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Abstract In this paper we give upper bounds on the number of determining
Fourier modes, determining nodes, and determining volume elements for a
3D MHD-«a model. Here the bounds are estimated explicitly in terms of flow
parameters, such as viscosity, magnetic diffusivity, smoothing length, forcing
and domain size.
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1. Introduction

Let Q = (0,L)3, L > 0, be a periodic box in R3. We consider the following 3D
MHD-« model which was introduced by Linshiz and Titi in [27]

1
ov—vAv—ux (Vxv)—(B-V)B+Vp+ §V|B|2 =f inQx(0,00), (1.1)
B —nAB+ (u-V)B—(B-V)u=0 in Q x (0,00), (1.2)
v=u—a?Au in Q x (0,00), (1.3)
V-u=V-v=V-B=0 in Q2 x(0,00), (1.4)
subject to the periodic boundary conditions and the initial conditions
u(0) = u’, B(0) = B® in Q. (1.5)

Here u = u(x, t) is the unknown velocity, B = B(z,t) is the unknown magnetic field
and p = p(x, t) is the unknown pressure, v > 0 is the kinematic viscosity coefficient,
7 > 0 is the constant magnetic diffusivity and « is a length scale parameter. When
a = 0 we formally recover the 3D classical MHD equations in [30]. Notice that here
we only filter the velocity field but not the magnetic field, and it contrasts with the
so-called Lagrangian-averaged magnetohydrodynamic-a (LAMHD-«) model (also
called hyperbolic MHD equations or MHD-Voigt model) in [15].
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The MHD-« model (1.1)-(1.4) involves couping Maxwell’s equations governing
the magnetic field and the Navier-Stokes-a. equations (sometimes called the viscous
Camassa-Holm equations). In recent years, the existence and long-time behavior of
solutions to this MHD-«a model has attracted the attention of many mathematicians.
In [27], Linshiz and Titi proved the existence, uniqueness and regularity of solutions
with periodic boundary conditions, while Fan and Ozawa [9] and Liu [28] achieved
the same result in the whole space R? for both cases (v = 1,7 = 0) and (v =
0,7 = 1). More recently, Zhou and Fan [34] also established the regularity criteria
to guarantee the existence of smooth solutions for higher dimensional case. For
the long-time behavior of solutions, the existence of a finite-dimensional global
attractor was proved by Catania in [5] in the case of three-dimensional periodic
box, and the time decay rate in L?(IR?) of solutions was proved by Jiang and Fan
in [19]. The Sobolev regularity and the Gevrey regularity of the global attractor was
proved recently in [2]. When B = 0, the above MHD-a model reduces to the well-
known Navier-Stokes-a equations, where the existence of a finite-dimensional global
attractor was proved in [10,18] in the case of periodic boundary conditions, and the
decay rate of solutions on the whole space was proved by Bjorland and Schonbek
in [4] and improved recently in [3] by using the theory of decay characters. We
also refer the interested reader to [6,7,16,24, 26,35, 36] for results related to other
MHD-« models.

The conventional theory of turbulence asserts that turbulent flows are monitored
by a finite number of degrees of freedom. The notions and results for the case
of 2D Navier-Stokes equations on determining modes [11,12], determining nodes
[13,14,20] and determining volume elements [14,21] are rigorous attempts to identify
those parameters that control turbulent flows. We refer the interested reader to
[8] for a general unified framework for this issue of determining parameters and
[17,29, 33] for some recent related results. In recent years, upper bounds on the
number of determining modes and nodes were established for some a-models, which
were suggested as regularization models for the 3D Navier-Stokes equations when «
is a small regularization parameter. More precisely, for the 3D Navier-Stokes-Voigt
equations, Kalantarov and Titi in [23] proved a result on the determining modes.
The results on the determining modes and determining nodes for some regularization
models of 3D Navier-Stokes equations such as 3D Navier-Stokes-«, 3D Leray-a and
3D Navier-Stokes-w equations were proved by Korn in [25]. For MHD-a models, to
the best of our knowledge, there is only a result on the determining modes for the
3D MHD-Voigt equations in [6].

In this paper, we study the number of determining modes, determining nodes
and determining volume elements for the MHD-« model (1.1)-(1.4). To do this, we
follow the general lines of the approach used in [22] for 2D Navier-Stokes equations.
We first estimate the large time asymptotics for the solutions. Then, we establish
some inequalities related to the nodal in the three-dimensional case which are ex-
tension of that in the two-dimensional case in [22], and hence we can get an upper
bound on the number of determining nodes. The determining volume elements is
proved in a similar manner with the help of our new inequalities related to the finite
volume elements. To obtain the bound on the number of determining modes, we
need some technical estimates which are similar to that used to prove the deter-
mining nodes and determining volume elements. It is worthy noticing that in the
present paper the number of determining nodes, modes and finite volume elements
is estimated explicitly in terms of flow parameters, such as viscosity, magnetic diffu-
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sivity, smoothing length, forcing and domain size, and these estimates are global as
they do not depend on an individual solution. It is also noticed that our arguments
in the paper and our new technical estimates in three-dimensional case given in
Lemmas 3.1 and 4.1 below can be used to study the degrees of freedom for some
other 3D MHD-«a models in [7,16,27].

The paper is organized as follows. In Section 2, we recall the functional setting
of the 3D MHD-a model. Section 3 gives an upper bound on the number of deter-
mining nodes. The number of determining volume elements is studied in Section 4.
We prove an upper bound on the number of determining modes in Section 5. For
clarity of the presentation, the proof of some technical results used in the proof of
main results is given in the Appendix.

