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Abstract In this paper, the fourth-order time fractional Burgers equation
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flow. By employing the Lie group analysis method, the invariance properties
of the equation are provided. With the aid of the sub-equation method, a
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1. Introduction

It is well known that partial differential equations (PDEs) play an important and
central role in many fields. Lie theory of symmetry group provides a systemic,
general and efficient method to study PDEs. This theory is mainly used to study
the similarity reductions, group invariant solutions and the conservation laws. It
was first introduced by the Norwegian mathematician Sophus Lie in the early 19th
century, which has been made great progress in PDEs [4,5,7-9, 20,26, 33, 34,48, 56].

Recently, Gazizov and his collaborators [16] proposed the symmetry analysis
of fractional-order partial differential equations (FPDEs) and the fractional deriva-
tives. The study of FPDEs through symmetries is quite interesting and signifi-
cant [10,12,18,19,69]. In Ref. [31], the symmetry theory and conservation laws of
differential equations requiring existence of Euler-Lagrange equations are connected
by the famous Noether theorem. The fractional generalizations of Nother’s theorem
are proposed to find conservation laws of FPDEs [1,6,15,29,32]. However, it is al-
ways invalid for many FPDEs with fractional generalizations. On the basis of new
conservation law theorem firstly proposed by Ibragimov [21], Lukashchuk provided
the generalized fractional Noether operators and derived conservation laws for time
fractional subdiffusion and diffusion-wave equations [25]. Lukashchuk made an im-
portant step forward obtaining conservation laws for FPDEs that do not possess
fractional Lagrangians. In addition, to our knowledge, conservation laws of some
FPDEs have been considered by making use of the generalized fractional Noether
operators [17,68].

In this paper, we will consider the following fourth-order time fractional Burgers
equation

D u + bugy + 10bugug, + 4buug, + 12buui + 6buugy + 4budu, =0, (1.1)

where b is an arbitrary constant, and o (0 < « < 1) is a parameter describing
the order of the fractional time-derivative. Taking o = 1, the fourth-order Burgers
equation has firstly been proposed in Ref. [57,58]. The function u(z,t) is assumed to
be a causal function of time and Dj'u is the Riemann-Liouville fractional derivative
defined by Jumarie [22]

o™u
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Diu = (1.2)

where the Euler gamma function I'(z) is defined by the integral I'(z) = [~ e~"t*~1dL,
which converges in the right half of the complex plane Re(z) > 0.

To the best of our knowledge, much research have been done for integer order of
the fourth-order Burgers equation with integer order, but there is no work reported
to solve Eq. (1.1) with 0 < o < 1. The main purpose of this paper is to study the
Lie symmetry analysis, symmetry reduction and exact solutions of the fourth-order
time fractional Burgers equation (1.1). Moreover, conservation laws of Eq. (1.1)
are also constructed.

The structure of the paper is as follows. In Sec.2, some properties analyzing
FPDEs are introduced by using Lie group method. We further study the symmetry
group of Eq. (1.1). The associated symmetry reductions of Eq. (1.1) are investigat-
ed in Sec.3. In Sec.4, a new type of explicit solutions and power series solutions of
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Eq. (1.1) are derived. Furthermore, conservation laws of Eq. (1.1) are constructed
by making use of the new conservation laws theorem and the fractional Noether
operators in Sec.5. Finally, some conclusions and discussions of the main results
are presented.

2. Lie symmetry analysis

In this section, we briefly review the main procedure to deal with symmetries for
FPDEs. First of all, let’s consider the symmetry analysis for a FPDE of the form
0“u
%zF(a:,t,u,ux,um,...). (2.1)
Eq. (2.1) is invariant under a one-parameter Lie group of point transformations
t* =t +er(z,t,u) + O(?),
ot = 1w+ ef(x,t,u) + O(e?),
u* =u+en(w,t,u) + O(e?)

b

g;j = gi:: +end(z,t,u) + O(e?),

% = ZZ +en”(x,t,u) + O(e?),

% = % +en™ (x,t,u) + O(e?),

% = % + en® (x,t,u) + O(e?),

O O e (o) + O, 22)

where ¢ is the group parameter, and ¢, 7, 7 are infinitesimals and n®!, n'*(i =
1,2,3,4) are extended infinitesimals. The explicit expressions of n** are given by

