ΣEX ]† + UE[X,Σ])y, (2.4)
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where U ∈ Rk×n is arbitrary. Further, the following results hold.

(a) r[X,ΣEX ] = r[X,Σ] and ℜ[X,ΣEX ] = ℜ[X,Σ].

(b) Cov[BLUEM (Kβ)] = [K, 0][X,ΣEX ]†Σ([K, 0][X,ΣEX ]†)′.

(c) PK;X;Σ is unique if and only if r[X,Σ] = n.

(d) BLUEM (Kβ) is unique with probability 1 if and only if M is consistent.

When s = 2 in (1.4) and (1.5), the general expressions of the BLUEs under
the full model Mr and the two small models Mri , i = 1, 2 have been derived by
Zhang and Tian [29]. From Lemma 2.3 and [29], the BLUEs under models Mr and
Mri , i = 1, · · · s in (1.4) and (1.5) are given below.

Lemma 2.4. Let Mr be as given in (1.4), assume that Kβ is estimable under
(1.4), and denote t = m1 + · · ·+ms + n. Then, the following results hold.

(a) The general expression of BLUEMr (Kβ) can be written as

BLUEMr (Kβ) = PK;Xr;Σryr, (2.5)

where PK;Xr;Σr = [K, 0][Xr,ΣrEXr ]
†+U0E[Xr,Σr] and U0 ∈ Rk×t is arbitrary.

(b) The general expressions of BLUEMr (Xβ) and BLUEMr (Xrβ) can be written
as

BLUEMr (Xβ) = PX;Xr;Σryr (2.6)

and
BLUEMr (Xrβ) = PXr;Σryr, (2.7)

respectively, where PX;Xr;Σr = [X, 0][Xr,ΣrEXr ]
† + UE[Xr,Σr], PXr;Σr =

[Xr, 0][Xr,ΣrEXr ]
† + V E[Xr,Σr], U and V are arbitrary.

Similarly, we can write the BLUEs of Xiβi and Xriβi under the small model
Mri in (1.5) as

BLUEMri
(Xiβi) = PXi;Xri

;Σryri = PXi;Xri
;Σr Î1(i+1)yr, i = 1, · · · , s (2.8)

and
BLUEMri

(Xriβi) = PXri
;Σryri = PXri

;Σr Î1(i+1)yr, i = 1, · · · , s, (2.9)

respectively, where

PXi;Xri
;Σr = [Xi, 0][Xri ,ΣrEXri

]† + UiE[Xri
,Σr], i = 1, · · · , s,

PXri
;Σr = [Xri , 0][Xri ,ΣrEXri

]† + ViE[Xri
,Σr], i = 1, · · · , s,

Î12 =



In 0 0 · · · 0

0 Im1 0 · · · 0

0 0 0 · · · 0
...

...
...
. . .

...

0 0 0 · · · 0


, · · · , Î1(s+1) =



In 0 0 · · · 0

0 0 0 · · · 0

0 0 0 · · · 0
...

...
...
. . .

...

0 0 0 · · · Ims


,

Ui and Vi are arbitrary.
The next lemmas give some rank formulas of partitioned matrices which can be

used to simplify various matrix expressions involving the Moore-Penrose inverses of
matrices.
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Lemma 2.5 (Theorem 19, [13]). Let A ∈ Rm×n, B ∈ Rm×k, C ∈ Rq×n, and
D ∈ Rq×k. Then

r[A,B] = r(A) + r(EAB) = r(B) + r(EBA), (2.10)

r

A

C

 = r(A) + r(CFA) = r(C) + r(AFC). (2.11)

If ℜ(B) ⊆ ℜ(A) and ℜ(C ′) ⊆ ℜ(A′), then

r

A B

C D

 = r(A) + r(D − CA†B). (2.12)

In particular,

r

A B

C D

 = r(A) ⇔ ℜ(B) ⊆ ℜ(A), ℜ(C ′) ⊆ ℜ(A′) and D = CA†B. (2.13)

Lemma 2.6 ( [20]). Suppose ℜ(A) ⊆ ℜ(B1), ℜ(C2) ⊆ ℜ(C1), ℜ(A′) ⊆ ℜ(C ′
1) and

ℜ(B′
2) ⊆ ℜ(B′

1). Then

r(B2B
†
1AC

†
1C2) = r


A B1 0

C1 0 C2

0 B2 0

− r(B1)− r(C1). (2.14)

