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LUMPS AND THEIR INTERACTION
SOLUTIONS OF A (2+1)-DIMENSIONAL

GENERALIZED POTENTIAL
KADOMTSEV-PETVIASHVILI EQUATION∗

Bo Ren1,†, Ji Lin2,† and Zhi-Mei Lou1

Abstract A (2+1)-dimensional generalized potential Kadomtsev-Petviashvili
(gpKP) equation which possesses a Hirota bilinear form is constructed. The
lump waves are derived by using a positive quadratic function solution. By
combining an exponential function with a quadratic function, an interaction
solution between a lump and a one-kink soliton is obtained. Furthermore,
an interaction solution between a lump and a two-kink soliton is presented
by mixing two exponential functions with a quadratic function. This type of
lump wave just appears to a line k2x+k3y+k4t+k5 ∼ 0. We call this kind of
lump wave is a special rogue wave. Some visual figures are depicted to explain
the propagation phenomena of these interaction solutions.
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bilinear form, lump wave, lump-soliton.
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1. Introduction
In nonlinear science field, solitary waves of nonlinear partial differential equations
are significantly important role in a variety of science and engineering applica-
tions [2, 5, 10, 35–38]. Among these exact solutions, lump waves admit a kind of
rational solutions that are localized in all direction of spaces, historically found
for nonlinear integrable equations [34]. Lumps have excited a growing amount of
attention on both experimental observations and theoretical predictions [13]. It
has been investigated in various fields, including fluids [8, 13], plasmas [33], and
optic media [24]. The Darboux transformation [6, 7, 12] and the Hirota bilinear
method [15, 16, 18–22, 29, 39, 41–44] are effective direct methods to construct lump
solutions. Lots of integrable systems admit lump solutions, such as the Kadomtsev-
Petviashvili equation [18, 19], the Sawada-Kotera equation [16] and the Caudrey-
Dodd-Gibbon-Kotera-Sawada equation [39], etc [15, 20–22, 29, 41–44]. To describe
complex physical phenomena, the interaction between solitons and other kinds of
complicated waves [9,26–28], interaction between lumps and other kinds of compli-
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cated waves [1, 4, 11, 45] are widely studied by combining of variable functions.
Interaction between solitons and other kinds of complicated waves are studied
by the localization procedure related with the nonlocal symmetry and the con-
sistent tanh expansion method [9,26–28]. Interaction between lump waves and soli-
tons of the nonlinear evolution equations have been studied by the Hirota bilinear
method [1,11,25,30,31,45]. In this paper, we shall focus on lumps and their interac-
tion solutions of a (2+1)-dimensional generalized potential Kadomtsev-Petviashvili
(gpKP) equation.

This paper is organized as follows. In Section 2, we construct a (2+1)-dimensional
gpKP equation which possesses a Hirota bilinear form. Lump solutions are con-
structed by solving a Hirota bilinear form of the gpKP equation. In Section 3, by
adding an exponential and two exponential terms with a quadratic function, the
interaction solutions between a lump and one-kink soliton, and between a lump and
two-kink soliton are obtained, respectively. The last section is a simple summary
and discussion.

2. Study lump waves from a bilinear form
We consider a (2+1)-dimensional gpKP equation

uxt +
3

2
uxuxx +

1

4
uxxxx + δ1uyy + δ2uxy + δ3uxx = 0, (2.1)

where δ1, δ2 and δ3 are arbitrary constants. (2.1) will become a usual (2+1)-
dimensional (pKP) equation with δ2 = δ3 = 0. The pKP equation describes the
dynamics of a wave with small and finite amplitude. The periodic kink wave and
the group-invariant solutions of the pKP equation were found by using extended
homoclinic test technique [3] and the Lie symmetry approach [14]. The nonlocal
symmetry and interaction solutions of the pKP equation were obtained by the
localization procedure related with the nonlocal symmetry [32].