0" = Dy(n) — uz Dy (&) — us Dy (7),
77296 = Dx(n”) - uthw(T) - Usz(f)a (2.3)
n?)x = Dm(nzaj) - uzztD:v(T) - uzzsz(f)a ey

where D, denotes the total derivative operator which is defined by

0 0 0

and the associated vector field of the form

0 0
V= T(zvtvu)ﬁ + S(Iaau)i =+ W(Ivt’u) 8’[1,7

Ox
with the coefficient functions &(x,t,u), 7(x,t,u) and n(z,t,u) of the vector field
being determined later. The infinitesimal invariance criterion for Eq. (2.1) can be
written as

(2.5)

PrVV(A)|aze =0, (2.6)
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where A = aafj — F(z,t,u, 4z, Ugg, . . .). Based on the transformations of the form
(2.2) which conserve the structure of fractional derivative operator (1.2), in (1.2)
the lower limit of the integral is fixed and it should be invariant with regard to

transformation (2.2). The invariance condition yields
T(z,t,u)|t=0 = 0. (2.7

According to [16], the ath extended infinitesimal with the Riemann-Liouville frac-
tional time derivative (2.7) has the following form

= D (n) + €D (us) — Di(§us) + DYt (De(r)u) = DfF (ru) + 7D (u), (2.8)

where Djf* is the total fractional derivative operator. By using the generalized
Leibnitz rule [30]

DRf(g®)] =Y (7)) Dy~ " f(H)DPg(t), a >0, (2.9)
n=0
where (%) = %%, (2.8) can be rewritten as
= D?(’)’])—OéDt( ato‘ g DO‘ ” ua: Dn g n+1 Da n )D;L (7_)
(2.10)
In view of the generalization of the chain rule for composite functions [35]
a"f(x(1) _ SN (C)

On account of the chain rule (2.11) and the generalized Leibnitz rule (2.9) with
f(t) =1, one can obtain

@ aaﬁ aa aanu aanu a—n

G a n k l e T am k—r a" m+kn
Z () () () e F(n—i—l—a)[ Y 6t7’b[u ]at"—mﬁuk'

(2.13)
Therefore, (2.10) can be rewritten as
0%n 0%u 0%n
at = —_— D - X
ata +(77u « t<7—)) ata u ata +/’1/
= [e% aanu @ =
#3000 G () D) D0 = 3 () DRODE )
n=1 n=1
(2.14)

By using the above Lie symmetry analysis method of FPDEs, we investigate the
fourth-order time fractional Burgers equation (1.1) and get the following theorem.
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Theorem 2.1. The symmetry group of the fourth-order time fractional Burgers
equation is spanned by the following vector fields

0 0 4t O 0
=g Tt T oa Yo

Proof. Applying the fourth prolongation of the infinitesimal generator (2.5) to
Eq. (1.1), one can get the determining equation

(2.15)

N 4 (4busy + 12bu? + 12buug, + 12buu,)n + (10bug, + 24buu, 4 4bu)n®
+ (10buy, + 6bu®)n** + 4bun®® + bn** = 0. (2.16)
Substituting (2.3) and (2.14) into (2.16), and equating the coefficients of the various

monomials in partial derivatives with respect to & and various powers of u, one can
find the determining equations for the symmetry group of Eq. (1.1) as follows

{tzfuzﬁmzo, Tz = Ty = 0,
nw:nuuzoy aTt_4£a::07
(ari + 1y — 28)u+n=0, (ar—3&)u+n=0,

(o =26 )u+2n=0, (o —&)u+3n=0, (2.17)
oty + My — 3§JL = 07
«@ annu @ n
(’ﬂ) atn _(n+1)Dt+1(T):07 fOI‘ n:1,2,....
Solving above equations, we obtain the coefficient functions
4
E=cox+c1, T= ﬂt, n = —cou, (2.18)

Q@

where ¢g and ¢; are two arbitrary constants. Thus, the explicit expression of the
infinitesimal operator is given by

0 460 0 0
_ = — 2.1
v (60I + 61)89[: + o ot Couau, ( 9)
and the Lie algebra of Eq. (1.1) is spanned by the two vector fields (2.15). O

3. Similarity reductions

In this section, we derive the similarity reductions for the fourth-order time frac-
tional Burgers equation from the corresponding vector fields.