The following simple and well-known facts will be also useful to simplify various
operations on ranges and ranks of matrices:

ℜ(A) ⊆ ℜ(B) ⇔ r[A,B] = r(B) ⇔ BB†A = A, (2.15)

ℜ(A1) = ℜ(A2) and ℜ(B1) = ℜ(B2) ⇔ r[A1, B1] = r[A2, B2]. (2.16)

3. Additive decompositions of BLUEs

Since PK;X;Σ and BLUEM (Kβ) are not necessarily unique, we use {PK;X;Σ} and
{BLUEM (Kβ)} to denote the collections of all PK;X;Σ and BLUEM (Kβ), respec-
tively. The model in (1.1) is said to be consistent if

y ∈ ℜ[X,Σ]

holds with probability 1, see Rao [16, 17]. Then the model (1.4) is said to be
consistent if

yr ∈ ℜ[Xr,Σr]

holds with probability 1. In what follows, we assume that the model (1.4) is con-
sistent.

It is noted that the estimators in (2.8) and (2.9) are not really the BLUEs ofXiβi

and Xriβi, i = 1, · · · , s in the s misspecified models in (1.5) under the assumption
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in (1.4), that is, they are neither unbiased for Xiβi and Xriβi, i = 1, · · · , s in (1.5)
nor have the smallest covariance matrices in the Löwner sense. However, their sum
can really be the BLUEs of the mean vector Xβ and Xrβ in (1.4) under some
conditions. In this section, we will give the necessary and sufficient conditions for

(I) BLUEMr (Xβ) = BLUEMr1
(X1β1) + · · ·+BLUEMrs

(Xsβs);

(II) BLUEMr (Xrβ) = BLUEMr1
(Xr1β1) + · · ·+BLUEMrs

(Xrsβs)

to hold. Some statistical properties of these BLUEs are also given.
In the following theorem, we will give the expectations of BLUEMri

(Xiβi) and
BLUEMri

(Xriβi), i = 1, · · · , s, and discuss the unbiasedness of these BLUEs.

Theorem 3.1. Let BLUEMri
(Xiβi) and BLUEMri

(Xriβi), i = 1, · · · , s be as given
in (2.8) and (2.9). Then the following results hold.

(a) The expectations of BLUEMri
(Xiβi) and BLUEMri

(Xriβi) under the assump-
tion in (1.4) are given by

E[BLUEMri
(Xiβi)] = Xiβi + PXi;Xri

;Σr ÎnX̂iβ̂i, i = 1, · · · , s (3.1)

and

E[BLUEMri
(Xriβi)] = Xriβi + PXri

;Σr ÎnX̂iβ̂i, i = 1, · · · , s, (3.2)

where X̂i = [X1, · · · , Xi−1, Xi+1, · · · , Xs], β̂i = [β′
1, · · · , β′

i−1, β
′
i+1, · · · , β′

s]
′

and În = [In, 0, · · · , 0]′, i = 1, · · · , s.

(b) The following statements are equivalent:

(i) There exists a BLUEMri
(Xiβi) such that E[BLUEMri

(Xiβi)] = Xiβi

holds.

(ii) There exists a BLUEMri
(Xriβi) such that E[BLUEMri

(Xriβi)] = Xriβi

holds.

(iii) The rank equality

r


Σ Xi

0 Ai

X̂ ′
i 0

 = r

Σ Xi X̂i

0 Ai 0

 , i = 1, · · · , s (3.3)

holds.

(c) If Σ is positive definite, then the following statements are equivalent:

(i) There exists a BLUEMri
(Xiβi) such that E[BLUEMri

(Xiβi)] = Xiβi.

(ii) There exists a BLUEMri
(Xriβi) such that E[BLUEMri

(Xriβi)] = Xriβi.

(iii) ℜ(X ′
iΣ

−1X̂ ′
i) ⊆ ℜ(A′

i), i = 1, · · · , s.

Proof. It can be seen from (2.8) and (2.9) that

E[BLUEMri
(Xiβi)] = PXi;Xri

;Σr Î1(i+1)Xrβ
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= PXi;Xri
;Σr



In 0 · · · 0 · · · 0

0 0 · · · 0 · · · 0
...

...
. . .

... · · ·
...

0 0 · · · Imi · · · 0
...

... · · ·
...

. . .
...

