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LATTICE BOLTZMANN MODEL FOR
TWO-DIMENSIONAL GENERALIZED
SINE-GORDON EQUATION*

Yali Duan'', Linghua Kong?, Xianjin Chen!, and Min Guo®

Abstract The nonlinear sine-Gordon equation arises in various problem-
s in science and engineering. In this paper, we propose a numerical mod-
el based on lattice Boltmann method to obtain the numerical solutions of
two-dimensional generalized sine-Gordon equation, including damped and un-
damped sine-Gordon equation. By choosing properly the conservation condi-
tion between the macroscopic quantity u; and the distribution functions and
applying the Chapman-Enskog expansion, the governing equation is recovered
correctly from the lattice Boltzmann equation. Moreover, the local equilibri-
um distribution function is obtained. The numerical results of the first three
examples agree well with the analytic solutions, which indicates the lattice
Boltzmann model is satisfactory and efficient. Numerical solutions for cas-
es involving the most known from the bibliography line and ring solitons are
given. Numerical experiments also show that the present scheme has a good
long-time numerical behavior for the generalized sine-Gordon equation. More-
over, the model can also be applied to other two-dimensional nonlinear wave
equations, such as nonlinear hyperbolic telegraph equation and Klein-Gordon
equation.
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1. Introduction

During the past few decades, the idea of using lattice Boltzmann method (LBM)
for numerical solutions of time-dependent partial differential equations (PDEs) [14—
18,30, 36,39,40] has received much attention throughout the scientific community.
The LBM is based on microscopic models and mesoscopic kinetic equations which
is different from the conventional numerical schemes based on discretizations of
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partial differential equations describing macroscopic conservation laws [2, 8,24, 31,
34]. The fundamental idea of the LBM is to construct simplified kinetic models
that incorporate the essential physics of microscopic or mesoscopic processes, so
that the macroscopic averaged properties obey the desired macroscopic equations.
Thanks to its advantages in geometrical flexibility, natural parallelity, simplicity of
programming and numerical efficiency, the LBM has made great success in many
fields and extensively been applied to solving numerous problems.

It has seen a considerable growth in the interest for nonlinear partial differential
equations with soliton solutions, such as Korteweg-de Vries [17,40], Klein-Gordon,
and sine-Gordon equations [1,9,19], and also some attentions have been paid to
models which possess soliton-like structures in higher dimensions [19]. The sine-
Gordon equation is known to be a canonical model for a wide variety of physical
systems such as separation of two layers of superconducting material by an isolat-
ing barrier [26], propagation of magnetic flux in Josephson junctions [10], a unitary
theory of elementary particles [11], propagation of ultra-short optical pulses in res-
onant laser media [38], the vacancy dynamics in a polymer crystal chain [41], the
nonlinear dynamics of DNA chain [22], and many others [20].

This paper focused on the numerical computation of the two dimensional time-
dependent nonlinear sine-Gordon (SG) equation. Consider two-dimensional sine-
Gordon equation:
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in the region Q = {(z,y)|a < z < b,c < y < d}. The initial conditions are given by

u(x’:%O) = uo(m,y), %(%,Q,O) = ’Uo(l‘,y), (ac,y) €, (1'2)

while the boundary conditions associated with Eq.(1) will be assumed to have the
forms

ou ou
a. :p(.%',y,t), 871,/ = Q(xvyat) (l’,y) € F7 t> 0» (13)

or

where p(z,y,t)and g(z, y, t)are normal gradients along the boundary T of the region
Q. The function ¢(z,y) may be interpreted as a Josephson current density and
uo(z,y) and vo(z,y) represent wave modes or kinks and velocity, respectively. The
parameter « is the so-called dissipative term, which is assumed to be a real number
with & > 0. When a = 0, Eq. (1) reduces to the undamped SG equation in
two space variables, while when o > 0, to the damped one. For the undamped SG
equation in higher dimensions, the exact soliton solutions have obtained by Hirota
[25] , Lambs method [12], Painlevé transcendents [28] and Bécklund transformation
[29], etc.