Based on the Painlevé analysis [40], the Painlevé-Bäcklund transformation of
the gpKP equation reads

u =
u0

ϕ
+ u1, (2.2)

where ϕ is an arbitrary function of variables x, y and t, and the function of u1 is
also a solution of the gpKP equation. By substituting (2.2) into (2.1) and balancing
the coefficient ϕ−5, we get

u0 = 2ϕx. (2.3)

By substituting (2.3) and a seed solution u1 = 0 into (2.2), we get

u =
2ϕx

ϕ
. (2.4)

A bilinear form of (2.1) is yielded

2ϕϕxt − 2ϕtϕx +
1

2
ϕϕxxxx − 2ϕxϕxxx +

3

2
ϕ2
xx + 2δ1(ϕϕyy − ϕ2

y) (2.5)

+2δ2(ϕϕxy − ϕxϕy) + 2δ3(ϕϕxx − ϕ2
x) = 0.
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A bilinear equation (2.5) has a following equivalent formula

(DxDt +
1

4
D4

x + δ1D
2
y + δ2DxDy + δ3D

2
x)f · f = 0, (2.6)

with the D-operator defined by

Dl
xD

n
yD

m
t f(x, y, t) · g(x′, y′, t′) (2.7)

=
( ∂

∂x
− ∂

∂x′

)l( ∂

∂y
− ∂

∂y′

)n( ∂

∂t
− ∂

∂t′

)m

f(x, y, t) · g(x′, y′, t′)|x=x′,y=y′,t=t′ .

To get lump solutions of the gpKP equation, a quadratic function ϕ supposes

ϕ = g2 + h2 + a9, (2.8)
g = a1x+ a2y + a3t+ a4,

h = a5x+ a6y + a7t+ a8.

By substituting (2.8) into (2.6) and balancing the different powers of x, y and t, we
get the relations

a3 = −δ1(a1a
2
2 + 2a2a5a6 − a1a

2
6)

a21 + a25
− δ2a2 − δ3a1, a9 = − 3(a21 + a25)

3

4δ1(a1a6 − a2a5)2
,

a7 = −δ1(a5a
2
6 + 2a1a2a6 − a2a

2
5)

a21 + a25
− δ2a6 − δ3a5, (2.9)

which should satisfy the conditions

a5 ̸= 0, δ1 < 0, a1a6 − a2a5 ̸= 0. (2.10)

Then, the solution of u is localized in all directions in the (x, y)-plane. A class of
lump waves of a gpKP equation is thus generated

u =
4a1g + 4a5h

ϕ
, (2.11)

where

ϕ = g2 + h2 − 3(a21 + a25)
3

4δ1(a1a6 − a2a5)2
, (2.12)

g = a1x+ a2y −
(δ1(a1a22 + 2a2a5a6 − a1a

2
6)

a21 + a25
+ δ2a2 + δ3a1

)
t+ a4,

h = a5x+ a6y −
(δ1(a5a26 + 2a1a2a6 − a2a

2
5)

a21 + a25
+ δ2a6 + δ3a5

)
t+ a8.

To catch the moving path of lump waves (2.11), the critical point of the lump waves
is calculated by taking ϕx = ϕy = 0. The approximate moving path of the lump
waves is read

x = x(t) =
(a2a7 − a3a6)t− (a2a8 − a4a6)

a1a6 − a2a5
, (2.13)

y = y(t) =
(a1a7 − a3a5)t− (a1a8 − a4a5)

a1a6 − a2a5
,
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which can describe the traveling path of the lump waves along a straight line

y =
a3a5 − a1a7
a2a7 − a3a6

x+
a3a8 − a4a7
a2a7 − a3a6

, (2.14)

with a3, a7 and a9 satisfy (2.9). The parameters select a1 = 1, a2 = 2, a4 = 4, a5 =
1, a6 = −2, a8 = 2, δ1 = −1, δ2 = 2, δ3 = 3. A lump wave of u is presented in figure
1. The spatial structure of a lump wave is described in Fig. 1(a). From Fig. 1(a),
we can easily know that the lump wave has a localized characteristic at t = 0. Fig.
1(b) represents the density plot of the lump wave. Fig. 1(c) displays the contour
plot of lump wave at t = −3, t = 0, t = 3, and the blue line is the relevant moving
progress (2.14), i.e., y = 2

