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DISPERSION AND FRACTIONAL LIE GROUP
ANALYSIS OF TIME FRACTIONAL

EQUATION FROM BURGERS HIERARCHY
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Abstract The paper presents the analysis of time fractional 5th order equa-
tion from Burgers hierarchy. We discuss the dispersion relation and provide
the complete analysis of the phase velocity and group velocity along with the
nature of wave dispersion. Similarity reductions are carried out using infinites-
imal symmetries to obtain nonlinear fractional ordinary differential equations
having Erdélyi-Kober fractional differential operator. The explicit power se-
ries solution is obtained for reduced fractional ordinary differential equation
and its convergence is discussed. The solution is appeared in the form of singu-
lar kink wave and further analysed graphically for various values of fractional
order α. The new conservation theorem is applied to derive the conservation
laws.
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1. Introduction

Fractional differential equations (FDEs) arise generally in various fields of science
and engineering [37, 44, 47, 49, 55] and they portray the nonlinear physical phe-
nomenon judiciously than the integer order differential equations. The linear dis-
persion analysis of FDEs gives the dispersion relation that relates the wave number
and frequency. It provides the phase and group velocities whose relation predict
the nature of dispersion/damping of the waves [13, 21]. The nonlinear analysis of
FDEs to obtain solutions can be done by various methodologies such as symmetry
method, the fractional sub-equation method, (G′/G)-expansion method, exp func-
tion method, fractional complex transformation method, the first integral method,
etc. [6–8, 23, 50, 54, 60, 66]. Among all these successfully applied methodologies to
FDEs, symmetry method [18, 19, 31–34, 56–58] is one such way that gives not only
the symmetries of physical systems spanned by FDEs but also gives the solution as
well as associated conservation laws [22,25–29,51,53,59,64]. The existence of higher
order conservation laws reveals the integrability of differential equations [10,11,48]
and there are number of methods to obtain the conservation laws such as Noether’s
theorem [45], direct method [4], partial Lagrangian method [30], new conservation
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theorem method [24] and so on. The formulation of Noether’s theorem and frac-
tional generalization of the Noether operators using new conservation theorem for
FDEs are given in [17,40].

In this paper, we try to develop the systematic algorithm for linear analysis,
symmetries, explicit solutions and conservation laws of equation obtained from time
fractional Burgers hierarchy [1, 9, 20, 62, 65]. The time fractional Burgers hierarchy
can be determined from following

Dα
t u+ µDx(Dx + u)su = 0, s = 0, 1, 2, ..., (1.1)

where µ is arbitrary constant and α (0 < α < 1) is the fractional order of derivative
w.r.t. time. Fractional Burgers hierarchy (1.1) of order α is the generalization of
Burgers hierarchy of integer order [14,38,39,62] given by

Dtu+ µDx(Dx + u)su = 0, s = 0, 1, 2, ..., (1.2)

Burger’s equation balances the dissipation and nonlinear convection processes [61].
It is used to describe the model of fluid mechanics, traffic flow, nonlinear acoustic
transmission and gas dynamics [61]. The 2nd and 3rd order time fractional equa-
tions from Burgers hierarchy have been investigated for invariant solutions by Lie
group method [54,60]. Also, the multiwave solutions are investigated of 4th and 5th

order space-time FDEs from Burgers hierarchy [1]. The time fractional 5th order
equation (TFFB) from Burger’s hierarchy has not been investigated yet for linear
dispersion properties, symmetries, explicit solutions and conservation laws. So, our
main thrust in this paper is to solve the TFFB equation for all above mentioned
properties.

The TFFB equation can be found by substituting s = 4 in the Eq. (1.1)

Ξ ≡Dα
t u+ µ

(
u5x + 10u2x

2 + 15uxu3x + 5uu4x + 15ux
3 + 50uuxu2x

+ 10u2u3x + 30u2ux
2 + 10u3u2x + 5u4ux

)
= 0, 0 < α < 1,

(1.3)

where uix = ∂iu
∂xi , i = 2, ..., 5. The analysis in the paper is divided into various sec-

tions in which section 2 describes the linear analysis of Eq. (1.3) including various
properties of dispersion. In section 3, symmetries and reductions are performed.
The section 4 includes the way to explicit power series solution of reduced fraction-
al ordinary differential equations and its convergence. The conservation laws are
obtained in section 5 and finally in the last section, concluding remarks are given.

2. Linear analysis of TFFB equation

The linear analysis of the TFFB equation gives the dispersion relation and it helps
to find the phase velocity vp and group velocity vg. For the linear analysis the
dispersive waves are usually taken in the form of a sinusoidal wave having periodic
spatial and time dependence [2, 3, 13,21,35,41,42,63].

Let us consider ψ(x, t) as the wave function for a (1+1)-dimensional system and
sinusoidal wave form can be represented as

ψ(x, t) = Re{Aei(ωt−kx)}, (2.1)
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where A is known as the complex amplitude and the parameters ω and k satisfy
following equation called the dispersion relation

D(ω, k) = 0, (2.2)

where D is the suitable real function of ω and k. Such a relation is, in general,
satisfied by certain ω, k ∈ C. This equation can be solved explicitly in terms of a
real parameter (ω or k) by means of following two conditions

ω̄l(k) ∈ C, k ∈ R,
k̄m(ω) ∈ C, ω ∈ R,

(2.3)

where l and m are positive integers called mode indices. These branches are then
related to the normal mode solutions of the dynamical equations for the physical
system, i.e.,

ψl(x, t; k) = Re{Al(k) exp [i(ω̄lt− kx)]},
ψm(x, t;ω) = Re{Am(k) exp

[
i(ωt− k̄mx)

]
}.