3.1. For the symmetry
The invariant solution is of the form
u(z,t) = h(t). (3.1)

Substituting (3.1) into Eq. (1.1) yields the reduced fractional ordinary differential
equation (ODE)
d*h(t)

=0. 3.2
e (3.2)

Accordingly, we have the invariant solution by
uw=ct*!, (3.3)

for arbitrary constant c.
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3.2. For the symmetry V,
For the symmetry of V5, we get the characteristic equation

dzx adt du
—_— = =—— 3.4
T 4t u (3-4)

and the corresponding invariants are
E=at™%, u=t"1g(&). (3.5)

Through the above discussion, we can find that (1.1) can be reduced to a nonlinear
ODE of fractional order with a new independent variable £ = xt~%. Consequently,
one can get the following theorem.

Theorem 3.1. Under the transformation (3.5), Eq. (1.1) can be reduced to the
following nonlinear ODE of fractional order

5a

1-22 n—ao
(Pé 4 g) (§) +bgae 4 10bge gae +4b9935+12bgg§+6bg2g25+4bg3g£ =0, (3.6)

with the Erdélyi-Kober fractional differential operator Pg’a of order

1 d .
(P5eg) =15 <T+j 5%) (K57 9) (©). (3.7)
where
(ng) (€)= ﬁ G 1)ty T g(guF)du, a >0, 33)
5 = :
g(g , = 0

1s the Erdélyi-Kober fractional integral operator, and

al+1, a€N,
n = o] (3.9)
a, a¢ N.
Proof. Let n —1 < a < n, n =1,2,3,.... Based on the Riemann-Liouville

fractional derivative, one can have

aau 8" 1 ¢ n—a—1 —<« —=
Gto‘_ﬁt"{l—‘(n—a)/o(ts) s g(xs )ds]. (3.10)

Letting v = £, one can get ds = = dv, therefore (3.10) can be written as

0“u a" 5a 1 e 5a a
_ i _1)n—a-1 —(n+1-2¢) ) d
ote otn [ F(’I’L — a) /1 (U ) v g (fv ) v

13

= [ (K457 ) ©)] (3.11)

@

Considering the relation £ = xt 3, we can obtain

5010 =t (<5) 1719 (©) =~ 0(0) (312)
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Therefore, one can get

13

g [ (K 70) @] = g [ (7% (5770) )

[ ke 5 d 2 nma
=t {t ¢ (n — ZO‘ — %gd? X (Ki g) (g))} . (3.13)

Repeating the similar procedure as above for n — 1 times, one can obtain

1

oo [ (K5 0) ©)] = g [ 7 (7 (679) )]
e (s 0)
| L (1 — - 45%) (K" ) (©). (3.14)

Now using (3.7), we get

am n— 5o 1-gn—a .11 I—STO‘,n—oc
2o (o] - F ()0
Substituting (3.15) into (3.11), one can get
o0“u 5o 1757"‘,71704
el (5 9) (&), (3.16)

Thus, the fourth-order time fractional Burgers equation can be reduced into a frac-
tional ordinary differential equation

1-3%2 n_o
(PA ‘ g) (€)+bgae +10bge goe +4bggse +12bggg +6bg® gac +4bg’ge = 0. (3.17)
This complete the proof. O

4. Explicit solutions and power series solutions

As is well known to us, the fractional sub-equation approach is widely used to
construct the explicit solutions of FPDEs. In this section, based on the fractional
sub-equation approach and the power series method [3,60,69, 73], explicit solutions
and a kind of power series solutions for Eq. (1.1) are well constructed with a detailed
derivation.