2. Functional setting and preliminaries

Let V be the set of all vector valued trigonometric polynomials u defined in §2 such
that V-u =0 and [, u(2)dz = 0. Denote by H and V' the closures of V in L*(Q2)?
and in H(Q)3, respectively. We denote by (-,-) and | - | the inner product and the
norm in H, and by ((-,-)) = (V-,V:) and || - || = |V - | the inner product and norm
inV.

Let P be the Helmholtz-Leray orthogonal projection in L?(€2)? onto the space
H. Following the notations for the MHD-« equations, we denote

B(u,v) = P(u- V)v and B(u,v) := —P(u x (V X v)), Yu,v € V.

Using the identity

3
(b-V)a+> a;Vb;=—bx (Vxa)+V(a-b),
j=1

one can easily show that
(Bluv),w)) = (Blu,v),w)y,y = (Blw,v)u)yy - (2.1)

Here, for a Banach space X, we have used the notation (.,.) x/ x to denote the dual
pairing between X and its dual space X'.

We denote by A = —PA the Stokes operator with domain D(A) = H?(Q)>NV.
Notice the fact that in the case of periodic boundary conditions, A = —A is a
self-adjoint positive operator with compact inverse. Hence there exists a complete
set of eigenfunctions {w;}32; which is orthonormal in H, and orthogonal in both
V and D(A) such that Aw; = Ajw; with

@r/L)? =M <A < <A~ B2 <
We have the following Poincaré type inequalities

HUH2 > )\1|u|2 forallu eV,
|Aul? > A\|jul|*  for all u € D(A).

Notice that
fu+ a?Aul? = [uf? +202[ul]? + o' Aul?,
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0
lu+ o2 Aul? > 23203 ||u| |Aul, (2.4)

and )
Auf* < — 2 Aul?. 2.5
[Auf? < fut oA (25)
From the definitions of B and g, we have
(B(u,v),w)y yy = = (B(u,w),v)y.y,  forall u,v,w eV, (2.6)

and in particular,
(B(u,v),v)yy, =0 forallu,veV. (2.7)

Also, since (2.1) we have

<g(u,v), u>V/ v 0 forall u,veV. (2.8)

)

We have the following estimates (see e.g. [31]):
|(B(u,v),w)| < e1||ul|?|Aul*?||v|| |w|, Yu € D(A),v € V,w € H, (2.9)
’(g(u,v),w) < c1||ull V2| Au) 2 ||| |w|, Yu € D(A),v € V,w € H, (2.10)
|(B(u,v),w)| < eal|ull Jo]|*/?|Av]*? |w|, Yu € V,v € D(A),w € H, (2.11)
‘(B(u,v),w)v,,v < esl|ulV?|Au) 2] |Jw||, Yu € D(A),ve HweV, (2.12)

]<é<u7u>,w> < callull o] el /2wl /2, Yu,0,0 € V; (2.13)

v,
for some positive constants ¢;,i =1,...,4.

We apply the projection P to (1.1)-(1.5) to obtain the equivalent system of
equations

%—FVAU#—BV(U,U) — B(B,B) = Pf, (2.14)
v =u+ a?Au, (2.15)
dB
pr +nAB + B(u, B) — B(B,u) =0, (2.16)
with the initial datum
u(0) = u°, B(0) = B°. (2.17)

Definition 2.1 ([27]). Let T > 0 and given (u°, B®) € Vx H and f € L>(0,T; H).
A weak solution of (2.14)-(2.17) on the interval [0,T] is a pair of functions (u, B)
such that
d
w e C([0,T); V) N L0, T; D(A)) with di;‘ € L*(0,T; H)
(or equivalently v € C([0,7]; V') N L?(0,T; H) with dv/dt € L?(0,T; D(A)’) and

B e C([0,T]; H)N L*(0,T; V) with % € L*(0,T; V"),
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satisfying u(0) = u°, B(0) = B?, and

<%(t), w) peay,peay + v(v(t), Aw) + <g(u(t),v(t)),w>

— (B(B@), B(t)), )y y = (), w),

D(A)",D(A)

and

(G O 9w+ (BUE), )+ (B(ut), BO). o)y

- <B(B(t)7 U(t)), (p>V7V’ = Oa
for every w € D(A), ¢ € V and for almost every ¢ € [0, 7.

When (u°, B®) € D(A) x V, we call a strong solution of (2.14)-(2.17) in the

interval [0, T the solution that satisfies

B e C([0,T); V)N L*0,T; D(A)), ue C([0,T); D(A)) N L*(0,T; D(A?))

(or equivalently v € C([0,T]; H) N L*(0,T;V)).

We define the generalized three-dimensional Grashof number Gr as follows

1
Gr = —slimsupl F(D), for f & 10,003 H),
HEAY >

where g = min{v,n}.

Remark 2.1. Tt is noticing that that for any f; and f belonging to L*°(0, o0; H)
such that tlim |f1(t) — f2(t)| = 0, then the generalized Grashof number Gr which

defines on f; is equivalent to the one which defines on fs.

To prove our main results, we will use the following well-posedness and large-

time asymptotic result, whose proof will be postponed in the Appendix.

Theorem 2.1. Let (u°, B°%) € V. x H and f € L>(0,00; H), then problem (2.14)-

(2.17) has a unique global weak solution (u,B) such that

. 1 T , ) ) wiGr?
lim sup— (|U(T)| + o [Ju(r)[|* + | B(7)| )dT < TN1/2
t—o0 T t V)‘l

1 t+T A 6
li — dr < ———
imsup - / Ju(lar < 20

_ 203\ 2Gr?
- v

)

) 1 t+T
hmsupf/ (lu()1? + o®|Au(r)* + || B(7)[|?) dr
t—o0 t

t—o0

1 t+T
lim Sup / | B(7)||*dr
t

< 32u5\3Grt 49 (21602(/\1_1 +a?)4 N 16c5  27(c1 + 02)4)2 puteGrt?