(2.4)

Discard the mode labels for sake of simplicity and equation (2.4) gives the phase
velocity as

vp(k) :=
Reω̄(k)

k
. (2.5)

Furthermore, the group velocity can be defined as follows

vg(k) =
∂

∂k
Reω̄(k). (2.6)

Now, the linear from of TFFB is given by

Dα
t ut + µu5x = 0. (2.7)

Here using the fractional Caputo derivative of order α, defined by

Dα
t f(t) =

1

Γ(n− α)

∫ t

−∞

f (n)(τ)

(t− τ)α+1−n dτ, (2.8)

where n ∈ N such that n − 1 < α < n. In this case, we consider 0 < α < 1,
so n = 1. The Fourier transform for Dα

t f(t) [36] provides the dispersion relation
corresponding to the Eq. (2.7) by following relation

(iω̄)α + µ(−ik)5 = 0. (2.9)

Solution of Eq. (2.9) becomes

ω̄(k) = µ
1
α k

5
α i−1+ 1

α , α 6= 1. (2.10)

Thus dispersion relation is found to be complex in nature and its real and imaginary
parts for k > 0 are obtained as follows

Re(ω̄(k)) = cos((
1

α
− 1)

π

2
)µ

1
α k

5
α ,

Im(ω̄(k)) = sin((
1

α
− 1)

π

2
)µ

1
α k

5
α .

(2.11)
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The complex form of phase and group velocities will appeared in the following form

v̄p(k) =
ω̄(k)

k
,

= µ
1
α k

5
α−1i

1
α−1,

(2.12)

and

v̄g(k) =
∂

∂k
ω̄(k),

=
5

α
µ

1
α k

5
α−1i

1
α−1.

(2.13)

The real and imaginary parts of phase and group velocities are obtained as follows

vp(k) = Re(v̄p(k)) = cos((
1

α
− 1)

π

2
)µ

1
α k

5
α−1,

= Im(v̄p(k)) = sin((
1

α
− 1)

π

2
)µ

1
α k

5
α−1,

(2.14)

and

vg(k) = Re(v̄g(k)) =
5

α
cos((

1

α
− 1)

π

2
)µ

1
α k

5
α−1,

= Im(v̄g(k)) =
5

α
sin((

1

α
− 1)

π

2
)µ

1
α k

5
α−1.

(2.15)

The variation of phase and group velocities with k for TFFB equation is shown
in Figure 1 and 2 for α = 0.75 and α = 0.5, respectively. It has been found that
group velocity is greater than phase velocity for all k values. The phase velocity and
group velocity is related to each other by relation vg = vp+k

dvp
dk . Thus waves follow

anomalous dispersion and longer wavelengths propagate slower than the waves with
shorter wavelength. The variation of vp and vg with α for k = 1, µ = 1 is shown
in Figure 3. It reveals that there are number of α values lies between 0 and 1 for
which real part of vp and vg approaches zero and it leads to the propagation of
waves in opposite direction. The real part of phase and group velocity vanishes at
α = 1

2(m+1) , where m is an integer having values 0, 1, 2,... and the corresponding

α values are 1
2 , 1

4 ,
1
6 , up to so on. Similarly the α values for which the imaginary

part of the vp and vg becomes zero is given by 1
2n+1 , where n is an integer. It is to

be noted that imaginary part of the ω̄(k) corresponds to the damping of the waves
as they propagates in space with time. Damping will take place except the points
α = 1

2n+1 , n = 1, 2, 3, ....

3. Symmetry analysis of TFFB equation

This section provides symmetry and reductions [18,19,23,54,60] of TFFB equation
with Riemann-Liouville fractional derivative [37, 49] of order α and defined by the
following expression

Dα
t u =


∂nu
∂tn , α = n, where n ∈ N ;

1
Γ(n−α)

∂n

∂tn

∫ t
0

u(x,θ)
(t−θ)α+1−n dθ, n− 1 < α < n, n ∈ N .

(3.1)
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Figure 1. Variation of phase and group
velocities with k at α = 0.75.

Figure 2. Variation of phase and group
velocities with k at α = 0.5. Here re-
al part of phase and group velocities are
vanishes and velocities are purely imagi-
nary functions of wave number k.

Figure 3. Variation of phase and group velocities with α having µ = 1, k = 1.
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The admitted Lie algebra for the Eq. (1.3) under a Lie group of transformations is
spanned by following infinitesimal generator

Ω = X∂x + T∂t + U∂u, (3.2)

where X, T and U are infinitesimals corresponding to x, t and u, respectively.
If the infinitesimal generator (3.2) is a Lie point symmetry of Eq. (1.3) then it must
satisfy following condition

Pr(α,5)Ω(Ξ)|Ξ=0 = 0, (3.3)

and gives prolonged vector as follows

Pr(α,5)Ω = Ω + Uα,t∂∂αt u + Ux∂ux + U2x∂u2x
+ U3x∂u3x

+ U4x∂u4x
+ U5x∂u5x

,
(3.4)

where Ux, U2x, U3x, U4x, U5x, Uα,t are extended infinitesimals [18,19,48,60]. The
invariance condition (3.3) for the TFFB equation produces some determining equa-
tions by equating the coefficients of various derivatives of u to zero. The solution
of various determining equations is established as follows