7x+ 5
14 .
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Figure 1. Profile of the solution (2.11). (a) 3-dimensional plot with the time t = 0, (b) the corresponding
density plot, (c) the contour plot about the moving path described by the straight line (2.14), i.e.,
y = 2

7x + 5
14 .

3. Interaction between lumps and soliton solutions
3.1. A lump and one-kink soliton solution
The interaction between lumps and other type solutions can be obtained by com-
bining a quadratic function with other type functions. In order to find the interac-
tion between lump waves and one soliton, we assume the interaction solution as a
quadratic function and an exponential function

ϕ = g2 + h2 + a9 + k1 exp(k2x+ k3y + k4t+ k5), (3.1)
g = a1x+ a2y + a3t+ a4,

h = a5x+ a6y + a7t+ a8,
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where ki (i = 1, 2, · · · , 5) being five undetermined real parameters. By substituting
(3.1) into (2.5) and vanishing the different powers of x, y and t, we obtain the
following set of constraining relations for the parameters

a3 =− δ1(a1a
2
2 + 2a2a5a6 − a1a

2
6)

a21 + a25
− δ2a2 − δ3a1, a9 = − 3(a21 + a25)

3

4δ1(a1a6 − a2a5)2
,

a7 =− δ2a6 − δ3a5 −
δ1
(
a5a

2
6 + 2a1a2a6 − a5a

2
2

)
a21 + a25

, k2 =
2δ
√
−3δ1(a1a6 − a2a5)

3(a21 + a25)
,

k3 =
2δ
√
−3δ1(a1a2 + a5a6)(a1a6 − a2a5)

3(a1 + a25)
2

,

k4 =
2δ1(a1a6 − a2a5)√

−3δ1(a21 + a25)

(
δ3 +

δ2(a1a2 + a5a6)

a21 + a25

+
δ1(3a

2
1a

2
2 − a21a

2
6 + 8a1a2a5a6 − a22a

2
5 + 3a25a

2
6)

3(a21 + a25)
2

)
,

(3.2)
with δ2 = 1. The constraint conditions have

a5 ̸= 0, δ1 < 0, a1a6 − a2a5 ̸= 0. (3.3)

Then, the corresponding solution of u is localized in all directions in the (x, y)-plane.
By substituting (3.1) into (2.4) and combining the parameters relations (3.2), we
get the following interaction solution of the gpKP equation (2.1)

u =
4a1g + 4a5h+ 4δ2

√
−3δ1k1(a1a6−a2a5)

3(a2
1+a2

5)
exp(f)

ϕ
, (3.4)

where

ϕ = g2 + h2 + a9 + k1 exp(f),

g = a1x+ a2y −
(δ1(a1a22 + 2a2a5a6 − a1a

2
6)

a21 + a25
+ δ2a2 + δ3a1

)
t+ a4,

h = a5x+ a6y −
(δ1(a5a26 + 2a1a2a6 − a5a

2
2)

a21 + a25
+ δ2a6 + δ3a5

)
t+ a8,

f =
2δ
√
−3δ1(a1a6 − a2a5)

3(a21 + a25)
x+

2δ
√
−3δ1(a1a2 + a5a6)(a1a6 − a2a5)

3(a1 + a25)
2

y (3.5)

+
2δ1(a1a6 − a2a5)√

−3δ1(a21 + a25)(
δ3 +

δ2(a1a2 + a5a6)

a21 + a25
+

δ1(3a
2
1a

2
2 − a21a

2
6 + 8a1a2a5a6 − a22a

2
5 + 3a25a

2
6)

3(a21 + a25)
2

)
t+ k5.