2 60,10 o 33 A ad

and

1 T
limsupT/ (|Au(7')|2 + oz2HAu(7)||2 + |AB(T)|2) dr
t

t—o0

3/2 _
< 6u3)\ly/ Gr? N (43203()\1 4 a?)t N 32c4 N 54(c1 + 02)4> uBGr®

610 5 353 72 4’
Voa v v 4
Ui n A

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)
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where T = (uX1) L.
We also need the following generalized Gronwall inequality.

Lemma 2.1 ( [11,20]). Suppose that ¢(t) is an absolutely continuous non-negative
function on [0,00) that satisfies the following inequality

%—&-ﬂqﬁﬁm a.e. on [0,00),

where B and v are locally integrable real-valued functions on [0,00) that satisfy the
following conditions for some T >0

t—o0 t—o00

1 [T 1 T

liminf—/ B(r)dr > 0, limsup—/ B (1)dr < 0,
T J, T/

and

t—o0

t+T
lim SUp— / vy (r)dr =0,
t

with B~ := max{—0,0},y" := max{y,0}. Then it follows that tlim ¢(t) =0.
—00

3. Determining nodes

A finite set of points N := {z1,xa,...,zxy} C Qs called a set of determining nodes
if for any two solutions (uy, By) and (ug, B2) of (2.14)-(2.17) with the initial data
(u1(0), B1(0)), (u2(0), B2(0)) and forcings f1, fo € L%°(0, 00; H), respectively, the

assumptions
tli>m \(ul,Bl)(mj,t) - (u2,B2)(l‘j,t)| =0 for Z;j EN, j=1...,N,
oo

and
Jim [f1(6) ~ fo6) =0,

imply that
i (jua(0) = w0 + | B(0) - Ba()F) =0,

We divide the domain 2 into NV equal squares 2,7 = 1,..., N, where ), is the j-th
cubic with edge h = L/ V/N. Furthermore, we place the point z; €Q4,j=1,...,N.

To estimate the number of determining nodes, we need the following lemma
whose proof is given in the Appendix.

Lemma 3.1. For every w € D(A), there exist some positive constants cs, cg, cr,Cs
such that

C5L4
lw|* < 4L39?(w) + N4/3|Aw|2, (3.1)
C7L2
ol < coLN*/*0° (w) + T | Auwl?, (3.2)
CSL
[l () < erLNO*(w) + S5 [ Aw]?, (3-3)

where

O(w) = max fw(z;)|
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The main result in this section is the following theorem.

Theorem 3.1. Let Q) be divided into N squares with the points N := {x1, %2, ..., TN}
distributed one in each square. Then N is a set of determining nodes provided

A 3/2
N> I3 ( 07) (pJV[HD—a)3/2

3u ’
where
pMHD—a
_{ V2 vt Ve V2 2vaN”
1/2)\3/2 3 v2a? 1/7])\}/2043 1/2)\}/2043 vno
Q\f/\l/Q 2v2 24\ 24
L }clu3Gr
V2a un)\}/2a3 V2 vnhat
108 51203\ 4 604
+ (1/2173/\1a4 + vy ) au Gr
N ﬁ é_‘_ 4 43263(/\1_1+a2)4+326§+54(61+82)4 A usGr®
vad v A 6010 Vo P )\‘;’/2044

. (216c3(/\11 +a?)t | 16) | 27(cr + 02)4>2 32c4p16Gr12

160,10 oy V3B 2\ ab

Proof. Let u = u; — us, B = B; — By. Then ©w and B satisfy

O vAT+ B va) + B, ) — BB, Ba) ~ BB, B) = PUfi — ), (34)

U =1u+ a?Aq,

dB ~ ~ N _ ~
g +nAB + B(u1, B) + B(u, By) — B(B1,u) — B(B,u2) = 0. (3.5)

Multiplying (3.4) by A¥ and (3.5) by AB, we get

3 (1912 + 1BI7) + | AT 49| ABP
_— (B(a va), Aﬁ) - (é(ul,a),/w)
+ (B(B, By), ) (B(Bl,é),A'ﬁ)Jr(fl—fQ,Aﬂ)

(B ui, B ) - (B(ﬂ, Ba), AE) ¥ (B(Bl, ), AB) (B(E, us), Aé) .
We now estimate the terms on the right-hand side. First, we have
~ 2 12
|(f1 = f2, AV)| < ;|f1*f2|2+§|Av\2. (3.6)
Using (2.10), the Cauchy inequality and the Poincaré inequality (2.2), we have

| (B, va), 47) | < exlli] /21 Az 2 o]l |47

2\ N v (3.7)
— ||v2H2||U||2+§|AU|2a
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where we have used (2.4). Analogously, we derive

|(Blun, ), 4) | < e flun |72 Aws /23] | 47

2 (3.8)
5 or 257 + 54D,

< f
Now, using (2.9) and the Cauchy inequality, we obtain

|(B(B, B), 47)| < 1| B| V2 ABJ2 | Ba|| | A7)

2¢? ~ o~ Vo
< 71||B|| |AB| || B2||* + §|AU\2 (3.9)
8ci appn2 L Miami2 LY a2
< —||B B —|AB —|Av|=.
< S0 Bal B + ZIABP + 214
By (2.9), the Cauchy inequality and the Poincaré inequality (2.3), we have

(BB, B), AV)| < ea| B /2481 /2| B | A%

261 A (3.10)

|AB\* || BIJ* + |A57|2-
Using (2.9) and the Cauchy inequality, we deduce that
(B, B), AB)| < crljen]| /2| Aua | | B]| |AB]

2 2 . (3.11)
Sl PIBI7 + |AB\ :

- \f
where we have used (2.4). Analogously with using the Poincaré inequality (2.2), we

arrive at

|(B(@ B2), AB)| < cl||a||1/2|Aa|1/2HBz|| |AB|

a2 B (3.12)
S\fl 1Bl 51| + IAB\2.