X = c1x+ c2, T =
5t

α
c1, U = −uc1, (3.5)

where c1 and c2 are arbitrary constants. The associated Lie algebra from above
infinitesimals for the TFFB equation is spanned by following two vector fields

Ω1 = ∂x, Ω2 = x∂x +
5t

α
∂t − u∂u. (3.6)

Thus the invariant solutions and similarity reductions are discussed in the following
cases.
Case 3.1.1: Vector field Ω1 = ∂x gives the invariant solution for Eq. (1.3) as
follows

u(x, t) = Ψ(t). (3.7)

The reduced fractional ordinary differential equation (ODE) from invariant solution
is retrieved as

∂αΨ(t)

∂tα
= 0. (3.8)

The solution of reduced fractional ODE is obtained as follows

u(x, t) = d1 t
α−1, (3.9)

where d1 is arbitrary constant.
Case 3.1.2: For the vector field Ω2 = x∂x+ 5t

α ∂t−u∂u, the associated characteristic
equations are given as follows

dx

x
=
dt
5t
α

=
du

−u
. (3.10)

From the solution of above characteristic equations, we get following invariants

ζ = x t−
α
5 , u(x, t) = t−

α
5 Ψ(ζ). (3.11)

Substitution of above invariants into TFFB equation (1.3) provides the nonlinear
ODE of fractional order by following procedure.
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The fractional derivative of u(x, t) = t−
α
5 Ψ(ζ) w.r.t. t of order α using (3.1) for

n− 1 < α < n, n = 1, 2, 3, ... is given by

∂αu

∂tα
=

∂n

∂tn

[ 1

Γ(n− α)

∫ t

0

(t− θ)n−α−1θ
−α
5 Ψ(θ

−α
5 x)dθ

]
. (3.12)

Let us consider w = t/θ. Then above equation can be drafted as follows

∂αu

∂tα
=

∂n

∂tn

[ 1

Γ(n− α)
tn−

6α
5

∫ ∞
1

(w − 1)n−α−1w−(n+1− 6α
5 )Ψ(ζw

α
5 )
]
dw

=
∂n

∂tn

[
tn−

6α
5

(
K

1−α5 ,n−α
5
α

Ψ
)

(ζ)
]
,

(3.13)

where K
1−α5 ,n−α
5
α

is Erdélyi-Kober fractional integral operator [37], On account of

the relation ζ = x t−
α
5 , ϕ∈ C1(0,∞), we get

t
∂

∂t
ϕ(ζ) = tx(−α

5
)t−

α
5−1ϕ′(ζ) = −α

5
ζϕ′(ζ). (3.14)

Using relation (3.14), we have

∂n

∂tn

[
tn−

6α
5

(
K

1−α5 ,n−α
5
α

Ψ
)

(ζ)
]

=
∂n−1

∂tn−1

[ ∂
∂t

(
tn−

6α
5

(
K

1−α5 ,n−α
5
α

Ψ
)

(ζ)
)]

=
∂n−1

∂tn−1

[
tn−

6α
5 −1

(
n− 6α

5
− α

5
ζ
∂

∂ζ

)(
K

1−α5 ,n−α
5
α

Ψ
)

(ζ)
]
.

(3.15)
By repeating above procedure for n− 1 times, we obtain

∂n

∂tn

[
tn−

6α
5

(
K

1−α5 ,n−α
5
α

Ψ
)

(ζ)
]

=
∂n−1

∂tn−1

[ ∂
∂t

(
tn−

6α
5

(
K

1−α5 ,n−α
5
α

Ψ
)

(ζ)
)]

=
∂n−1

∂tn−1

[
tn−

6α
5 −1

(
n− 6α

5
− α

5
ζ
∂

∂ζ

)(
K

1−α5 ,n−α
5
α

Ψ
)

(ζ)
]

...

= t−
6α
5

n−1∏
j=0

(
1− 6α

5
+ j − α

5
ζ
∂

∂ζ

)(
K

1−α5 ,n−α
5
α

Ψ
)

(ζ)

= t−
6α
5

(
P

1− 6α
5 ,α

5
α

Ψ
)

(ζ),

(3.16)

where
(
P

1− 6α
5 ,α

5
α

Ψ
)

is Erdélyi-Kober fractional differential operator [37], Thus, we

have
∂αu

∂tα
= t−

6α
5

(
P

1− 6α
5 ,α

5
α

Ψ
)

(ζ). (3.17)

Hence, the TFFB equation is reduced to nonlinear fractional ODE of the following
form

(P
1−6α5 ,α
5
α

Ψ)(ζ) +
(

10 Ψ3Ψ2ζ + 5 Ψ4Ψζ + 10 Ψ2Ψ3ζ + 30 Ψ2Ψζ
2 + Ψ5ζ + 10 Ψ2ζ

2

+ 15 ΨζΨ3ζ + 5 ΨΨ4ζ + 15 Ψζ
3 + 50 ΨΨζΨ2ζ

)
µ = 0.