4.1. Explicit solutions

In this section, in order to deal with the fourth-order time fractional Burgers e-
quation (1.1), we will apply the fractional sub-equation method. According to the
steps in Ref. [69], first we introduce the following transformation

u(z,t) = u(&), {=x+ct+&, (4.1)

in which ¢ is a constant. Substituting (4.1) into (1.1), then (1.1) can be reduced to
the following nonlinear fractional ordinary differential equation (NFODE)

c*Dgu + buge + 10buguge + dbuuge + 12bung + 6buuse + 4bu’ue = 0. (4.2)
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We assume that Eq.(4.2) has the following solution
u(€) =ao+ Y ai() (4.3)
i=1

in which a;(i = 1...n) are constants to be determined later. Balancing the highest
order derivative terms with nonlinear terms in Eq. (4.2), one has n = 1. Then, Eq.
(4.2) has the following formal solution

u(€) = ag + a1(¢). (4.4)

Inserting (4.4) along with the fractional Riccati eqaution Dg¢(§) = o + »%(€) into

(4.2) and then taking the coefficients of (¢)" to be zero, one can get a series of
algebraic equations about ¢, ag, a;. Solving the algebraic equations by Maple, we
obtain

b="b, c= (4ba,o — 4ba(3))é,

a=«aq, o=0, ag=agy, a;=—1. (4.5)
In view of (4.5), we can get new types of explicit solutions of Eq. (1.1) as follows

uy = ag + v/—o tanh(—/—c¢,a), o <0,
ug = ag + v/ —o coth(—y/—a€,a), o <0,
uz = ag — Vo tan(v/o&, ), o >0,
uy = ag + o cot(vol, a), >0,
I'l+a«)

= 4-
e 0 =0. (4.6

Us = ag —+
in which & =z + ¢t + &, with ¢ given by (4.5).
In order to help us analyze the properties of the explicit solution well, the graphic

of the explicit solutions (4.6) are plotted by choosing the appropriate parameters
(see Figs.1-4).

Figure 1. (Color online) Explicit solution u; in system (4.6) for Eq. (1.1) with suitable parameters:
ap =1, b =1, 0 = =1, a = 1. (a)Perspective view of the real part of explicit solution. (b) The
overhead view of the solution. (c¢) The wave propagation pattern of the wave along the z-axis with
t = —5 (superposed green line), t = 0 (solid red line), t = 5 (dashed yellow line).
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Figure 2. (Color online) Explicit solution us in system (4.6) for Eq. (1.1) with suitable parameters:
ap =1, b=1 0 = —1, @« = 1. (a) Perspective view of the real part of explicit solution. (b) The
overhead view of the solution. (c¢) The wave propagation pattern of the wave along the z-axis with
t = —5 (superposed green line), ¢ = 0 (solid red line), t = 5 (dashed yellow line).

Figure 3. (Color online) Explicit solution ug in system (4.6) for Eq. (1.1) with suitable parameters:
ap =1, b =1, 0 = 2, a = 1. (a) Perspective view of the real part of explicit solution. (b) The
overhead view of the solution. (c) The wave propagation pattern of the wave along the z-axis with t = 2
(superposed green line), t = 3 (solid red line), t = 5 (dashed yellow line).

-20 |

-409 |

-0.8-0.6-0.4-0.2 g 02 04 06 08 1

(c)

Figure 4. (Color online) Explicit solution uy in system (4.6) for Eq. (1.1) with suitable parameters:
ap = 1,b =1, 0 = 2, a = 1. (a) Perspective view of the real part of explicit solution. (b) The
overhead view of the solution. (c) The wave propagation pattern of the wave along the z-axis with t = 2
(superposed green line), t = 3 (solid red line), t = 5 (dashed yellow line).