Using (2.9), the Cauchy inequality and the Poincaré inequality (2.3) yields

|(B(B1, @), AB)| < 1| B1[| /2| ABy 2 il | AB|

—3/2
23] /

IN

_ N, =
[ABy[*|Auf* + 2| AB/” (3.13)

281)\_5/2

IN

[ABy (0] + |AB\2,
where we have used (2.5). Using (2.9) and the Young inequality, we have
|(B(B,u2), AB)| < c1l| B2 |uzl| |ABJ?

_ 5idf N (3.14)
P —+ [lua||*| BII* + IAB|2~
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From (3.6)-(3.14), we get

~ ~9 4
L (P HIBIPYS (AT 451 ABP) < KOOI I BI% | fi-fol?, (315)
where

CiAL c?
K1(t):2<\/1§l/ I 2||2 \/5; 3
201/\_

A 23,/
o+ LS IB P+ = AR )

V2na3
54c2
a2 + 229, 2|4)
77

Ko =2 (S g+ 20 g+ 4
2 - V2']7 2 \/inas
(3.16)
Using (3.2) then (3.15) becomes

(1 +1817) + (225 - e + st ) (117 + 131°)

306]\74/3

e (P @ (B))+ - P

where p = min{v,n}. We rewrite the last inequality in the form

& (1P + 1B17) + 80) (1912 + 1B17) < +(0)

with
3/J‘N2/3
B(t) = A L2 (K1(t) + Ka(1)),
and 2 A3 A
1) = T (WP@ P B) + 1A (0~ hOP.

Hence, to complete the proof, we will show that 8(t) and () fulfill the requirements
of Lemma 2.1.
First, since the assumption of fi, fo and ¥ one sees that

1 t+T
lim Sup / v (r)dr = 0. (3.17)
t

t—o0

Now, from the definitions of K;(t) and K»(t) we have

t+T
liminff/t (K1 (1) + Ka(7)) dr

t—o0

22 1 [T 2¢2 1 [T
V2t limsupf/ |va (7)||2dT + WIimsupT/ vy (7)|?dr
t t

V>\1043 t—o0 t— 00
2

\/§ 1 t+T 1664 1 t+T
1 By(7)|dr + —5 i 7/ By(7)||*d
+ 2 mswg [ B+ s [ Bl

+ 4¢3 i+; lim su 1/t+T |AB, ()2 dr
1 A n)\i/za‘i tHOOPT \ 1

108¢} 1 [T
+ lim su —/ us (7)) dr. 3.18
7]3 t—)oopT . || 2( )H ( )
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By using the facts that
or|* =
and
[
then (3.18) becomes

lim inf
t—o0

t+T
7] e+ R ar

ur|* + @ [lus * + o*| Aua %,

luzll* + a®|Aua|* + o || Aus||?,

1 [T
hmsupT / (||uQ(T)H2 +a? UAUQ(T)lQ + QQHAUQ(T)”Z:I) dr
t—o00

)+ o [lus (7| + o*|Aus (7)) dr

LT i+ e [T 1t
1m
T 2 T] P SupT ; 2\T T

1 t+T
o[ 1ABPar
t

_ V2d
V)\1a5
fcl(v:n Supi/ (lus(r
vna
2 2
+ L lim su
77)\1063 t—)oop ¢
1
+4¢? + ———— | limsu
1(”1 nAi’/Qa“) e
108 4 1 t+T
+ S imsup - / us(7) | *dr.
t— T t

So, using the large-time asymptotic estimates (2.18)-(2.22) together Remark 2.1,

we deduce with the choice T' =

lim inf —

t+T
7] e K

(uA1)~t that

t—o0
< V2 Ve Ve V2 2vaN”
- Vz)\3/2 3 v2a3 1/77)\}/2043 VQ)\}/2O£3 vna
2fA1/2 L 2V2 24N 24 } 32
r
2o w])\l/Q V2 vnhiat an
108 5123\ 4 64
+ <u2773)\1a4 e )cl,u Gr
N Q é+ 4 432¢i(A\ T )t 32¢h 54(cy + )t FusGrt
vad v nAlat 1610 V5 V303 )\?/20[4
(26O o)t 166 | 27(er + )’ ? 32¢416Gr12 (319)
16010 Vo R Vphad :
So,
t+T 1 [T
limsup—/ B~ (r)dr < oo and liminf—/ B(r)dr >0 (3.20)
t—o0 t t—oo T t

der

hold provided N > L3 (
3

Lemma 2.1, we get

3/2
) (pMHD—a)3/2. From (3.17) and (3.20), applying

Jim (1512 + [ BOIP) =0
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This completes the proof. O

4. Determining volume elements

We divide the domain € into N equal squares 2;,7 = 1,..., N, where Q; is the
j-th cubic with edge h = L/v/N, and so the volume of Q; is |;| = L3/N. The
local average of ¢ in ); defined by

ol
Pla, = = w(x)dzx.
< >Q] ‘Qj| o, ( )
Let f1, f2 belong to L (0, 00; H) satisfying
Tim [f1(t) — (0)] =0.

A set of volume elements is said to be determining if for any two solutions (u1, By)
and (ug, B2) corresponding to external forces f; and fo satisfying

Jim <<U1>Qj - <“2>QJ> = Jim, (<Bl>9i - <B2>Qj> -0
we have
lim (Jur (8) = ua(8) + | Bu(t) = Bo(1)]?) = 0.

To establish the result on the number of determining volume elements, we need the
following lemma, which will be proved in the Appendix.