Numerical solutions for the SG equation have given by Djidjeli et al. [19] using
a two-step one-parameter leapfrog scheme, Guo et al. [23] using two finite differ-
ence schemes, Xin [38] studing sine-Gordon equation as an asymptotic reduction of
the two level dissipationless Maxwell-Bloch system, Christiansen and Lomdahl [9]
using a generalized leapfrog method and Argyris et al. [1] presenting a semidiscrete
Galerkin approach based on simple four-noded bilinear finite elements in combina-
tion with a generalized Newmark integration scheme, Sheng et al. [37] by a split co-
sine scheme, Bratsos [3] using a three time-level fourth-order explicit finite-difference
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scheme, Bratsos [4] using a modified predictor-corrector scheme, Bratsos [5] using
the method of lines, Bratsos [6] by a third-order numerical scheme. Recently au-
thors of [21] developed the dual reciprocity boundary element method for solving
the two-dimensional damped and undamped SG equations. In [33] researchers stud-
ied the boundary element solution of two-dimensional SG equation using continuous
linear elements approximation. Jiwari et al. [35] proposed a numerical technique
based on polynomial differential quadrature method to find the numerical solutions
of two-dimensional SG equation with Neumann boundary conditions. In this paper,
we present an LBM for the two-dimensional generalized SG equations.

0
Let a—zb = v, Equations (1.1)-(1.2) can be rewritten in the following form
v %u  O%*u
— = — + = R t
ot B(axQ +ay2> + (u’x7y7 )7 (1 4)
9 .
5 =0 Rwyt)=o(y)sinut fluzy.t) - ov
with initial conditions
u(x,y,0) =uo(x,v),
(#,9,0) = uo(z,y) (1.5)
U(.’L‘, Y, O) = UO($7 y)
The conservation condition between the macroscopic quantity % and the distri-

bution functions is chosen properly. The governing equation is recovered correctly
from the lattice Boltzmann equation by the Chapman-Enskog expansion with the
proper time and space scales, and the local equilibrium distribution function is ob-
tained. Numerical predictions agree well with the analytical solutions and other
numerical results.

The paper is organized as follows: Section 2 highlights the lattice Boltzmann
model. The application of LBM to the two-dimensional generalized SG equation is
presented in the section, and the 5-bit lattice Boltzmann model with second order
accuracy of truncation error is obtained. The results of numerical experiments are
reported in Section 3. Section 4 is dedicated to a brief conclusion. Finally some
references are introduced at the end.

2. Lattice Boltzmann model

According to the theory of the lattice Boltzmann method, it consists of two steps:

(i) colliding, which occurs when particles arriving at a node interact and possibly
change their velocity directions according to scattering rules.

(ii) streaming, where each particle moves to the nearest node in the direction of
its velocity.

Usually, with the single-relaxation-time or Bhatnagar-Gross-Krook (BGK) [7]
approximation, these two steps can be combined into the lattice Boltzmann equa-
tion. The evolution equation of the distribution function in the model reads

X, U, t)

fi(x+ e At t + At) — fi(x,t) = —%(fi(x,t) —ffq(x,t))+AtR( P (2.1)
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where f;(x,t) is the distribution function of particles; f;?(x,t) is the local equilib-
rium distribution function of particles; Az and At are the lattice space and time
increments, respectively; ¢ = Axz/At is the particles speed and 7 is the dimension-
less relaxation time; {e;,4 = 0, 1,...b—1} is the set of discrete velocity directions and
the Roman subscript 7 is used to label discrete velocities. Here the 5-speed square
lattice is used in the present study. The velocity vector of particles is defined by

{e; = (eiz, €iy), 1 =0,1,--- ,4} = {(0,0), (¢, 0), (0, ¢), (—¢, 0), (0, —¢)}. (2.2)

Consider a lattice with b—1 links that connect the center site to b—1 neighboring
nodes. It is actually a b-bit model if the rest particles with velocity ey = (0,0)
are allowed at each node. The macroscopic quantity v is defined in terms of the
distribution functions as

o t) = D) = D0 i 1) = Y 77k, 1), (2.3

To derive the macroscopic equation from the lattice BGK model, the Chapman-
Enskog expansion is applied under the assumption of the small Kundsen number €
defined as € = [/ L, where [ is the mean free path, and L is the characteristic length.
The Chapman-Enskog expansion is applied to f;(x,t),

)
fi = fieq + Z €nfi(n) _ fieq + €fi(1) + €2fi(2) 4. (2.4)

n=1

and fi(k) (k = 1,2,...) are the nonequilibrium distribution functions, which satisfy
the solvability conditions

fo’” =0 (k=1,2.). (2.5)