4.2. Power series solutions

Based on the power series method and symbolic computations [11,13,14,27,28, 36—
47,49-54,59,61-67,70-72], we will construct the power series solutions of Eq. (1.1).
We first introduce a very important transformation

wt®
u(z,t) =u(f), &=kr— INTE) (4.7)
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where k, w are arbitrary constants. Substituting (4.7) into (1.1), Eq. (1.1) can be
transformed into the following nonlinear ODE

—wug +k* buge + 10k buguge +4k> bunge + 12k buu +6k"bu use +4kbu’ue = 0. (4.8)
Integrating Eq.(4.8) with respect to £, we obtain
— wu + k*buze + 4k buuge + 3k3bug + 6k*buug + kbu* 40 = 0, (4.9)

in which § is an integration constant. Then we suppose that the solution of Eq.
(4.9) has following form

U= Z sn&", (4.10)
n=0

where s,(n =0,1,2,...) are constants to be known later. Substituting (4.10) into
(4.9), we obtain

—w Z $p€™ + kb Z(n +1)(n+2)(n+ 3)s,43E"

n=0 n=0

HAEDDY N (1= k) (n 42 — k)sksnia- k" + 3k%D

n=0k=0

oo n

Z Z n—k+1)(k+1)sgtr18n—k+1&"

n=0 k=0

+ 6k%D Z Z Z(n +1—k)s;jskjSns1-kE"
n=0 k=0 j=0

0o 4
+ kb (Z sn§"> +0=0. (4.11)
n=0

When n = 0, by comparing coefficients of £, we obtain

S3 = (wso — 8k3bsgsy — 3kbsT — 6k*bsgsy — kbsg — 0) . (4.12)

1
6k1b

When n > 1, we have

1 n
s = kE4b(n+1)(n+2)(n+3) e kz::o(n+ )(n+ )SkSni2k
n n k
8 Z(n_k+1)(k+l)sk+1sn7k+l_6k2bzZ(n"‘l_k)sjskfjsnﬂ—k
k=0 k=0 j=0
kD Snlsnzsnssnj ' (4.13)
ni+nz2+nz+ns=n

Thus, any coefficient s, (n > 3) of Eq. (4.10) are determined by the arbitrary
constants sg, s1, S2,w, k,b. It implies that there is a power series solution for Eq.
(4.9), and its coefficients rely on (4.12) and (4.13). Furthermore, we find it easy
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to prove the convergence of the power series solution (4.10) with the coefficients
depend on (4.12) and (4.13). Therefore, it is clear that the solution to Eq. (4.9) is
a power series solution of Eq. (1.1).

So the power series solution for Eq. (4.9) can be rewritten as follows

u(€) =s0 + 516 + 528% + 836% + Y 43"

n=1

1

a7y, (W0 =8k bsosy =3k bs] — 6k%bsis1 — kbsy—0) €7
- 1

+nZ::1 E4b(n+1)(n+2)(n+3)

=s0+81&+828%+

X {wsn — 430 Z(n—H —k)(n+2—k)skSnta—k
k=0

=3k° > (n—k+1)(k+1)sp8nkn

k=0
n k
—6k2bz Z(n—i—l—k)sjsk,jsnﬂ,k—kb Z Sny SnySnzSn, ents,
k=0 j=0 nitnotngtng=n
(4.14)
Thus, we obtain the power series solution for Eq. (1.1) as follows
wt® wt® 2
u(§) =so + s1 (kxf Tta) —|—a)> + s2 (kmf 71—‘(14—01))
1 wt® 3
+ m ((A.)S() — 8]4)3()3082 - 3k3b8§ - 6k2bsgsl — kbsé — 6) (k‘(l] - m)
- 1 3, 3
n—4 1-— 2— 2k —
+,; R ) (n s 2 (nr3) (ws k ka:O(n—i— k)(n+2—k)SkSntak—3k"D
n n k
X Z(n —k+1)(k+1)Sktr1Sn—k+1 — 6k2bz Z(n +1—k)S;Sk—jSnt1—k
k=0 k=0 j=0
wt® nt3
—kb Z 8n13n25n38n4) (kzw — m) , (4.15)
ni+nz+nz+ng=n

in which sg,s1, s2, k, b and w # 0 are arbitrary constants, the other coefficients
Sn(n > 3) depend on (4.12) and (4.13). Based on the above analysis, the following
assertion is easily established.

Theorem 4.1. Fq. (1.1) admits the following power series solution
=S s, (ke — "), 416
)= s (ko= ey (4.16)

where sg,s1, S2, k, b and w # 0 are arbitrary constants, the other coefficients

Sn(n > 3) rely on (4.12) and (4.13).