0 0 · · · 0 · · · 0





X1 X2 · · · Xi · · · Xs

A1 0 · · · 0 · · · 0

0 A2 · · · 0 · · · 0
...

...
. . .

... · · ·
...

0 0 · · · Ai · · · 0
...

... · · ·
...

. . .
...

0 0 · · · 0 · · · As


β

= PXi;Xri
;Σr



X1β1 + · · ·+Xsβs

0
...

0

Aiβi

0
...

0


= PXi;Xri

;ΣrXriβi + PXi;Xri
;Σr ÎnX̂iβ̂i

= Xiβi + PXi;Xri
;Σr ÎnX̂iβ̂i, i = 1, · · · , s

and

E[BLUEMri
(Xriβi)] = PXri

;Σr
Î1(i+1)Xrβ

= PXri
;Σr



X1β1 + · · ·+Xsβs

0
...

0

Aiβi

0
...

0


= Xriβi + PXri

;Σr ÎnX̂iβ̂i, i = 1, · · · , s.

Hence, the two identities in (a) are established. Observe that

PXi;Xri
;Σr ÎnX̂i = [Xi, 0][Xri ,ΣrEXri

]†ÎnX̂i + UiE[Xri
,ΣrEXri

]ÎnX̂i, i = 1, · · · , s,

it can be seen from lemma 2.1 that there exists a Ui such that PXi;Xri
;Σr ÎnX̂i = 0
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if and only if

r

 [Xi, 0][Xri ,ΣrEXri
]†ÎnX̂i

E[Xri
,ΣrEXri

]ÎnX̂i

 = r(E[Xri
,ΣrEXri

]ÎnX̂i), i = 1, · · · , s. (3.4)

Using (2.10), (2.11) and elementary block matrix operations (EBMOs), we have

r

[Xi, 0][Xri ,ΣrEXri
]†ÎnX̂i

E[Xri
,ΣrEXri

]ÎnX̂i

= r

[Xi, 0][Xri ,ΣrEXri
]†ÎnX̂i 0

ÎnX̂i [Xri ,ΣrEXri
]

−r[Xri ,ΣrEXri
]

= r

 0 −[Xi, 0]

ÎnX̂i [Xri ,ΣrEXri
]

− r[Xri ,Σr]

= r


0 −Xi 0

ÎnX̂iXri Σr

0 0 X ′
ri

−r(Xri)−r[Xri ,Σr]

= r

 Σr ÎnX̂i

X ′
ri 0

−r[Xri ,Σr]

and

r(E[Xri
,ΣrEXri

]ÎnX̂i) = r[Xri ,ΣrEXri
, ÎnX̂i]− r[Xri ,ΣrEXri

]

= r[Xri ,Σr, ÎnX̂i]− r[Xri ,Σr]

for i = 1, · · · , s. Hence, the statement (i) in (b) holds if and only if

r

 Σr ÎnX̂i

X ′
ri 0

 = r[Xri ,Σr, ÎnX̂i], i = 1, · · · , s,

that is

r


Σ Xi

0 Ai

X̂ ′
i 0

 = r

Σ Xi X̂i

0 Ai 0

 , i = 1, · · · , s

which implies the equivalence of (i) and (iii) in (b). The equivalence of (ii) and (iii) in (b)
can be proved similarly. The results in (c) follow from (b).

We now consider the sum decomposition of BLUEMr (Xβ) on the equality in (I)
and two theorems are given below.

Theorem 3.2. Let BLUEMr
(Xβ) and BLUEMri

(Xiβi), i = 1, · · · , s be as given
in (2.6) and (2.8), and define

DÎn
=diag(În, · · · , În), DΣr =diag(Σr, · · · ,Σr), DXr =diag(Xr1 , · · · , Xrs), (3.5)

X̃ =


0 X2 · · · Xs

X1 0 · · · Xs

...
...

. . .
...

X1 X2 · · · 0

 ,where diag represents the diagonal matrix. (3.6)
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Then:

(a) The sum of the BLUEs is given by

BLUEMr1
(X1β1) + · · ·+ BLUEMrs

(Xsβs) =(PX1;Xr1 ;Σr Î12 + · · · (3.7)

+ PXs;Xrs ;Σr Î1(s+1))yr

with the expectation

E[BLUEMr1
(X1β1) + · · ·+ BLUEMrs

(Xsβs)] (3.8)

= Xβ + [PX1;Xr1 ;Σr , · · · , PXs;Xrs ;Σr ]DÎn
X̃β

under the assumption in Mr.