In Eq. (2.1), we also assume that R(u,x,t) is the second order term written as
R(u,x,t) = er(u,x,t). (2.6)

Applying the Taylor expansion to the left-hand side of Eq. (2.1) at the point
(x,t), we have

D0+ er Vo)t o Brec V) oo = o (e t) — £, 1) 27000

(2.7)
Introduce the time scales t; = et,to = €%t, and space scale x1 = ex, then the
time derivation and the space derivation can be expanded formally:

6,5 = 68151 + 628152 5 Vx == val- (28)
Substituting Eqs. (2.4), (2.8) into Eq. (2.7) and retaining terms up to O(€?),
we get the partial differential equations in order of € and €2:
1
1, (2.9)

atl
eq N (1), At o yepea_ Lo r(uxt)
atzfi + (atl +e le)fi + 2 (8t1 +e; le) f1 - TAtfi + b :

(2.10)

(ah +e;- V:q)fieq = -
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Taking (2.9) x € + (2.10) x ¢, summing over ¢, thus, we have

=
=

b—1 b—1
(€01, + €200,) O £ + €V, - (O eiff) + €2 (0r, +ei - Vo )£V
=0

i=0 i=0
2At b—1 b—1 n
+ 5 DO e V) = Ze“(“%’) +0(e%). (2.11)
i=0 1=0

Using Egs. (2.3) and (2.9), we get

b—1 b—1
e £ (u,x,t
Byv+ V- ;e,f"+At 62;@1%1 )1 = 2; el ; UGSV
(2.12)
Let
b—1
D eaff =0, (2.13)
=0
b—1
> (O +ei- Vi, )2 {1 = Mou, (2.14)
=0
and
b—1 b—1
t) R( t)
EQT L (1%, = ¢(x,y)sinu + f(u,z,y,t) — av, (2.15)
=0 =0
where the Roman subscripts [, m denote the Cartesian coordinates x,y.
Applying Egs. (2.9), (2.13) to Eq. (2.14), we get
b—1
PYARTES 628t1(2(3t1 +ei V) i)+ € Zez x1 (O, +€; - Vi, ) [
i=0
b—1 b—1
=0, Vs (O_eif{)+ Y (e Vi) £
i=0 i=0
b—1
= (ei- Vx)’fi (2.16)
i=0

Therefore we obtain the second-order moment equation of the local equilibrium
distribution from Eq. (2.16)

b—1
Z eileianfq = )\U(slm (217)
i=0
Then let )
B =MAHT = 3), (2.18)

the generalized SG (1.1) with the second order accuracy of truncation error is ob-
tained from Eq. (2.12).
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Based on Egs. (2.3), (2.13) and (2.17), the equilibrium distribution functions
for 5-bit model are obtained

eq 2 \u
o=V e, (2.19)
eq _ geq _ peq _ peq _ AU '
1 =l Tl T T 5a¢
In the computational process, we apply backward difference to the item v = 6—1:
as
ou u(x,t) —u(x,t — At)
) = —(x.1) = 2.20
0 t) = 201 N , (2:20)

then using Eq. (2.3), we obtain

u(x,t) = At Y fi(x,t) +u(x,t — At). (2.21)

3. Numerical results

In this section we present some numerical results of the present scheme introduced
above for the two-dimensional generalized SG equation. To illustrate the efficiency
of the LBM, we first present several numerical examples, such as breather solution
and domain wall collision, in comparison with the exact solutions given in bibliog-
raphy. Then numerical solutions for various cases involving two dimensional line
and ring solitons are also reported.

To measure the difference between the exact solution and numerical solution,
we use different error norms for measuring errors. These error norms are defined
as:

1. L, error

Lo = max {‘uE(-riayﬁt)_UN(xhyjatN}a (31)

ITEN,UN) >

2. The root mean square (RMS) error

gL Ilvy]a 7UN(Ilay]7t))2
MS = 2
RMS ;JZ: (n+1)(m+1) ’ (32)

where the positive integers n and m are the number of the lattice in the x-axis and
y-axis direction respectively, u(z;,y;,t) is the exact solution and u™ (z;,y;,t) is
the numerical solution at the point (z;,y;,t).