Lemma 4.1. For everyw € D(A), we have the following estimates for some positive
constants cg, €10, C11, C12, C13,

L2

lw|* < LPXx*(w) + WHw”27 (4.1)

2 < 432 L 4.2
lw|” < X(w)+N4/3| wl?, (4.2)
ol < exo LN (w) + S| a2 (43)

w < C10 X (w N2/3 w|-, .

613L

[w[|7 o0 () < c12LNX*(w) + NDE |Awl?, (4.4)

where

X(w) = max |(w)q,|.

Theorem 4.1. Let §) be divided into N squares §);. Suppose

lim (<u1>Qj — <u2>Qj> = lim (<Bl>Qj - <BZ>Qj> =0,

t—o00 t—o00

for j=1,...,N. Then the volume elements are determining, that is,
Jim (s (1) — s (5] + | By (1) — Ba(t) ) =0,
provided that

4c 3/2 3
3 11 MHD—a\3/2
vz ()

where pMHAP= s defined in Theorem 3.1.
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Proof. Let = u; — us, B =B, — Bs. Similarly to the proof of inequality (3.15)
in Theorem 3.1, we have the following estimate

d ~12 112 3 ~12 |2 ~112 12 4 2
_ =z < | f =
= (IB12+1B12)+5 (VIADP +0|AB[?) < K@)+ K (8) | BI*+= [ 1~ fol?,

where K7 (t) and K(t) are as in (3.16). Using (4.3) we have

(e +1317) + (227 - o+ st ) (1918 + 131°)

< 3010N4/3

deniL (@ +m(B)) + §|f1 — ff?. (4.5)

Hence, to complete the proof, we rewrite (4.5) in the form

L (0P + 1B17) + 60) (1912 + 1B17) < +(0)

with N2/3
5(t) = S — (Kaft) + Kal0)
and s N3 A
1) = T (@ () + - L0) — RO

Firstly, since the assumptions of fi, fo and x one has

1 [T
lim sup— / v (r)dr = 0.
TJ

t—o0

Using (3.19) then

1 [T 1 [T
limsup—/ B7(T)dT < 0o and liminf—/ B(r)dr >0
T/, t T J;

o0 S0
i 3 ( 4c1n 5/2 MHD—o)\3/2 .
hold provided N > L <3/~L> (p ) . Hence, applying Lemma 2.1, we
get
Jim (512 + I B®I?) = 0.
This completes the proof. O

5. Determining modes

Let {w1,...,wn} be the first m eigenfunctions of the Stokes operator A. We denote
by P,, the orthogonal projection onto span{ws,...,wy,}, and Q,, = I — P,,. Let
(u1, B1) and (ug, Ba) be two solutions of (2.14)-(2.17) with the forcings fi and f,
given in L>°(0, co; H), respectively.

A set modes {w;}L, is called determining if we have

lim (Jua () = uz(6)]* + [Bu(t) = Ba(1)]*) =0
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whenever

Jim [£1(8) = fa(t)] =

and
Jim (1P (ua(t) = (1)) + | Pa(Bi () = Ba(1)) = 0.

Theorem 5.1. With pMHP= g5 in Theorem 3.1, suppose that m satisfies

4 _
Amit > pMHD a
3p

Then the number of determining modes is not larger than m.

Proof. Let u = u; — uo, B = B; — By. Then uw and B satisfy

d _ ~ ~ _ ~

(7: 4 VAT + B(@,v2) + B(u1,v) — B(B, Bs) — B(B1,B) = P(fy — f2),  (5.1)
7=+ Al

dB

—+ NAB + B(uy, B) + B(ii, By) — B(By, @) — B(B, uy) = 0. (5.2)

Multiplying (5.1) by @, Av and (5.2) by QmAE, we get

1d _ _
525 (1QuI? + 1QmBI2) + v|Qum AT + n|Qm ABP

= (f1 = f2,QuAT) - (B(@, v2), QmAv> — (B(ur,7), Qu A7)
+ (B(B, B2), QuAv) + (B(B1, B), Quu AT
f(B(ul, QmAB) ( (@, Ba), B)

+ (B(B1,@), QuAB) + (B(B, 1), QuAB)

We now estimate the terms on the right-hand side. First, we have
~ 2 9 U 9
|(f1 = f2, @mAD)| < ;|f1*f2| Jr§|QmAU| : (5.3)

Similarly to (3.7)-(3.15) with note that & = P,,0 + Q0 and B = P, B + Qm B, we
have the following estimates

](E(a, vg),QmAa)‘ < G

= 5 leell” (12011 B2) + 2 |QumAY?, (5.4
o 2l (1Padl” + 1Qmdl*) + 510m AT, (54)

|(B(B, B2), QuAv)| < 877|B (112w BI? + 10 BI1?)

+ UPWABP + 21QuABP + Z1Qu AP,

~ ~ v ~
o1 (10 ]1” + [Qm]1?) + l@mAT,  (5.5)

(5.6)

201)\1

|(BBL. B), Qub) | < A2 4B (1P BI2 + |1QuBI?) + £ 1Qm AT, (5.7)
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2
(B, B).QuAB) | < 2l lurl* (1P BIP +1QuBI) + lamABP, (5.3)
(B3 B2), @uAB)| < 2Bl (1w + 1) + IQuABE, (59)

RN E Vagas " m e
—-5/2
(BB, W), QuAB) | < %mw (1231 + 1Qul?) + 21QmABP,

(5.10)

54ct

|(B(B.u2), QuAB)| < ZLjjus* (I1PnBI? + 1QuBI?) + 21QmABP. (511)

n&
From (5.3)-(5.11), we get
& 1Qudl? + 1QuBIP) + 3 (@A + nlQuABP?)
<K1(8) (1QubI* + | Pud|?) + Ka(t) (1QuBI? + | P BI1) (5.12)
~ 4
+ HPnABP + —|fi = fof,
14
where K (t) and K»(t) are as in (3.16).