(b) The following statements are equivalent:

(i) There exist BLUEMr1
(X1β1), · · · ,BLUEMrs

(Xsβs) such that

E[BLUEMr1
(X1β1) + · · ·+ BLUEMrs

(Xsβs)] = Xβ (3.9)

holds under the assumption in Mr.

(ii) There exist BLUEMr1
(X1β1), · · · ,BLUEMrs

(Xsβs) such that

BLUEMr1
(X1β1) + · · ·+ BLUEMrs

(Xsβs) ∈ {BLUEMr
(Xβ)} (3.10)

holds under the assumption in Mr.

(iii) r


DΣr

DÎn
X̃ DXr

D′
Xr

0 0

0 0 X

 = r

DΣr DÎn
X̃ DXr

D′
Xr

0 0

 .

(iv) ℜ


0

0

X ′

 ⊆ ℜ


DΣr DXr

X̃ ′D′
În

0

D′
Xr

0

 or ℜ(X ′) ⊆ ℜ([D′
Xr

, 0]ET ), where T =

 DΣr DXr

X̃ ′D′
În

0

 .

Proof. From (2.8) and Theorem 3.1, we can easily get the results in (a). It can
be seen from (a) that the statement (i) in (b) holds under the assumption in Mr if
and only if

[PX1;Xr1 ;Σr , · · · , PXs;Xrs ;Σr ]DÎn
X̃ = 0,

that is

GDÎn
X̃ + UEMDÎn

X̃ = 0, (3.11)

where

G = [[X1, 0][Xr1 ,ΣrEXr1
]†, · · · , [Xs, 0][Xrs ,ΣrEXrs

]†],

U = [U1, · · · , Us], M = diag([Xr1 ,ΣrEXr1
], · · · , [Xrs ,ΣrEXrs

]).
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However, the equation in (3.11) is solvable for U if and only if

r

 GDÎn
X̃

EMDÎn
X̃

 = r(EMDÎn
X̃). (by Lemma 2.1) (3.12)

Let N = diag([Xr1 ,Σr], · · · , [Xrs ,Σr]) and L = diag([0, X ′
r1 ], · · · , [0, X

′
rs ]). Then

M = NFL, r(M) = r(N) = r[DΣr
, DXr

], r(L) = r(DXr
). Applying (2.10), (2.11)

and EBMOs, we have

r

 GDÎn
X̃

EMDÎn
X̃

 = r

GDÎn
X̃ 0

DÎn
X̃ M

− r(M)

= r

 0 −GM

DÎn
X̃ M

− r[DΣr , DXr ]

= r

 0 [[X1, 0], · · · , [Xs, 0]]

DÎn
X̃ NFL

− r[DΣr , DXr ]

= r


0 [[X1, 0], · · · , [Xs, 0]]

DÎn
X̃ N

0 L

− r(L)− r[DΣr , DXr ]

= r


DΣr DÎn

X̃ DXr

D′
Xr

0 0

0 0 X

− r(DXr )− r[DΣr , DXr ]

and

r(EMDÎn
X̃) = r[DÎn

X̃,M ]− r(M)

= r[DÎn
X̃,NFL]− r[DΣr , DXr ]

= r

DÎn
X̃ N

0 L

− r(L)− r[DΣr , DXr ]

= r

DΣr DÎn
X̃ DXr

D′
Xr

0 0

− r(DXr )− r[DΣr , DXr ].

Hence, (3.12) holds if and only if

r


DΣr DÎn

X̃ DXr

D′
Xr

0 0

0 0 X

 = r

DΣr DÎn
X̃ DXr

D′
Xr

0 0

 .

The equivalence of (i) and (iii) in (b) is proved. From (2.15), we know that (iii) and
(iv) in (b) are equivalent.
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Now we prove (ii) ⇔ (iii) in (b). It can be seen from (a) that (ii) in (b) holds if

and only if (PX1;Xr1 ;Σr Î12 + · · ·+ PXs;Xrs ;Σr Î1(s+1))[Xr,ΣrEXr ] = [X, 0], that is

U


E[Xr1 ,ΣrEXr1

]Î12[Xr,ΣrEXr ]
...