The parameters are selected as a1 = 1, a2 = 3, a4 = 2, a5 = 5, a6 = 1, a8 = 4, k1 =
2, k5 = 3, δ = 1, δ1 = −1, δ2 = 2, δ3 = 1. The interaction solution between a lump
and one-kink soliton of u is presented in Fig. 2(a) at t = 0. Fig. 2(b) displays
the corresponding density plot of the lump-kink wave. Fig. 2(c) represents the
homologous contour plot at time t = −25, t = 0, t = 25 and the blue line is the
relevant moving progress of the lump wave (3.4), i.e., y = x+ 2

7 .
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Figure 2. Profile of the solution (3.4). (a) 3-dimensional plot with the time t = 0, (b) the corresponding
density plot, (c) the contour plot about the moving path described by the straight line (2.14), i.e.,
y = x + 2

7 .

3.2. A lump and a pair of kink soliton
For the interaction between the lumps and two soliton, we use a quadratic function
with two exponential functions. In order to find the interaction between a lump
wave and two-soliton, the interaction solution of (2.5) is defined by

ϕ = g2 + h2 + a9 + k1 exp(f) + k6 exp(−f),

g = a1x+ a2y + a3t+ a4,

h = a5x+ a6y + a7t+ a8,

f = k2x+ k3y + k4t+ k5.

(3.6)

By substituting (3.6) into (2.5) and collecting the coefficients of x, y and t, the fol-
lowing set of constraining relations for the parameters yields by solving the algebraic
equations.

a3 =
δ1k3(a1k3 − 2a2k2)

k22
− δ2a2 − δ3a1 −

3a1k
2
2

4
, a5 =

2δ
√
−3δ1(a1k3 − a2k2)

3k22
,

a6 =
3a1k2

2δ
√
−3δ1

− 2δ1k3(a1k3 − a2k2)

δk32
√
−3δ1

, k4 = −δ2k3 − δ3k2 −
k32
4

− δ1k
2
3

k2
,

a7 = −6δ1(a1k3 − a2k2)

k22
√
−3δ1

(
δ3 +

δ2k3
k2

+
δ1k

2
3

k22

)
+

9δ1(a1k3 + a2k2)

2
√
−3δ1

+
9δ2a1k2

2
√
−3δ1

,

a9 =
24δ1a

2
1k

4
2(a1k3 − a2k2)

2 − 16δ21(a1k3 − a2)
4 − 9k82(k1k6k

4
2 + a41)

3k62(δ1(a1k3 − a2k2)2 − 3a21k
4
2)

, (3.7)
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with δ2 = 1. The constraint conditions are

k2 ̸= 0, δ1 < 0, a41 + k1k6k
4
2 > 0. (3.8)

Then, the corresponding solution of u is localized in all directions in the (x, y)-plane.
By substituting (3.6) into (2.4), a class of interaction solution reads

u =
2
(
2a1g − 4δ2

√
−3δ1(a1k3−a2k2)

3k2
2

h+ k1k2 exp(f)− k2k6 exp(−f)
)

ϕ
, (3.9)

where

ϕ = g2 + h2 + a9 + k1 exp(f) + k6 exp(−f), (3.10)

g = a1x+ a2y +
(δ1k3(a1k3 − 2a2k2)

k22
− δ2a2 − δ3a1 −

3a1k
2
2

4

)
t+ a4,

h =
2δ
√
−3δ1(a1k3 − a2k2)

3k22
x+

( 3a1k2

2δ
√
−3δ1

− 2δ1k3(a1k3 − a2k2)

δk32
√
−3δ1

)
y

+
[6δ1(a2k2−a1k3)

k22
√
−3δ1

(
δ3+

δ2k3
k2

+
δ1k

2
3

k22

)
+
9δ1(a1k3+a2k2)

2
√
−3δ1

+
9δ2a1k2

2
√
−3δ1

]
t+a8,

f = k2x+ k3y −
(
δ2k3 + δ3k2 +

k32
4

+
δ1k

2
3

k2

)
t+ k5.