Hence from the facts that |Q,, Aw|? > Xpi1]|@mwl|?, | PrmAw|? < Al Prwl]? <
A2 |P,w|?, and using ¥ = @ + a? Au, we have from (5.12) that

d _ ~ _ ~
= (1Qm11? + 1QmBI2) + B®) (1QmI? + |QmBI?) < (),

where 3
B(t) = i = Ka(t) = Ka(t),

and
- ~ ~ 4
A1) = K1 (DA (1 + a2A) 2| Prdi|? + Ko (£)Am| P B|? + g)\fn\PmBF + ol = ol

By using Theorem 2.1 and assumptions on |P,0(t)|, |PnB(t)] and |f1(t) — fa(t)],
we get

t+T
lim SUp— / T (r)dr = 0.
¢

t—o0

Using (3.19) then

t+T 1 [T
limsup—/ B (1)dT < 0o and liminf—/ B(T)dr >0
T/ TJ;

t— 00 t—o0

4
hold provided A, 4+1 > S—pMHD*a. Hence, applying Lemma 2.1, we get
I

Jim (512 + I B®I?) = 0.

This completes the proof. O
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6. Appendix

We now give the proofs of some technical results that have been used in the previous
sections.

6.1. Proof of Theorem 2.1

The existence and uniqueness of a weak solution to (2.14)-(2.17) can be proved
similarly as in the case the external force f = 0 in [27]. We only prove the estimates
(2.18)-(2.22). Multiplying (2.14) by u and (2.16) by B, then integrating over € and
using (2.6), (2.7), (2.8), we have

di (lul* + a®[ull?) + v(lull* + o*|Aul*) = (B(B, B), u) + (f, u),

1
2dt
and

S IBE 4l BIP = ~(B(B,B),w)

Summing up these equalities and using the Cauchy inequality we get

1d

5 (1l +a2lluH2 +B) + v(|Jul]® + o®|Auf?) + || B||?
VA

=(fyw) < o IfP 4 luf?

_2)\

By using the Poincaré inequality, we have
d 2 21,112 2 2 2 2 2 1 2
=l + % [ull® +BI) + p (ull® + o*| Aul® + | BI) < UL (6.1)

where p = min{v, n}. By using the Poincaré inequality once again, we deduce from
(6.1) that

d 2 2 2 2 2 2 1 2
27 (el 02l 4+ [B) + Auge (Juf? + a?ul + | B?) < —=| 7]

Applying the Gronwall inequality, we infer that

—Alut

u()]? + @2 [lu(t)]|? + | BE)[? < eIy + &

t
/ eMHs| f(s)|2ds, Yt >0,
0

where
Io := [u®|* + ?||u®||® + |B°|%.

Hence,

ligrisogp(lu(t)\2 +a?|lu(t)|” +[BH)?) < )\ 5 lim sup|f (£)]*.

t—o0

Using the definition of Gr, we get

: 2 2 2 2 MgGT?
limsup (Ju(t)|* + o*u(®)|I* + [B®)*) < =~/
t—00 v
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So we get (2.18) and (2.19) from (6.2) for some T' > 0. From now on, we choose

T = ()\1/1,)_1.
Integrating (6.1) over (t,t+ T') we have

t+T
u/t (lu(I? + o] Au(r)|* + [ B(1)|?) dr <[u®)]* + o*[[u(®)|* + |B(t)*

1 t+T

JrT)\l

Hence

) 1 t+T
hmsupf/ (lu(m)I? + a?|Au(r)]* + | B()|]?) dr
t

t—o0

1
<Alimsup (lu(®)]? + &2 |u(®)|? + |B(®)|?) +
<Aulimsup (ju(®) + 02O + [BO)) + —

lim sup| f(t)|?.
t— o0

|f(r)[2dr.

(6.3)

Substituting (6.2) into (6.3) and using the definition of Gr we deduce (2.20).
Taking the inner product of (2.14) with Awu, the inner product of (2.16) with

AB and summing up, we have

1d
2.dt

—(f, Au) + (B(B, B), Au) — (B(u,v), Au) + (B(B,u), AB) - (B(u,

(Iull® + o[ Auf® + [|B]]?) + v (|Au|* + o* || Aul|*) + n| AB?

By the Cauchy inequality, we have
P v 2
Au)| < =—— + —|Aul”.
(7, Au)l < L2 4 2w

Using (2.12) and the Cauchy inequality, we have

[(B(B, B), Au)| < Cs||B||1/2\ABI1/2\B\ IIAUII

403
= ol

Now, by using (2.13) and the Young inequality, we get

|(Blu,v), Au) | < calul ol |Au]/2) Au 2

< e\ +a?) o] Ix‘lltll/QHAUIIB/2

5404()\ +a?)4
(va)?

Using (2.9), (2.11) and the Young inequality yields

((B(B,u), AB)| +|(B(u, B), AB)|

IN

(1 + )| BII"?|lu]l |AB*2

27(01 + 02)4
473

IN

1B]1%1BI* + HA I*+ IABIQ-

| * At + IIA I”.

n
IBIP[lul® + ;[AB*.

B), AB).

(6.4)

(6.5)

(6.8)



640 C.T. Anh, N.T.M. Toai, & V.M. Toi

Substituting (6.5), (6.6), (6.7) and (6.8) into (6.4) we deduce that

d
= (el + a®|Auf® + |B][*) + 1 (JAu]* + || Aul* + [AB?)