E[Xrs ,ΣrEXrs
]Î1(s+1)[Xr,ΣrEXr ]

 = H, (3.13)

where

H =[X, 0]− [X1, 0][Xr1 ,ΣrEXr1
]†Î12[Xr,ΣrEXr ]

− · · · − [Xs, 0][Xrs ,ΣrEXrs
]†Î1(s+1)[Xr,ΣrEXr ]

and U = [U1, · · · , Us]. Hence, (3.13) is solvable for U if and only if

r


H

E[Xr1 ,ΣrEXr1
]Î12[Xr,ΣrEXr

]
...

E[Xrs ,ΣrEXrs
]Î1(s+1)[Xr,ΣrEXr ]

=r


E[Xr1 ,ΣrEXr1

]Î12[Xr,ΣrEXr]
...

E[Xrs ,ΣrEXrs
]Î1(s+1)[Xr,ΣrEXr ]

.(3.14)

Using (2.10), (2.11) and EBMOs, we obtain

r


H

E[Xr1 ,ΣrEXr1
]Î12[Xr,ΣrEXr ]
...

E[Xrs ,ΣrEXrs
]Î1(s+1)[Xr,ΣrEXr ]



=r


H 0 · · · 0

Î12[Xr,ΣrEXr ] [Xr1 ,ΣrEXr1
] · · · 0

...
...

. . .
...

Î1(s+1)[Xr,ΣrEXr ] 0 · · · [Xrs ,ΣrEXrs
]

−r(M)

=r


[X, 0] [X1, 0] · · · [Xs, 0]

Î12[Xr,ΣrEXr ] [Xr1 ,ΣrEXr1
] · · · 0

...
...

. . .
...

Î1(s+1)[Xr,ΣrEXr
] 0 · · · [Xrs ,ΣrEXrs

]

−r[DΣr , DXr]

= r


[0, 0] [X1, 0] · · · [Xs, 0][

ÎnX̂1, 0
] [

Xr1 ,ΣrEXr1

]
· · · 0

...
...

. . .
...[

ÎnX̂s, 0
]

0 · · ·
[
Xrs ,ΣrEXrs

]

− r[DΣr
, DXr

]
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= r

 0 X 0

DÎn
X̃ DXr DΣrEDXr

− r[DΣr , DXr ]

= r


0 X 0

DÎn
X̃ DXr

DΣr

0 0 D′
Xr

− r(DXr )− r[DΣr , DXr ]

= r


DΣr DÎn

X̃ DXr

D′
Xr

0 0

0 0 X

− r(DXr )− r[DΣr , DXr ]

and

r


E[Xr1 ,ΣrEXr1

]Î12[Xr,ΣrEXr ]
...

E[Xrs ,ΣrEXrs
]Î1(s+1)[Xr,ΣrEXr ]



=r


Î12[Xr,ΣrEXr] [Xr1 ,ΣrEXr1

] 0 · · · 0

Î13[Xr,ΣrEXr] 0 [Xr2 ,ΣrEXr2
] · · · 0

...
...

...
. . .

...

Î1(s+1)[Xr,ΣrEXr] 0 0 · · · [Xrs ,ΣrEXrs
]

−r(M)

=r


Î12[Xr, 0] [Xr1 ,ΣrEXr1

] 0 · · · 0

Î13[Xr, 0] 0 [Xr2 ,ΣrEXr2
] · · · 0

...
...

...
. . .

...

Î1(s+1)[Xr, 0] 0 0 · · · [Xrs ,ΣrEXrs
]

−r[DΣr , DXr]

=r



[
ÎnX̂1, 0

]
[Xr1 ,Σr] 0 · · · 0[

ÎnX̂2, 0
]

0 [Xr2 ,Σr] · · · 0

...
...

...
. . .

...[
ÎnX̂s, 0

]
0 0 · · · [Xrs ,Σr]

0 [0, X ′
r1 ] 0 · · · 0

0 0 [0, X ′
r2 ] · · · 0

...
...

...
. . .

...

0 0 0 · · · [0, X ′
rs ]



−r(DXr )−r[DΣr , DXr]

= r

DΣr DÎn
X̃ DXr

D′
Xr

0 0

− r(DXr )− r[DΣr , DXr ].
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Hence, the identity (3.14) is equivalent to

r


DΣr DÎn

X̃ DXr

D′
Xr

0 0

0 0 X

 = r

DΣr DÎn
X̃ DXr

D′
Xr

0 0

 ,

which implies the equivalence of (ii) and (iii) in (b).