The solution (3.6), which includes a quadratic function and a pair of exponential
functions, is called a special rogue waves [17]. As a special rogue waves, lump waves
are invisible

k2x+ k3y + k4t+ k5 < 0, or k2x+ k3y + k4t+ k5 > 0, (3.11)

while lump waves just move to a line

k2x+ k3y + k4t+ k5 ∼ 0. (3.12)

By combining the traveling path of lump waves (2.13) with the center line

k2x+ k3y + k4t+ k5 = 0, (3.13)

the time and place of the special rogue waves are expressed

t =4k2A
(
k2(a2a8 − a4a6) + k3(a4a5 − a1a8) + k2(a1a6 − a2a5)

)
,

x =A
(
(a2a8−a4a6)(k

4
2+4δ1k

2
3+4δ3k

2
2)+4k2k3(δ2a2a8−δ2a4a6+a3a8−a4a7)

)
,

y =A
(
(a4a5−a1a8)(k

4
2+4δ1k

2
3+4δ2k2k3)+4k22(δ3a4a5+a4a7−δ3a1a8−a3a8)

+4k2k5(a3a5−a1a7)
)
,

A =
(
(k42 + 4δ1k

2
3)(a1a6 − a2a5) + 4k22(δ3a1a6 + a3a6 − δ3a2a5 − a2a7)

+ 4k2k3(δ2a1a6 + a1a7 − δ2a2a5 − a3a5)
)−1

,

(3.14)
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where a3, a5, a6, a7 and a9 satisfy (3.7). In order to describe this special rogue
waves, we select the parameters as a1 = 1, a2 = 2, a4 = 3, a8 = 1, k1 = 1/4, k2 =
1/3, k3 = 1/8, k5 = 2, k6 = 1/8, δ = 1, δ1 = −1, δ2 = 2, δ3 = 3. The interaction
solution between a lump and a two-kink soliton of u is shown by Fig. 3(a). A lump
wave catches with a middle of one-kink soliton. Fig. 1(b) shows the corresponding
density plot of a lump and a two-kink soliton. The Fig. 3(c) displays the homologous
contour plot at time t = −20, t = 0, t = 20 and the blue line is the relevant moving
progress of lump waves (2.14), i.e., y = − 3

16x− 291
169 − 25
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169 .
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Figure 3. Profile of the solution (3.9). (a) 3-dimensional plot with the time t = 0, (b) the corresponding
density plot, (c) the contour plot about the moving path described by the straight line (2.14), i.e.,
y = − 6

13x − 291
169 − 25

√
3

169 .

4. Conclusion
In summary, some interaction solutions among the lump waves and the kink-soliton
solitons of a gpKP equation are studied in this paper. We construct a bilinear form
of the gpKP equation by the truncated Painlevé analysis. A positive quadratic
function is used to find the lump waves. By solving a bilinear form of the gpKP
equation, interaction between a lump and one-kink soliton, and between a lump and
two-kink soliton are given by introducing additional exponential functions. Relevant
propagation behaviors have been displayed by graphical simulations.

In addtion, the generalized bilinear operators are defined by the linear superpo-
sition principle [23]. A new nonlinear partial differential system can be constructed
by using the generalized bilinear operators. According to the generalized bilinear
operators, new gpKP-like equations have the following forms by selecting the prime
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numbers p = 3, 5

(D3,xD3,t +
1

4
D3,xxxx + δ1D3,yy + δ2D3,xD3,y + δ3D3,xx)f · f = 0, (4.1)

(D5,xD5,t +
1

4
D5,xxxx + δ1D5,yy + δ2D5,xD5,y + δ3D5,xx)f · f = 0. (4.2)

The lump waves and their interaction solutions of these two systems (4.1) and (4.2)
are worthy of further study.
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