803

2 27(01 +62)4
< ;|f|2 4||BH ?1B|*+ o3

2n3

GO LN aup +

2 4
e 1Bl ull,

(6.9)
Integrating the inequality (6.9) from ¢ to ¢t + T we get

(IIU(t)H2+0<2|AU(t)I2+IIB(t)HQ)+/ (| Au(r)*+a®||Au(r)|*+]AB(r)[?) dr

S

< (Ilu(8)||2+a2|Au(8)|2+IIB(8)||2)

+—/u WH ./w JI2B(r)[*dr
| 108¢}(A;

2 Cl JFC? 4
o /m i au(r)Par+ TS [y 2o
(6.10)

TlI=T|~

From (6.2), we have

6,4 6,4
. wGr . 4 HGr
limsup|B(t)[* < d lim HI* < . 6.11
1t sup|B(t)|* < s an 1t sup|lu(®)||* < W ( )

Moreover we get from (6.10) that

t—o0

t+T
timsup [ ([Au(r) + 0? [ Au(r) P + | AB()) dr
t

1 2
< —limsup ([[u(t)[|* + | Au(t)]* + | B(t)[|*) + —limsup|f(t)|*
T,U/ t—o00 MV t—oo
108ci (AT +a?)t . 1 /”T )
lim sup||u(t)||* lim sup— Au(r)|dr 6.12
oy msupfu(t) lmsup [ LAu(r) (612)

4

1 [T
WhmsumB( )| hﬁsupf/ I1B(7)|*dr
o] t

27(cy + ca)t . 1 /”T )
+ ———"limsup||v(?)||* imsup— B(7)||“dr.
o msuplu(®)|* Hmsup [ 1B ()|

So, using (2.20), (6.11) and the definition of Gr then (6.12) becomes

t—o0

t+T
timsup . [ (JAu(rP + o2 Au(r) P+ [AB(T)P) dr
t

: 268\ G2
< Mlimsup ([lu(®)|* + o*[Au@®) + [ BO)I?) + £ (6.13)
—00

N 216ci (At o)t 16cs  27(c +ep)t pSGrS
160,10 Vo V33 )\i/zoé4

Now, we consider

Alimsup ([|u(t)|® + o®|Au(t)® + | B(#)]]?) -
t—o0
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For any 0 < s < t, integrating the inequality (6.9) from s to t we get
[u(®)]* + o[ Au(®)]* + | B)|* < [Ju(s)lI* + a®|Au(s)|* + || B(s)|®

2 [ 2 8c3 ! 2 4
2 [ 1ePare o [ IB@PBE
108ci (A" +a?)
L / () | Au() Pl

27(c1 + ¢
+ 2Ll [y ue)ar.

Integrating the last inequality with respect to s over the interval (¢ — ﬁ, t) we get

(lu®]* + o*[Au®)* + | B(®)]|*)

< /_L (Jlu(s)[|? + o®|Au(s)|* + || B(s)]|?) ds+i/ / |f(7)2drds

HAL u%1

8ct
oo / / | BB drds (6.14)
108\ + a?) 9
A / / Ju(r)|*|Au(r) Pdrds

27(c1 + ¢ 4
+ T / / IB@Ilu(r)| drds.
t—T}\l s

Using (2.20), we have

limsup/ii (lu(s)II* + a?|Au(s)[* + | B(s)]?) ds

t—o0
t M

t+T
:Tlimsup%/t (lu(m)1? + 2| Au(r) 2 + |B@)|?) dr (6.15)

t—o00
2u2Gr?
B V)\}/Q '

Using the fact that

/_7/ (7 |2d7d8</_7 /_7 |2de3—1\1/tii|f(T)|2dT,

then

hmsup/ / |f(7)|?drds < hmsup\f( )P = BVVER (6.16)
St 1

t—o00

We also have the fact that

/ / BB ards < /_i /_7HB P B drds

/Ml IB(7)|I*|B(7)|*dr,

w\l



642 C.T. Anh, N.T.M. Toai, & V.M. Toi

t
lim sup/
1
t—o0 t_;v\
t

. 1
< lim sup—— IB(7)|?|B(7)|*dr

t—oo MA1L t_i
2

then

JRECIRECIRE

1 t
< X timsup| B(#)[* limsup/ |B(r)|2dr
BA o1

1 t—oo t—o0 ey
1 t+T
= —slimsup|B(t )| limsup—/ | B(T)||*dr. (6.17)
)\1 t—o00 t—o0 T t

So, by using (6.2) and (2.20) we get from (6.17) that

2 7
limsup/ / IB(r) |21 B(r) | drds < “Affg. (6.18)

t—o00

By the same as (6.18), we deduce that

247 Grb
hilisup/ /Hu V4 Au(r)[2drds < “5/2’" : (6.19)
and . . e
2
[ [ B < 225 (6.20
tfﬁ s 1/3)\1/ O[4

Substituting (6.15), (6.16), (6.18), (6.19) and (6.20) into (6.14), we conclude that
Mlimsup (|lu()|® + o[ Au(t)]* + | B®)]?)
t—o00

- 43N Gr? <21604(>\ +o?)t 16cf | 27(cy +02)4> psare (6:21)

Y 1610 von V313 )\}/20/1

Combining (6.21) and (6.13), we deduce that

t+T
timsup [ ([Au(r) P+ 02 [ Au(r) |+ |AB()) dr
t

t—o0

< 6;13)\§/2Gr2 N (43203()\11 +a?)4 N 32¢i  54(cy + 02)4) udGr®

610 5 33 1/2
v VSa v v 4
n n A

This is the estimate (2.22). Moreover, we get (2.21) by using (6.21) with noting
that

1 T 2
limsupf/t |B(7)||*dr < h?LSUPHB(t)”él < (hirisupHB(t)HQ) .

t—o0

6.2. Proof of Lemma 3.1
We have

jwf? = Z/ |M~Z/m\%
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where 1g, is the characteristic function of ;. Consider €; for j fixed, but arbitrary.
Choose z € €25 such that z is in the line of the intersection of two planes: the plane
which contains the point x and is parallel to zy-plane and the plane which contains
the point z; and is parallel to the zz-plane in three dimensions. In other words, if
x and x; are such that z = (£,&2,&3) and x; = (11,72, n3), then z = (71, 12,&3).
Therefore,

([w(@) = w(=)] + [w(z) = w(z;)])*
(lw(z) — w(2)? + lw(z) — w(z;)?) -

Following the results which were proved in [1, Lemma 4], then for every w € H?(Q;),
we have

w(z) —w(a;)?