3.1. Test problem

Example 3.1. We present some numerical results of 5-bit lattice Boltzmann model
for the generalized two-dimensional sine-Gordon equation with homogeneous Dirich-
let boundary conditions and initial conditions. To observe the behavior of the nu-
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merical method, it was tested on the following problem [13,32]

0? 0 02 0?

87151; + 371; = (611; + 3;;) — 2sinu + 2sinfe (1 — cos wz)(1 — cos Ty)]

—72(cos x + cos Ty — 2 cos Tx + cos TY),

u(z,y,0) = (1 —cosmz)(l —cosmy), 0<x,y<2, (3.3)

0

%(x,y,O) =—(1—cosmx)(l —cosmy), 0<z,y<2,

w(0,y,t) = u(2,y,t) = u(x,0,1) =u(z,2,t) =0, 0<zy<2.

That is, the domain is [0,2] x [0,2], and the theoretical solution is taken as
u(z,y,t) = e (1 — cosmz)(1l — cosmy). In our numerical results, we let Az =
0.01,At = 0.001, and 7 = 1. The errors in the L., norm and root-mean-square
(RMS) of errors at different times are given in Table 1. Fig. 1 displays numerical
solutions for ¢ = 0.5 and ¢ = 1 and also shows the graph of absolute error at
t = 1. For this example, Cui [13] proposed a high order compact Alternating
Direction Implicit scheme and researchers in [32] developed a space-time spectral
method, which is based on the Legendre-Galerkin spectral method in space and the
spectral collocation method in time. The numerical results are not better than those
obtained in [13,32], because the LBM is of second-order accuracy in space. We can
see that the LBM, an unconventional numerical method, is efficient for studying
the generalized SG equation.

Table 1. L., norm and RMS of errors at different times.

t L error RMS error |t L error RMS error
0.1 | 1.1823E-004 5.7123E-005 | 0.6 | 2.5382E-003 7.2846E—004
0.2 | 3.6026E-004 1.6437E—004 | 0.7 | 2.8782E-003 8.2492E-004
0.3 | 8.3158E-004 3.1627E-004 | 0.8 | 2.9668E-003 9.1309E-004
0.4 | 1.4261E-003 4.7358E—-004 | 0.9 | 2.7847E-003 9.9976E-004
0.5 | 2.0227E-003 6.1325E-004 | 1 2.3837E-003 1.0817E-003

3.2. Breather solution and domain wall collision

In the following two experiments, we consider SG equation (1.1) with parameter
a =0, 8 =4 functions ¢(x,y) = —1, f(u,z,y,t) = 0 and the domain (z,y) €
[—30, 30] x [—30,30] That is

(3.4)

o _, (0
ot? 0x?

+82u> sinu
o) T

In our numerical experiment, we let Az = 0.2, At = 0.002, and 7 = 1. The
5-bit lattice Boltzmann model is tested for the SG equation (3.2) in large domain
to show the good long-time numerical behavior.

Example 3.2 (Breather solutions). Breather solutions describe bound pairs of
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Figure 1. LBM solutions for ¢t = 0.5 and ¢ = 1 and the absolute error at ¢t = 1.

domain walls. Consider SG equation (3.2) with initial conditions

u(z,y,0) = —4arctan(sechAsin B),

—92v/2tanh A sechAsin B + 4 sechA cos B
U(ﬂf,yao) = 2 (35)
1 + sech?Asin® B
V2

1

The analytical solution of this example is given in [27] by
: V2
u(z,y,t) = 4arctan | sin(t — 0.25z — 0.25y) sech T(Qt —z—y)|]. (3.6)

Lo, and RMS errors are computed for different values of t and reported in Table
2 with Az = 0.2, At = 0.002, and 7 = 1. Fig. 2 displays the simulation of the
breather solution with the LBM in times ¢t = 5,7 and 10.

Table 2. L., and RMS errors of solutions for the breather solution at different times.

Error t=1 t=3 t=5 t=7 t=10

L 4.2579E-003  1.3424E-002 2.6397E-002 3.1883E-002 5.8423E-002
RMS | 6.3971E-004 1.9192E-003 3.5543E-003 4.6949E-003 6.1691E-003

Example 3.3 (Domain wall collision). Consider SG equation (3.2) with initial
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t=0

Figure 2. LBM solutions for the breather solution at ¢ = 5,7 and 10.

conditions
u(x,y,0) = —4arctan(1.5 sechA sinh B),

—3.6v/5 tanh A sechA sinh B + 2.4v/10 sechA cosh B

) 30 = 5 .

v(z,y,0) 1+ 2.25 sech?Asinh? B (3.7)
3v5 1

A = — B = — .