(3.18)
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4. Explicit power series solution of reduced nonlin-
ear fractional ODE (3.18)

This section presents a way to obtain explicit convergent power series solutions
to Eq. (3.18) as this method is an excellent way to obtain solution for fractional
ODEs [16,25–27,51]. Let us consider the solution of Eq. (3.18) in power series form

Ψ(ζ) =

∞∑
n=0

anζ
n. (4.1)

Substituting Eq. (4.1) in to Eq. (3.18), we get

∞∑
n=0

Γ
(
1− 1

5 α−
1
5 nα

)
anζ

n

Γ
(
1− 6

5 α−
1
5 nα

) + µ

10

( ∞∑
n=0

anζ
n

)3 ∞∑
n=0

(n+ 2) (n+ 1) an+2ζ
n

+5

( ∞∑
n=0

anζ
n

)4 ∞∑
n=0

(n+ 1) an+1ζ
n

+10

( ∞∑
n=0

anζ
n

)2 ∞∑
n=0

(n+ 3) (n+ 2) (n+ 1) an+3ζ
n

+30

( ∞∑
n=0

anζ
n

)2( ∞∑
n=0

(n+ 1) an+1ζ
n

)2

+

∞∑
n=0

(n+ 5) (n+ 4) (n+ 3) (n+ 2) (n+ 1) an+5ζ
n

+10

( ∞∑
n=0

(n+ 2) (n+ 1) an+2ζ
n

)2

+15

∞∑
n=0

(n+ 1) an+1ζ
n
∞∑
n=0

(n+ 3) (n+ 2) (n+ 1) an+3ζ
n

+5

∞∑
n=0

anζ
n
∞∑
n=0

(n+ 4) (n+ 3) (n+ 2) (n+ 1) an+4ζ
n

+15

( ∞∑
n=0

(n+ 1) an+1ζ
n

)3

+50

∞∑
n=0

anζ
n
∞∑
n=0

(n+ 1) an+1ζ
n
∞∑
n=0

(n+ 2) (n+ 1) an+2ζ
n

)
= 0.

(4.2)
From Eq. (4.2), equating the coefficients of various powers of ζn, to zero. For n = 0
we get

a5 =− 1

120

Γ
(
1− 1

5 α
)
a0

µΓ
(
1− 6

5 α
) − 1

120

(
20 a0

3a2 + 5 a0
4a1 + 60 a0

2a3

+30 a0
2a1

2 + 40 a2
2 + 90 a1a3 + 120 a0a4 + 15 a1

3 + 100 a0a1a2

)
.

(4.3)
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For n ≥ 1, we have

an+5 =− 1

(n+ 5) (n+ 4) (n+ 3) (n+ 2) (n+ 1)

(
Γ
(
1− 1

5 α−
1
5 nα

)
an

µΓ
(
1− 6

5 α−
1
5 nα

)
+10

n∑
k=0

k∑
j=0

j∑
l=0

alaj−lak−j (n− k + 2) (n− k + 1) an−k+2

+5

n∑
k=0

k∑
j=0

j∑
l=0

l∑
m=0

amal−maj−lak−j (n− k + 1) an−k+1

+10

n∑
k=0

k∑
j=0

ajak−j (n− k + 3) (n− k + 2) (n− k + 1) an−k+3

+30

n∑
k=0

k∑
j=0

j∑
l=0

alaj−l (k − j + 1) ak−j+1 (n− k + 1) an−k+1

+10

n∑
k=0

(k + 2) (k + 1) ak+2 (n− k + 2) (n− k + 1) an−k+2

+15

n∑
k=0

(k + 1) ak+1 (n− k + 3) (n− k + 2) (n− k + 1) an−k+3

+5

n∑
k=0

ak (n− k + 4) (n− k + 3) (n− k + 2) (n− k + 1) an−k+4

+15

n∑
k=0

k∑
j=0

(j + 1) aj+1 (k − j + 1) ak−j+1 (n− k + 1) an−k+1

+50

n∑
k=0

k∑
j=0

ajak−j+1 (k − j + 1) (n− k + 2) (n− k + 1) an−k+2

 .

(4.4)

Thus, for arbitrary chosen constant numbers a0, a1, a2, a3, a4 and the other terms
of the sequence {an}∞n=0 can be determined successively from Eqs. (4.3) and (4.4) in
a unique manner. Thus, power series solution for the Eq. (3.18) with the coefficients
given by Eqs (4.3) and (4.4) can be represented as follows

Ψ(ζ) =a0 + a1ζ + a2ζ
2 + a3ζ

3 + a4ζ
4 + a5ζ

5 +

∞∑
n=1

an+5ζ
n+5

=a0 + a1ζ + a2ζ
2 + a3ζ

3 + a4ζ
4 − 1

120

(
Γ
(
1− 1

5 α
)
a0

µΓ
(
1− 6

5 α
)

+20 a0
3a2 + 5 a0

4a1 + 60 a0
2a3 + 30 a0

2a1
2 + 40 a2

2 + 90 a1a3

+120 a0a4 + 15 a1
3 + 100 a0a1a2

)
ζ5

−

( ∞∑
n=1

1

(n+ 5) (n+ 4) (n+ 3) (n+ 2) (n+ 1)