<
<2

@) —w) < 2 (4190l +02 | 22|
_ , ,
h L2(8) dxdy 12(0,)
and )
2 0%w
lw(z) —w(a;)? < 7 | 4IVw|zq,) +h° -
J h L2y 90z || 120,
Hence
4 O%w 9%w ||?
w(z)—w(z)]?< = | 8|Vw|? N | +h2 || =—= .
| ( ) ( J)| h H ||L2(Q]) axay L2@;) o102 12@,)
This implies that
w(@)]* < 2w(z;)* + 2w (@) —w(z;)?
8 02 Pw ||?
<u(a) P+ | 8IVwlla, +h || s +h? || :
020y |l 12, 110202 ]I12(q,)
Hence,
N
lw|? 522/ lw(z;)[*1q, (z)dz
5=17%
N 2
8 0%w 0%w
+ — | 8IVw|32iq., +h* Lo, (z)dz.
Z/Qh< IVwllzzq,) 0y || 120, 910z mﬂj)) o,(z)dz

N
j=1

N
1lg. (x)dx
— 6x8y LZ(Q)/ 83582 L2(9;) 2/(@)
62w 0%w
=20%(w)Nh? + 64h2%|Vw||? 2,y + 8h* +8h’ ,
(w) IVwl[zz2 o) 020y || 12 (g 9292 || 120

where we have used the fact that [, 1o, (z)dz = |Q;] = h® for all j =1,...,N. So,

we obtain )

L
|w|?* < 20392 (w) + 64—+

7 | Aw|?. (6.22)

[|w||? +8CN4/3
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Since
[w]* < [w| |Awl,

then by the Cauchy inequality, we get

L? L? 1 642 L4
el A ‘2

2 2
64575 lwl” < 64— ol |Aw] < Slol® + =<7 (6.23)

Substituting (6.23) into (6.22) we get

lw|* < 4L%9%(w) + (64% + 16¢) |Aw|2

N4/3

So we get (3.1) with ¢5 = 642 + 16¢.

By the inequality (6.2), using (3.1) and the Cauchy inequality, we get (3.2).
Moreover, by the Agmon inequality in the case of three dimensions: ”wH%”(Q) <
c||lwl|||Aw|, then using (3.2) and the Cauchy inequality, we deduce (3.3). The proof
of Lemma 3.1 is complete.

6.3. Proof of Lemma 4.1

We first prove the estimates for the domain (0,¢)® := (0,£) x (0,¢) x (0,¢) for
any ¢ > 0. Following the proof in the one-dimensional and two-dimensional cases
n [20, Appendix], we have the following estimates:

o In the case of one dimension: for all w € C§°(R),

/|w J2da < €] (w) 2 + /\ww\ da, (6.24)

1 Z
zf/w:vdx
¢ Jo

o In the case of two dimensions: for all w(xq,z2) € C§°(R?),

62
//|w zl,xz\dzldz2<€2 |2 //(

where
1 4 4
:?2/ / w(xy, xo)drdrs.
o Jo

Applying the two-dimensional estimate (6.25) to w(x1,x2,x3) holding x5 fixed, we

have
V) 1 YA 2
//\w(xl,xg,x3)|2dw1dx2§€—2 //w(xl,mg,xg)dxldxg
o Jo
2 2
ow
// (3:171 )dwldarg.

where

aw
81‘ 2

2
) dxldxg,

(6.25)

6951

8%2
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Integrating this inequality with respect to x3 from 0 to £ to obtain

l pl £
///\w($179€27$3)|2dx1dx2dx3
_62/ </ / l‘l,-’lﬁ‘g,.ﬁg d.Tlde) dl‘3
STAA
81}1

6562
Now, applying the estimate (6.24) to ¢(x3) fo fo w(x1, T2, x3)dr1dT2, We have

Y 0 e

/ (/ / w(xl,x%mg)dxldm) dxs
0 0o Jo

1 VARV 2
<= ///W($1,$2,1‘3)d1'1d$2d1‘3
t\Jo Jo Jo

2
(/ / 8£3d$1d$2> dng.

Using the Buniakovsky-Schwarz inequality twice, we have

[ (/ [ %dm) e [ [ [ |2

¢ e ol 2
/ (/ / w(x17x27$3)d$1d1'2> dxs
0 0o JO
1 L rl L 2
SZ </ / / W(xl7$2,l‘3)d$1d$2d$3>
/ / / 8x3

Substituting (6.27) into (6.26), we deduce that

///|w :z:l,xg,as3|dxldx2dx3
<£3 (F’/// 1‘175(}2,.’173 d:cld:czdxg,)
/// > Jow|? | ow
8131

81:2
Hence, in any box §2;, we have

(9583
L3 L?
2 L= 2 2
L, e < o, P+ s [ 9w P

J

) dxdzadrs. (6.26)

8563 dxldxgdxg.

So

d:vldxgxg. (6.27)

+

> dridradxs.
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Summing in j from 1 to N we get

2

L
lwl*> < LPx*(w) + anw

This is the inequality (4.1).

Using the following interpolation inequality

lwlf* < Jwl] Aw] (6.28)

and the Cauchy inequality, we get (4.2). Moreover, by using (4.1) and (6.28) once
again and the Cauchy inequality, we get (4.3). Finally, by using the Agmon in-
equality in three dimensions, namely

[wllf (@) < cllwl |Awl,

we get (4.4).
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