Theorem 3.3. Let BLUEMr (Xβ) and BLUEMri
(Xiβi), i = 1, · · · , s be as given in

(2.6) and (2.8), and let DÎn
, DΣr , DXr and X̃ be given as (3.5) and (3.6). Then:

(a) The following statements are equivalent:

(i) The set inclusion {BLUEMr1
(X1β1) + · · ·+ BLUEMrs

(Xsβs)} ⊆ {BLU
EMr (Xβ)} holds under the assumption in Mr.

(ii) r


DΣr DXr DÎn

X̃

D′
Xr

0 0

0 X 0

 = r

DΣr DXr

D′
Xr

0

 and r[Xri ,Σr, ÎnX̂i] = r[Xri ,Σr],

i = 1, · · · , s.

(iii) [0, X]

DΣr DXr

D′
Xr

0

† DÎn
X̃

0

 = 0 and r[Xri ,Σr, ÎnX̂i] = r[Xri ,Σr], i =

1, · · · , s.
(b) If Σ is positive definite, then BLUEMr (Xβ),BLUEMr1

(X1β1), · · · ,BLUEMrs
(

Xsβs) are unique and the following statements are equivalent:

(i) BLUEMr (Xβ) = BLUEMr1
(X1β1)+ · · ·+BLUEMrs

(Xsβs) holds under
the assumption in Mr.

(ii) ℜ(X ′
iΣ

−1X̂i) ⊆ ℜ(A′
i), i = 1, · · · , s.

Proof. It can be seen that the statement (i) in (a) holds if and only if (3.13) holds
for any U , which is equivalent to the following equalities:

H = 0 and


E[Xr1

,ΣrEXr1
]Î12[Xr,ΣrEXr ]
...

E[Xrs ,ΣrEXrs
]Î1(s+1)[Xr,ΣrEXr ]

 = 0. (3.15)

The second identity in (3.15) is equivalent to

r[Xri ,Σr, ÎnX̂i] = r[Xri ,Σr], i = 1, · · · , s.

In this case, using (2.11), (2.12) and simplifying by EBMOs, we have

r(H) = r

[X, 0]− [[X1, 0], · · · , [Xs, 0]]M
†


Î12[Xr,ΣrEXr ]

...

Î1(s+1)[Xr,ΣrEXr ]



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= r

 M K

[[X1, 0], · · · , [Xs, 0]] [X, 0]

− r(M)

=r


[Xr1 ,ΣrEXr1

] · · · 0 Î12[Xr,ΣrEXr]
...

. . .
...

...

0 · · · [Xrs ,ΣrEXrs
] Î1(s+1)[Xr,ΣrEXr]

[X1, 0] · · · [Xs, 0] [X, 0]

−r[DΣr , DXr]

= r


[Xr1 ,ΣrEXr1

] · · · 0
[̂
InX̂1, 0

]
...

. . .
...

...

0 · · · [Xrs ,ΣrEXrs
]
[
ÎnX̂s, 0

]
[X1, 0] · · · [Xs, 0] [0, 0]

− r[DΣr , DXr ]

= r

DΣrEDXr
DXr DÎn

X̃

0 X 0

− r[DΣr , DXr ]

= r


DΣr DXr DÎn

X̃

D′
Xr

0 0

0 X 0

− r

DΣr DXr

D′
Xr

0

 ,

where K =


Î12[Xr,ΣrEXr ]

...

Î1(s+1)[Xr,ΣrEXr ]

 . Hence, H = 0 if and only if

r


DΣr DXr DÎn

X̃

D′
Xr

0 0

0 X 0

 = r

DΣr DXr

D′
Xr

0

 ,

which is equivalent to

[0, X]

DΣr DXr

D′
Xr

0

† DÎn
X̃

0

 = 0. (by (2.13))

Summarizing the above discussion, the equivalence of (i), (ii) and (iii) in (a) is
proved. The results of (b) can be obtained from (a).

Similar to the proofs of the Theorem 3.2 and Theorem 3.3, we can get the
following two theorems which characterize the equality in (II).

Theorem 3.4. Let BLUEMr (Xrβ) and BLUEMri
(Xriβi), i = 1, · · · , s be as given

in (2.7) and (2.9), and let DÎn
, DΣr , DXr and X̃ be as given in (3.5) and (3.6).