(
Γ
(
1− 1

5 α−
1
5 nα

)
an

µΓ
(
1− 6

5 α−
1
5 nα

)
+10

n∑
k=0

k∑
j=0

j∑
l=0

alaj−lak−j (n− k + 2) (n− k + 1) an−k+2
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+5

n∑
k=0

k∑
j=0

j∑
l=0

l∑
m=0

amal−maj−lak−j (n− k + 1) an−k+1

+10

n∑
k=0

k∑
j=0

ajak−j (n− k + 3) (n− k + 2) (n− k + 1) an−k+3

+30

n∑
k=0

k∑
j=0

j∑
l=0

alaj−l (k − j + 1) ak−j+1 (n− k + 1) an−k+1

+10

n∑
k=0

(k + 2) (k + 1) ak+2 (n− k + 2) (n− k + 1) an−k+2

+15

n∑
k=0

(k + 1) ak+1 (n− k + 3) (n− k + 2) (n− k + 1) an−k+3

+5

n∑
k=0

ak (n− k + 4) (n− k + 3) (n− k + 2) (n− k + 1) an−k+4

+15

n∑
k=0

k∑
j=0

(j + 1) aj+1 (k − j + 1) ak−j+1 (n− k + 1) an−k+1

+50

n∑
k=0

k∑
j=0

ajak−j+1 (k − j + 1) (n− k + 2) (n− k + 1) an−k+2ζ
n+5

 .

(4.5)

Hence, explicit power series solution for TFFB equation can be expressed as follows

u(x, t) =a0t
−α
5 + a1xt

−2α
5 + a2x

2t
−3α
5 + a3x

3t
−4α
5 + a4x

4t−α

+ a5x
5t

−6α
5 +

∞∑
n=1

an+5x
n+5t

−(n+5)α
5

=a0t
−α
5 + a1xt

−2α
5 + a2x

2t
−3α
5 + a3x

3t
−4α
5 + a4x

4t−α

− 1

120

(
Γ
(
1− 1

5α
)
a0

µΓ
(
1− 6

5α
) +20a0

3a2+5a0
4a1+60a0

2a3+30a0
2a1

2+40a2
2

+90 a1a3 + 120 a0a4 + 15 a1
3 + 100 a0a1a2

)
x5t

−6α
5

−

( ∞∑
n=1

1

(n+ 5) (n+ 4) (n+ 3) (n+ 2) (n+ 1)

(
Γ
(
1− 1

5 α−
1
5 nα

)
an

µΓ
(
1− 6

5 α−
1
5 nα

)
+10

n∑
k=0

k∑
j=0

j∑
l=0

alaj−lak−j (n− k + 2) (n− k + 1) an−k+2

+5

n∑
k=0

k∑
j=0

j∑
l=0

l∑
m=0

amal−maj−lak−j (n− k + 1) an−k+1

+10

n∑
k=0

k∑
j=0

ajak−j (n− k + 3) (n− k + 2) (n− k + 1) an−k+3



Dispersion and fractional Lie group. . . 11

+30

n∑
k=0

k∑
j=0

j∑
l=0

alaj−l (k − j + 1) ak−j+1 (n− k + 1) an−k+1

+10

n∑
k=0

(k + 2) (k + 1) ak+2 (n− k + 2) (n− k + 1) an−k+2

+15

n∑
k=0

(k + 1) ak+1 (n− k + 3) (n− k + 2) (n− k + 1) an−k+3

+5

n∑
k=0

ak (n− k + 4) (n− k + 3) (n− k + 2) (n− k + 1) an−k+4

+15

n∑
k=0

k∑
j=0

(j + 1) aj+1 (k − j + 1) ak−j+1 (n− k + 1) an−k+1

+50

n∑
k=0

k∑
j=0

ajak−j+1 (k−j+1)(n−k+2)(n−k+1) an−k+2

xn+5t
−(n+5)α

5

 .

(4.6)

The obtained power series solution (4.6) is analyzed graphically by plotting its two-
dimensional (2D) and three-dimensional (3D) curves. The figure caption provides
the various parameters selected for plotting. Figure 4 and 5 show 3D and 2D plots
respectively of the solution for α = 0.5 and it reveals singular kink wave profile.
The combination of Figures 6-7 and Figure 8-9 also represent singular kink wave
pattern at α = 0.75 and α = 0.9, respectively by 3D and 2D plots.

Figure 4. 3D plot of the solution (4.6)
with a0 = 1,a1 = 1,a2 = 1,a3 = 1,a4 =
1,a5 = −4,a6 = 0.17,a7 = 0.76, µ = 2,
α = 0.5, n = 0 to 7.

Figure 5. 2D plot of the solution (4.6)
with a0 = 1,a1 = 1,a2 = 1,a3 = 1,a4 =
1,a5 = −4,a6 = 0.17,a7 = 0.76, µ = 2,
α = 0.5, t = 1, n = 0 to 7
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Figure 6. 3D plot of the solution (4.6)
with a0 = 1,a1 = 0.5,a2 = 0.25,a3 =
0.125,a4 = 2,a5 = −2.41,a6 = 0.53, µ =
2, α = 0.75, n = 0 to 6.

Figure 7. 2D plot of the solution (4.6)
with a0 = 1,a1 = 0.5,a2 = 0.25,a3 =
0.125,a4 = 2,a5 = −2.41,a6 = 0.53, µ =
2, α = 0.75, t = 1, n = 0 to 6

Figure 8. 3D plot of the solution (4.6)
with a0 = 1,a1 = 0.5,a2 = 0.25,a3 =
0.125,a4 = 2,a5 = −2.41,a6 = 0.53, µ =
2, α = 0.9, n = 0 to 5.