The graphical representation of the power series solutions are plotted in Figs.5-7
by choosing the appropriate parameters. Figure 5 shows the power series solution
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in system (4.15) when n = 0. Figure 6 shows the power series solution in system
(4.15) when n = 1. Figure 7 shows the power series solution in system (4.15) when
n=4.

10 6

1 084%6-04-020 0.2 0.4X0.6 08 1
5 10
24

(b) (c)

-10 -5

xo

Figure 5. (Color online) Power series solution u in system (4.15) for Eq. (1.1) by choosing suitable
parameters: so = 1,81 = 2,82 = 1,83 =2,k =1,w=1,I'=1,a = 1. (a) Perspective view of the real
part of explicit solution. (b) The overhead view of the solution. (c¢) The wave propagation pattern of
the wave along the x axis.

500000
400000
u30\)000
200000
100000

-10

Figure 6. (Color online) Power series solution u in system (4.15) for Eq. (1.1) by choosing suitable
parameters: so = 1,81 = 2,80 = 1,83 = 2,84 = 3,k = 1,w = 1,I' = 1, = 1. (a) Perspective view
of the real part of explicit solution. (b) The overhead view of the solution. (c¢) The wave propagation
pattern of the wave along the z axis.

-1, -1 05 O 05 1715
10 5 9 5 10 ;/ 0] M
(b) ()

Figure 7. (Color online) Power series solution w in system (4.15) for Eq. (1.1) by choosing suitable
parameters: sop = 1,81 = 2,85 = 1,83 = 2,84 = 3,85 = 1,86 = 4,s7 =4, k=1Lw=1,T=1,a=1.
(a) Perspective view of the real part of explicit solution. (b) The overhead view of the solution. (c¢) The
wave propagation pattern of the wave along the z axis.
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5. Conservations Laws

In this section, conservation laws with two kinds of independent variables of the
fourth-order time fractional Burgers equation (1.1) are derived by means of the Lie
symmetry.

5.1. Preliminaries of Conservations Laws

Based on the Riemann-Liouville left-sided time-fractional derivative [2, 23,24, 55],
we get
oDfu = D} (o1 %u), (5.1)

where D, is the operator concerning t of differentiation, n = [a] + 1. In addition,
the definition of ¢I;'” “u is given as follows.

Definition 5.1. The left-sided time-fractional integral of order oD}~ “u is defined
by

(oI1u)(z,t) = F(n{a)/o c “(99);$2L+ad9, (5.2)

where I'(z) is the Gamma function.

Definition 5.2. Assume that a vector C = (C*, C%) admits the following conser-
vation equation

Dy(C*) 4+ Do (C%)|(1.1) = 0, (5.3)

where C* = C!(t,z,u,...) and C® = C*(t,z,u,...). The vector C = (C*,C?) is
called a conserved vector for Eq. (1.1). Firstly, a formal Lagrangian for Eq. (1.1)
can be written in the following form

L = v(z,t)[u 4 bugy + 10bugug, + dbuuszy + 12bun? + 6bu*ug, + 4buu,)], (5.4)

where v(x,t) is a new dependent variable. Considering the previous Lagrangian,
we get an action integral as follows

T
/ / L(z,t,u,v, D (u), uy, . . .)dzdt. (5.5)
0 Ja

Similar to the case of integral-order nonlinear differential equations [16], the adjoint
equation is available. So we have adjoint equation to Eq. (1.1) as Euler-Lagrange
equation
oL
Su

The definition of the Euler-Lagrange operator is obtained as follows.

0. (5.6)

Definition 5.3. The Euler-Lagrange operator is defined by [16]

0 0 0 0

vk 0 0
7:7+(Dt) .