The analytical solution of this example is given in [27] by

u(z,y,t) = 4arctan (1.5 sinh (\{_1—00(475 —z— y)) sech <¥(2t - — y))) .

(3.8)
Table 3 shows the L., and RMS errors in solutions for different times ¢ = 1, 3,5, 7, 10.
Fig. 3 displays the simulation of collision of two domain walls with th LBM at
t = 5,7 and 10. In this example, we also see that the LBM is an efficient method
for studying the SG equation with collision of two waves.

Table 3. L., and RMS errors of solutions for the domain wall collision at different times.

Error t=1 t=3 t=5 t=7 t=10

Lo 2.0837E-002 4.4434E-002 5.1090E-002 4.9758E-002 4.8267E-002
RMS | 1.8736E-003 3.8194E-003 5.2179E-003 6.0985E-003 6.6005E-003

In all the following experiments, the Neumann boundary conditions are taken

to be

ou ou
%h—‘ - Oa

and parameter 8 = 1, function f(u,z,y,t) = 0.

=0, (3.9)
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t=5

Figure 3. LBM solutions for the domain wall collision at ¢ = 5,7 and 10.

3.3. Line soliton

Example 3.4 (Perturbation of a line soliton). A static line soliton is perturbed
to produce two symmetric dents moving towards each other with a constant unit
velocity. According to [1,5,9,21], the dents collide and continue with the same
velocity and no shift occurs. Perturbation of a single soliton has been calculated
for a = 0.05 and ¢(x,y) = —1 with the initial conditions

u(z,y,0) = 4arctan{exp[z + 1 — 2 sech(y + 7) — 2 sech(y — 7)]}, wv(zx,y,0) =0,

over the region —7 < x,y < 7. Perturbation of a single soliton has been depicted in
Fig. 4 in terms of sin(u/2) at ¢t = 2,7 and 11 with At =0.01, Az =0.1 and 7 = 1.
The numerical results in Fig. 4 show, two symmetric dents moving toward each
other, collapsing at ¢ = 7 and continuing to move away from each other thereafter.
It can be deduced that after the collision the dents retain their shape, which verifies
the conclusions of [1,5,9,21].

Example 3.5 (Line soliton in an inhomogeneous medium). A model for an in-
homogeneity on large-area Josephson junction is given by the Josephson current
density ¢(z,y) = —(1 + sech®y/22 + 42), and the initial conditions

r—3.5
u(z,y,0) arctan (exp ( 0054 )) , (3.10)
T —3.5
= 0.62 h _— A1
v(z,y,0) = 0.629 sec <exp< 0954 )), (3.11)

over the region —7 < x,y < 7. Numerical results are presented in Fig. 5 for « = 0.05
in terms of sin(u/2) at t=6, 12 and 18 with At = 0.01, Az = 0.2 and 7 = 1. The
results in Fig. 5 show that the line soliton is moving in direction x as a straight
line during the transmission through inhomogeneity. As can be seen from Fig. 5
when t tends to 12 a deformation in its straightness appears. After t tends to 12
until ¢ = 18 this movement seems to be prevented, while when ¢ = 18 the soliton
recovers its straightness. Christiansen and Lomdahl [9], claimed that this was due
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Figure 4. Initial condition and numerical solutions at

soliton.

times t = 2,7 and 11 for perturbation of a line
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to the boundary conditions used. This phenomenon was observed in [5,9,19,21].
For a large value of «, transmission of the line soliton across inhomogeneity was
found to hardly move the soliton from its initial position (¢ = 0), the dissipative
term is slowing down the evolution of the line soliton as time increases. The graphs
are in agreement with those given in [35].

t=0

sin(u/2)

o
S
2
£
@

Figure 5. Initial condition and numerical solutions at times ¢t = 6,12 and 18, for line soliton in an
inhomogeneous medium.