Figure 9. 2D plot of the solution (4.6)
with a0 = 1,a1 = 0.5,a2 = 0.25,a3 =
0.125,a4 = 2,a5 = −2.41,a6 = 0.53, µ =
2, α = 0.9, t = 1, n = 0 to 5
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4.1. Convergence analysis

In this subsection the convergence [25–27, 51] of the power series solution (4.6)
is tested. The modulus of the general recurrence relation given by Eq. (4.4) is
represented as follows

|an+5|

≤

 |Γ (1− 1
5α−

1
5nα

)
||an|

|µ||Γ
(
1− 6

5α−
1
5 nα

)
|

+ 10

n∑
k=0

k∑
j=0

j∑
l=0

|al||aj−l||ak−j ||an−k+2|

+5

n∑
k=0

k∑
j=0

j∑
l=0

l∑
m=0

|am||al−m||aj−l||ak−j ||an−k+1|+10

n∑
k=0

k∑
j=0

|aj ||ak−j ||an−k+3|

+30

n∑
k=0

k∑
j=0

j∑
l=0

|al||aj−l||ak−j+1||an−k+1|+ 10

n∑
k=0

|ak+2||an−k+2|

+15

n∑
k=0

|ak+1||an−k+3|+ 5

n∑
k=0

|ak||an−k+4|+ 15

n∑
k=0

k∑
j=0

|aj+1||ak−j+1||an−k+1|

+50

n∑
k=0

k∑
j=0

|aj ||ak−j+1||an−k+2|

 . (4.7)

By utilizing the property of Γ function,
|Γ(1− 1

5 α−
1
5 nα)|

|Γ(1− 6
5 α−

1
5 nα)|

< 1 for arbitrary n, the Eq.

(4.7) can be written as

|an+5|

≤M

|an|+ n∑
k=0

k∑
j=0

j∑
l=0

|al||aj−l||ak−j ||an−k+2|

+

n∑
k=0

k∑
j=0

j∑
l=0

l∑
m=0

|am||al−m||aj−l||ak−j ||an−k+1|+
n∑
k=0

k∑
j=0

|aj ||ak−j ||an−k+3|

+

n∑
k=0

k∑
j=0

j∑
l=0

|al||aj−l||ak−j+1||an−k+1|+
n∑
k=0

|ak+2||an−k+2|+
n∑
k=0

|ak+1||an−k+3|

+

n∑
k=0

|ak||an−k+4|+
n∑
k=0

k∑
j=0

|aj+1||ak−j+1||an−k+1|+
n∑
k=0

k∑
j=0

|aj ||ak−j+1||an−k+2|

 ,

(4.8)

where M = max( 1
|mu| , 5, 10, 15, 30, 50).

Consider another power series of the form

B(ζ) =

∞∑
n=0

bnζ
n, (4.9)

where the expansion coefficients bn are related to the coefficients of the (4.6) as
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bi = |ai|, i = 0, ..., 5. Thus the Eq. (4.8) reads

|an+5| ≤M

bn+

n∑
k=0

k∑
j=0

j∑
l=0

blbj−lbk−jbn−k+2+

n∑
k=0

k∑
j=0

j∑
l=0

l∑
m=0

bmbl−mbj−lbk−jbn−k+1

+

n∑
k=0

k∑
j=0

bjbk−jbn−k+3+

n∑
k=0

k∑
j=0

j∑
l=0

blbj−lbk−j+1bn−k+1 +

n∑
k=0

bk+2bn−k+2

+

n∑
k=0

bk+1bn−k+3 +

n∑
k=0

bkbn−k+4 +

n∑
k=0

k∑
j=0

bj+1bk−j+1bn−k+1

+

n∑
k=0

k∑
j=0

bjbk−j+1bn−k+2

 , (4.10)

where n = 0, 1, 2, .... Therefore, it is easily seen that |bn| ≤ an, n=0,1,2,... In other
words, the series B = B(ζ) =

∑∞
n=0 bnζ

n is majorant series of Eq. (4.1). Now we
will prove that the series B = B(ζ) has positive radius of convergence and hence
our obtained power series solution of TFFB is convergent. For this rewrite the eq.
(4.9) for B(ζ) as

B(ζ)=b0 + b1ζ + b2ζ
2 + b3ζ

3 + b4ζ
4 +M

( ∞∑
n=0

bnζ
n+5

+

∞∑
n=0

n∑
k=0

k∑
j=0

j∑
l=0

blbj−lbk−jbn−k+2ζ
n+5

+

∞∑
n=0

n∑
k=0

k∑
j=0

j∑
l=0

l∑
m=0

bmbl−mbj−lbk−jbn−k+1ζ
n+5

+

∞∑
n=0

n∑
k=0

k∑
j=0

bjbk−jbn−k+3ζ
n+5 +

∞∑
n=0

n∑
k=0

k∑
j=0

j∑
l=0

blbj−lbk−j+1bn−k+1ζ
n+5

+

∞∑
n=0

n∑
k=0

bk+2bn−k+2ζ
n+5 +

n∑
k=0

bk+1bn−k+3ζ
n+5 +

∞∑
n=0

n∑
k=0

bkbn−k+4ζ
n+5

+

∞∑
n=0

n∑
k=0

k∑
j=0

bj+1bk−j+1bn−k+1ζ
n+5 +

∞∑
n=0

n∑
k=0

k∑
j=0

bjbk−j+1bn−k+2ζ
n+5


= b0 + b1ζ + b2ζ

2 + b3ζ
3 + b4ζ

4 +M
(
ζ5B(ζ) +B3(B − b0 − b1ζ)