0
- D, D? - D3 D ,
0D Ouy T Ouay * Ousy T OUay

(5.7)

where (Dg)* denotes the adjoint operator of (D).
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Let us consider the Riemann-Liouville differential operators
(D) = (=1)"17~*(D}) = (D9)i (5.8)

where 7.7 is the right-sided operator of fractional integration of order n—a«, (D$){
is the right-sided Caputo operator, and I7.~ is defined by

1 T flna)
77 f(t,x) = d d = 1. 5.9
P = fome | G iedn n=lal+ (59)
Taking into account of the case of variables ¢, z, and u(z,t), we get
— )
X + Dy(T)l + D, (&)l = W% + DyN' + D, N*, (5.10)
where [ denotes the identity operator, = is the Euler-Lagrange operator, and the

Noether operators are provided by N, N  respectively. In addition, X is defined
by

— 0 0 0 0 0 0 1o}
X = 71— -~ T 2x 3x 4x 11
™ +5 2 150 P pe T g 0 e T gy O
and W is defined by
W =n—71uy — Eu,. (5.12)

Considering the above conditions and introducing Riemann-Liouville time-fractional
derivative into Eq. (1.1), we get the following operator N* in Refs. [16]

n—1
N' =rl+> " (=1)*Dp~'*(W) Df 0 —(=1)"J (W D;La( ga )>, (5.13)
0

t 8o D¢ u)

where the integral J [16] reads

.9 = For—ay // T_x = 2 s, (5.14)

The operator N7 is defined by

N* =¢+W ( aix - D, af% + D 85@ - D} aiﬂ)
T Da(W) (aiz B D””aim D 854)
+ D2(W) (85396 - D, 85435) + D3 (W) 854; (5.15)
where D,, is the total derivative operator defined as
Dw:%-i-uw%—l—u%gaiuz—l—'“. (5.16)

For any solutions and generator V of Eq. (1.1), we obtain

(XL + Dy(1)L + Dy (§)L)|1.1) = 0. (5.17)
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Considering Eq. (1.1), we find that the Euler-Lagrange Eq. (5.6) is zero obviously.
Hence, the conservation law resulted by the right-hand side of the equality is given
by

Dy(N'L) + D,(N*L) = 0. (5.18)

Comparing (5.3) and (5.18), it is obvious that the following components of conserved
vectors with Lie point symmetry of Eq. (1.1) are always valid

C'=N'L, C*=N"L. (5.19)

5.2. Conservation laws of Eq.(1.1)

In the previous subsection, we gave some basic definitions. In this subsection, we
will present the conservation laws of Eq. (1.1).

Using (5.13) and (5.15), the components of conserved vectors of the forth-order
time fractional Burgers equation (1.1) with « € (0,1) are given by

OL OL
Cl=71L+ (-1)%D} (W) D) ———— — (-1)'J (WiaDl)
T B P ey~ U Pt
= oD (W) + J (Wi, my), (5.20)
oL OL OL OL
C; =L+ W, ( o " g + D3 D 3 au“)
OL oL OL
D,(Wi)(s—-D D?
+ Dy (W5) < D " uns + D3 6u4m>
OL oL OL
2 : Bt 3 -
+ D2(W;) ( P D, au%) D3(W;) ur

=W; {v (10bug, +24buu, +4bu®) — D, [v(10bu, +6bu®)| + D2 (4buv) — D3 (bv) }
+ Dy (W;) [v(10buy + 6bu®) — Dy (4buv) + D3 (bv)]
+ D2(W;) [4buv — D, (bv)] + D3 (W;)(bv), (5.21)

in which 7 = 1,2 and functions W; are

4t
Wi = —ug, Wo=—u— —u; — zu,. (5.22)
o

6. Conclusions and discussions

In this work, we have studied the efficiency of the classical Lie symmetry group
analysis to FPDEs. The fractional Lie symmetries method has been considered for
the application to the fourth-order time fractional Burgers equation with Riemann-
Liouville derivative. We have obtained the Lie point symmetries and performed
symmetry reductions. It implies that under the Lie point symmetries, Eq. (1.1)
can be reduced to a nonlinear ODE of fractional order with a new independent
variables. Furthermore, we have constructed the explicit solutions for Eq. (1.1)
by using sub-equation method with a detailed derivation and based on the power
series theory. The approximate analytical solutions of the equation have been also
constructed. At the end of the paper, the conservation laws of Eq. (1.1) have been
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constructed. Our results show that the extended Lie group analysis and the fraction-
al sub-equation method are very effective and powerful technique for investigating
FPDEs in mathematical physics.
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