Then:
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(a) The sum of the BLUEs is given by

BLUEMr1
(Xr1β1) + · · ·+ BLUEMrs

(Xrsβs) =(PXr1 ;Σr Î12 + · · · (3.16)

+ PXrs ;Σr Î1(s+1))yr

with the expectation

E[BLUEMr1
(Xr1β1) + · · ·+ BLUEMrs

(Xrsβs)] = Xrβ + [PXr1 ;Σr , (3.17)

· · · , PXrs ;Σr ]DÎn
X̃β

under the assumption in Mr.

(b) The following statements are equivalent:

(i) There exist BLUEMr1
(Xr1β1), · · · ,BLUEMrs

(Xrsβs) such that

E[BLUEMr1
(Xr1β1) + · · ·+ BLUEMrs

(Xrsβs)] = Xrβ (3.18)

holds under the assumption in Mr.

(ii) There exist BLUEMr1
(Xr1β1), · · · ,BLUEMrs

(Xrsβs) such that

BLUEMr1
(Xr1β1)+ · · ·+BLUEMrs

(Xrsβs) ∈ {BLUEMr (Xrβ)} (3.19)

holds under the assumption in Mr.

(iii) r


DΣr DÎn

X̃ DXr

D′
Xr

0 0

0 0 Xr

 = r

DΣr DÎn
X̃ DXr

D′
Xr

0 0

 .

(iv) ℜ


0

0

X ′
r

 ⊆ ℜ


DΣr DXr

X̃ ′D′
În

0

D′
Xr

0

 or ℜ(X ′
r) ⊆ ℜ([D′

Xr
, 0]ET ), where T =

 DΣr DXr

X̃ ′D′
În

0

 .

Theorem 3.5. Let BLUEMr (Xrβ) and BLUEMri
(Xriβi), i = 1, · · · , s be as given

in (2.7) and (2.9), and let DÎn
, DΣr , DXr and X̃ be given as (3.5) and (3.6). Then:

(a) The following statements are equivalent:

(i) The set inclusion

{BLUEMr1
(Xr1β1) + · · ·+ BLUEMrs

(Xrsβs)} ⊆ {BLUEMr (Xrβ)}

holds under the assumption in Mr.

(ii) r


DΣr

DXr
DÎn

X̃

D′
Xr

0 0

0 Xr 0

 = r

DΣr DXr

D′
Xr

0

 and r[Xri ,Σr, ÎnX̂i] = r[Xri ,Σr],

i = 1, · · · , s.
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(iii) [0, Xr]

DΣr DXr

D′
Xr

0

† DÎn
X̃

0

=0 and r[Xri ,Σr, ÎnX̂i]=r[Xri ,Σr], i =

1, · · · , s.
(b) If Σ is positive definite, then BLUEMr(Xrβ), BLUEMr1

(Xr1β1), · · · ,BLUEMrs
(

Xrsβs) are unique and the following statements are equivalent:

(i) BLUEMr (Xrβ) = BLUEMr1
(Xr1β1)+ · · ·+BLUEMrs

(Xrsβs) holds un-
der the assumption in Mr.

(ii) ℜ(X ′
iΣ

−1X̂i) ⊆ ℜ(A′
i), i = 1, · · · , s.

When setting s = 2 in Theorems 3.2-3.5, the corresponding results are given by
Zhang and Tian in [29].

In the following, we will give the necessary and sufficient conditions for BLUEMri
(

Xiβi) and BLUEMrj
(Xjβj) to be uncorrelated and BLUEMri

(Xriβi) and BLUEMrj
(

Xrjβj) to be uncorrelated, which are stated as follows:

Theorem 3.6. Let BLUEMri
(Xiβi), BLUEMrj

(Xjβj), BLUEMri
(Xriβi) and BLU

EMrj
(Xrjβj), i ̸= j, i, j = 1, · · · , s be as given in (2.8) and (2.9). Then

(a)

Cov{BLUEMri
(Xiβi),BLUEMrj

(Xjβj)} (3.20)

= [Xi, 0][Xri ,ΣrEXri
]†Σr([Xj , 0][Xrj ,ΣrEXrj

]†)′, i ̸= j, i, j = 1, · · · , s

and

Cov{BLUEMri
(Xriβi),BLUEMrj

(Xrjβj)} (3.21)

= [Xri , 0][Xri ,ΣrEXri
]†Σr([Xrj , 0][Xrj ,ΣrEXrj

]†)′, i ̸= j, i, j = 1, · · · , s.