+B4(B − b0) +B2(B − b0 − b1ζ − b2ζ2) +B2(B − b0)(B − b0)

+(B − b0 − b1ζ)(B − b0 − b1ζ) + (B − b0)(B − b0 − b1ζ − b2ζ2)

+B(B − b0 − b1ζ − b2ζ2 − b3ζ3) + (B − a0)(B − a0)(B − a0)

+B(B − a0)(B − a0 − b1ζ)) .
(4.11)

Consider the implicit functional equation with respect to the independent vari-
able ζ

F (ζ,B) =B − b0 − b1ζ + b2ζ
2 − b3ζ3 − b4ζ4 −M

(
ζ5B +B3(B − b0 − b1ζ)
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+B4(B − b0) +B2(B − b0 − b1ζ − b2ζ2) +B2(B − b0)(B − b0)

+(B − b0 − b1ζ)(B − b0 − b1ζ) + (B − b0)(B − b0 − b1ζ − b2ζ2)

+B(B − b0 − b1ζ − b2ζ2 − b3ζ3) + (B − b0)(B − b0)(B − b0)

+B(B − b0)(B − b0 − b1ζ)) . (4.12)

From the above formula it can be easily proved that F is analytical in the neigh-
borhood of (0, b0) and

F (0, b0) = 0, F ′B(0, b0) = 1−M b0 6= 0. (4.13)

Thus based on the theorem given in [52], we see that B = B(ζ) is analytical in
a neighborhood of the point (0, b0) and possess the positive radius. Hence power
series (4.1) is convergent in a neighborhood of the point (0, b0). The TFFB equation
has been not analyzed yet for linear dispersion analysis, symmetry analysis and
explicit power series solutions. For α = 1, the multiple kink solutions and multiple
singular kink solutions are obtained and reported in [62]. The convergent power
series solution of TFFB obtained in the present discussion has not been obtained
and reported by anyone else.

5. Conservation Laws for TFFB

In this section, we obtain the conservation laws [5, 12, 15, 40, 43, 46] of the TFFB
equation by using new conservation theorem [24]. For this the Riemann-Liouville
left-sided time-fractional derivative [40] and left-sided time-fractional integral of
order n− α are defined as follows

0D
α
t u = Dn

t

(
0I
n−α
t u

)
(5.1)

and (
0I
n−α
t u

)
(x, t) =

1

Γ(n− α)

∫ t

0

u(x, θ)

(t− θ)1−n+α
dθ, (5.2)

where Γ(z) is the Gamma function, Dt is the operator of differentiation with respect
to t and n = [α] + 1.

The vector C = (Ct, Cx) provides a conservation law if it satisfies following
equation

Dt(C
t) +Dx(Cx)|(1.3) = 0. (5.3)

For the construction of conservation laws, the formal Lagrangian of TFFB can be
written as follows

L =Υ(x, t)
(
Dα
t u+ µ

(
u5x + 10u2x

2 + 15uxu3x + 5uu4x + 15ux
3 + 50uuxu2x

+ 10u2u3x + 30u2ux
2 + 10u3u2x + 5u4ux

))
,

(5.4)
where Υ(x, t) is a new dependent variable. With the formal Lagrangian, the action
integral is given by ∫ Φ

0

∫
Θ

L(x, t, u,Υ, Dα
t u, ux, ...)dxdt. (5.5)
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The adjoint equation [24] to the TFFB is defined as follows

δL

δu
= 0, (5.6)

where
δ

δu
is the Euler-Lagrange operator [17,40] of the following form

δ

δu
= ∂u + (Dα

t )∗∂∂αt u −Dx∂ux +D2
x∂u2x

−D3
x∂u3x

+D4
x∂u4x

−D5
x∂u5x

, (5.7)

where (Dα
t )∗ is the adjoint operator of (Dα

t ). Using Eqs (5.4) and (5.6), the adjoint
equation to the Eq. (1.3) can be written as follows(
−10 v2xuux − 10 vxuu2x + 5 v3xux + 5 v4xu+ 5 v2xu2x − v5x + 10 v2xu

3

−5 vxu
4 − 10 v3xu

2 − 5 vxux
2
)
µ− (Dα

t )∗Υ = 0.
(5.8)

As the Eq. TFFB has two independent variables x, t and one dependent variable
u so, we have following relation in accordance with [24]

Ω̄ +Dt(T )e+Dx(X)e = W
δ

δu
+DtN

t +DxN
x, (5.9)

where e is identity operator, N t and Nx are the Noether operators, and Ω̄ is given
by

Ω̄ = T∂t +X∂x + U∂u + Uαt∂∂αt u + Ux∂ux + U2x∂u2x
+ ...+ U5x∂u5x

. (5.10)

The Lie characteristic function W is defined as follows

W = U − Tut −Xux. (5.11)

The operator N t with the use of Riemann-Liouville time-fractional derivative to the
TFFB equation is given by [17,40,59]

N t = T e+

n−1∑
k=0

(−1)k0D
α−1−k
t (W )Dk

t

∂

∂0Dα
t u
− (−1)nJ

(
W,Dn

t

∂

∂0Dα
t u

)
,

(5.12)
where J is the integral given by

J(F,G) =
1

Γ(n− α)

∫ t

0

∫ ϑ

t

F (x, φ)G(x, q)

(q − φ)α+1−n dqdφ. (5.13)

The operator Nx is defined as follows

Nx =Xe+W
(
∂ux −Dx∂u2x

+D2
x∂u3x

−D3
x∂u4x

+D4
x∂u5x

)
+Dx(W )

(
∂u2x

−Dx∂u3x
+D2

x∂u4x
−D3

x∂u5x

)
+D2

x(W )
(
∂u3x

−Dx∂u4x
+D2

x∂u5x

)
+D3

x(W )
(
∂u4x

−Dx∂u5x

)
+D4

x(W )∂u5x
.