3.4. Ring soliton

Example 3.6 (Collision of two circular ring solitons). The collision between two

circular solitons is considered for ¢(x,y) = —1 and initial conditions [19]
u(z,y,0) = 4arctan | ex A= V@t + (y+ 1) (3.12)
i P 0.436 ’ '
4— 3)2 7)2
v(x,y,0) = 4.13 sech (exp ( \/(m —B 4)36+ (y+7) )) ; (3.13)

over the region —30 < z < 10, —21 < y < 7. The numerical results are presented
in Fig. 6 for a = 0.05, Az = 0.2, At =0.02and 7 =1 at t = 4,8 and 11 in terms
of sin(u/2). The solution is extended across x = —10 and y = —7 by symmetry
relations. The results in Fig. 6 show the collision between two expanding circular
ring solitons in which, as a result of the collision, two oval ring solitons bounding
an annular region emerge into a larger oval ring soliton. For a large value of «, it



LB model for 2D generalized sine-Gordon equation

1657
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-20
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sin(u/2), t=4

t=4

(zmuis

Figure 6. Initial condition and numerical solutions at times ¢ = 4,8 and 11 for collision of two circular

ring solitons.
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is found that the dissipative term is slowing down the two initial ring solitons to
emerge into a larger oval ring soliton. For example, with a@ = 5 the two ring solitons
at time ¢t = 11 still look like those given at t = 1.5 for a = 0.05. For see this, we
draw the contours of numerical solution at t = 8 for « = 0.05,0.5,1.5, and 2.5 in
Fig. 7. The results are in good agreement with those given in [19,21,33].

a=0.05 a=0.5

__30”“_20””_10””0””10

Figure 7. The contours of numerical solutions at time t = 8 for « = 0.05,0.5,1.5 and a = 2.5, for
collision of two circular ring solitons.

Example 3.7 (Collision of four circular ring solitons). Finally, a collision of four
expanding circular ring solitons is investigated for ¢(x,y) = —1 and initial condi-
tions [19,21,33]

u(z,y,0) = 4arctan (exp (4 — \/(m 32+ (y+ 3)2>> , (3.14)

0.436

o(z9,0) = 413 sech (exp (4 SR AR 3)2>> L 61

over the region —30 < z,y < 10. The solution was found over one-quarter of
the domain and then it was extended across + = —10 and y = —10 by symmetry
relations. The numerical results are depicted in Fig. 8 for « = 0.05, Ax = 0.2, At =
0.02and 7 =1 at ¢ = 2,4,7 and 9 in terms of sin(u/2), from which observations
similar to those related to the collision of two expanding circular ring solitons may
be made.
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Figure 8. Initial condition and numerical solutions at times ¢t = 2,4, 7 and 9 for collision of four circular
ring solitons.

The present method is based on the microscopic model using 5-speed square
lattice and mesoscopic kinetic equation (2.1). The model is simple and conservative
and it is easy to program. The nonlinear terms can naturally be added to the
lattice Boltzmann equation as a source term. It has been seen that, for the case
where the exact solution is known, the numerical results demonstrate the numerical
efficiency of this scheme. These results supported the confidence in applying this
method to problem (1.1) in which the theoretical solution is not known. The effect
of the dissipative term in the solution of the sine-Gordon equation has been studied
numerically, which corresponds to the physically relevant effect.

4. Conclusions

In this paper, a new lattice Boltzmann model for two-dimensional generalized SG
equation is proposed. By choosing properly the conservation condition between the
macroscopic quantity u; and the distribution functions and applying the Chapman-
Enskog expansion, the governing equation is recovered correctly from the LBE and
the local equilibrium distribution is obtained. In order to illustrate the efficiency
of the proposed method, comparisons are made with the exact solutions in the
first three examples. It is evident from the numerical section that LBM results
are in agreement with the exact solution. Numerical solutions for cases, involving
perturbation of a line soliton, line soliton in an inhomogeneous medium, collision
of two and four circular ring solitons, are reported. Numerical experiments also
show that the present scheme has a good long-time numerical behavior for the
generalized SG equation. The method fully satisfies the physical behavior of the
nonlinear models.

Finally, we point out that the method in this paper can also be applied to other
two-dimensional nonlinear wave equations, such as nonlinear hyperbolic telegraph
equation and Klein-Gordon equation. There are many problems to be solved to
develop this model as a tool of simulating nonlinear partial differential equation.
We would discuss these problems in further work.
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