(b) The following statements are equivalent:

(i) Cov{BLUEMri
(Xiβi),BLUEMrj

(Xjβj)} = 0, i ̸= j, i, j = 1, · · · , s.
In this case, BLUEMri

(Xiβi) and BLUEMrj
(Xjβj) is uncorrelated.

(ii) Cov{BLUEMri
(Xriβi),BLUEMrj

(Xrjβj)} = 0, i ̸= j, i, j = 1, · · · , s.
In this case, BLUEMri

(Xriβi) and BLUEMrj
(Xrjβj) is uncorrelated.

(iii)

r

Σr Xrj

X ′
ri 0

=r[Xri ,Σr]+r[Xrj ,Σr]−r(Σ), i ̸= j, i, j=1,· · ·, s.(3.22)

(c) If Σ is positive definite, then the following statements are equivalent:

(i) Cov{BLUEMri
(Xiβi),BLUEMrj

(Xjβj)} = 0, i ̸= j, i, j = 1, · · · , s.
In this case, BLUEMri

(Xiβi) and BLUEMrj
(Xjβj) is uncorrelated.

(ii) Cov{BLUEMri
(Xriβi),BLUEMrj

(Xrjβj)} = 0, i ̸= j, i, j = 1, · · · , s.
In this case, BLUEMri

(Xriβi) and BLUEMrj
(Xrjβj) is uncorrelated.

(iii) r

X ′
iΣ

−1Xj A′
i

Aj 0

 = r(Ai) + r(Aj), i ̸= j, i, j = 1, · · · , s.
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Proof. From (2.8) and (2.9), we have

Cov{BLUEMri
(Xiβi),BLUEMrj

(Xjβj)}

= PXi;Xri
;Σr Î1(i+1)Σr Î

′
1(j+1)P

′
Xj ;Xrj ;Σr

= [Xi, 0][Xri ,ΣrEXri
]†Σr([Xj , 0][Xrj ,ΣrEXrj

]†)′, i ̸= j, i, j = 1, · · · , s

and

Cov{BLUEMri
(Xriβi),BLUEMrj

(Xrjβj)}

= PXri
;Σr Î1(i+1)Σr Î

′
1(j+1)P

′
Xrj ;Σr

= [Xri , 0][Xri ,ΣrEXri
]†Σr([Xrj , 0][Xrj ,ΣrEXrj

]†)′, i ̸= j, i, j = 1, · · · , s.

Applying (2.11), (2.14) and simplifying by EBMOs, we have

r(Cov{BLUEMri
(Xiβi),BLUEMrj

(Xjβj)})

= r([Xi, 0][Xri ,ΣrEXri
]†Σr([Xj , 0][Xrj ,ΣrEXrj

]†)′)

= r


Σr [Xri ,ΣrEXri

] 0[
Xrj ,ΣrEXrj

]′
0 [Xj , 0]

′

0 [Xi, 0] 0

−r[Xri ,ΣrEXri
]−r[Xrj ,ΣrEXrj

]

= r



Σr Xri Σr 0 0

X ′
rj 0 0 X ′

j 0

Σr 0 0 0 Xrj

0 Xi 0 0 0

0 0 X ′
ri 0 0


− r(Xri)− r(Xrj )− r[Xri ,Σr]− r[Xrj ,Σr]

= r

 Σr Xrj

X ′
ri 0

+ r(Σ)− r[Xri ,Σr]− r[Xrj ,Σr].

Hence, Cov{BLUEMri
(Xiβi),BLUEMrj

(Xjβj)} = 0 if and only if

r

 Σr Xrj

X ′
ri 0

 = r[Xri ,Σr] + r[Xrj ,Σr]− r(Σ), i ̸= j, i, j = 1, · · · , s.

Similar to the proof for Cov{BLUEMri
(Xiβi),BLUEMrj

(Xjβj)} = 0, we get the

equivalence of (ii) and (iii) in (b). From (b), we can get the results of (c).

4. Conclusions

In this paper, we have obtained the necessary and sufficient conditions for the
BLUEs of Xβ and Xrβ under the full model Mr to be the sums of the BLUEs of
Xiβi and Xriβi, i = 1, · · · , s under the s small models Mri , respectively. Moreover,
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the expectations, the unbiasedness and the covariance matrices of these BLUEs
were also derived. The process for the additive decompositions of the BLUEs is
mainly based on the theory of generalized inverses of matrices, ranks of matrices
and EBMOs.
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