(5.14)



Dispersion and fractional Lie group. . . 17

The generator Ω should hold following

(Ω̄L+Dt(T )L+Dx(X)L)|(1.3) = 0. (5.15)

Thus the conservation law for TFFB equation can be written as follows

Dt(N
tL) +Dx(NxL) = 0. (5.16)

Thus t and x components of conserved vectors corresponding to Ω1 and Ω2 using
(5.12) and (5.14) to the Eq. (1.3) are calculated as follows

Ct1 = TL+ (−1)0
0D

α−1
t (W1)D0

t

∂L

∂0Dα
t u
− (−1)1J

(
W1, D

1
t

∂L

∂0Dα
t u

)
= 0D

α−1
t (W1)Υ + J(W1,Υt),

= 0D
α−1
t (−ux)Υ + J(−ux,Υt),

(5.17)

Cx1 =
(
−u3xΥ2x − 50uΥuxu2x − 15uxu3xΥ− 30u2Υux

2 − 5u4Υux

+10uxu2xΥx + 10uΥxux
2 + 10u3Υxux − 10uxΥ2xu

2 + 5uuxΥ3x

−10u3Υu2x + 10u2Υxu2x − 5uu2xΥ2x − 10u2Υu3x + 5uu3xΥx

−5uu4xΥ− u5xΥ− uxΥ4x − 10u2x
2Υ− 15ux

3Υ + u2xΥ3x

+u4xΥx)µ,

(5.18)

Ct2 = TL+ (−1)0
0D

α−1
t (W2)D0

t

∂L

∂0Dα
t u
− (−1)1J

(
W2, D

1
t

∂L

∂0Dα
t u

)
= 0D

α−1
t (W2)Υ + J(W2,Υt),

= 0D
α−1
t (−u− xux −

5t

α
ut)Υ + J(−u− xux −

5t

α
ut,Υt),

(5.19)

Cx2 =− µ
(
5 Υu4x − 4u3xΥx + 3u2xΥ2x − 2uxΥ3x − 10ux

2Υx

+uΥ4x − 5u2Υ3x + 10u3Υ2x − 10u4Υx + 5u5Υ + 15xuxΥu3x

+30xux
2Υu2 + 5xuxΥu4 − 10xuxΥxu2x − 10xux

2Υxu− 10xuxΥxu
3

+10xuxΥ2xu
2 − 5xuxΥ3xu+ 10xu2xΥu3 − 10xu2xΥxu

2 + 5xu2xΥ2xu

+10xu3xΥu2 − 5xu3xΥxu+ 5xu4xΥu+ 50xuxΥuu2x − 20uΥxu2x

+25uΥu3x + xuxΥ4x + 50uxΥu2x + 10uxΥ2xu+ 50u3Υux

+50u2Υu2x − xu4xΥx + 15xux
3Υ + 75uΥux

2 − 30u2Υxux

−xu2xΥ3x + xu3xΥ2x + 10xu2x
2Υ + Υxu5x

)
− µ

α

(
25 tu3xtΥu+ 25 tutΥu3x + 75 tutΥux

2 + 25 tutΥu
4 − 25 tutΥxu2x

−50 tutΥxu
3 + 50 tutΥ2xu

2 − 25 tutΥ3xu+ 50 tutxΥu2x + 50 tutxΥu3

−25 tutxΥxux − 50 tutxΥxu
2 + 25 tutxΥ2xu+ 50 tu2xΥux + 50 tu2xtΥu

2

−25 tu2xtΥxu+ 5 Υtu4xt − 5 tu3xtΥx + 5 tu2xtΥ2x

−5 tutxΥ3x + 5 tutΥ4x + 100 tutΥuu2x + 150 tutΥu
2ux − 50 tutΥxuux

+150 tutxΥuux) .

(5.20)

Thus we have obtained conservation laws associated with TFFB equation and this
equation has not been explored for conservation laws in literature.
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6. Conclusion

In this paper, we present an algorithm to systematically analyze the 5th order
fractional equation from Burgers hierarchy. The linear analysis of the equation
gives the dispersion relation whose real and imaginary parts correspond to the
dispersion and damping of waves. The relation between phase and group velocity
signifies anomalous dispersion of waves and velocities are found to be a function of
time fractional derivative order. The convergent power series solution is obtained
of the reduced fractional ODE in Lie symmetry analysis. The graphical analysis
of the solution for different α values reveals singular kink wave profile. The new
conservation theorem has been applied to derive conservation laws corresponding
to infinitesimal symmetries.
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solutions for compound KdV–Burgers equation with variable coefficients, Can.
J. Phys., 2010, 88(3), 211–221.

[3] A. Abourabia and A. Morad, Exact traveling wave solutions of the van der
Waals normal form for fluidized granular matter, Physica A, 2015, 437, 333–
350.

[4] S. C. Anco and G. Bluman, Direct construction method for conservation laws
of partial differential equations Part I: Examples of conservation law classifi-
cations, Eur. J. Appl. Math., 2002, 13(5), 545–566.
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