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1. Introduction
As well as we know, functional analysis is made up of three main methods which
are variational methods, degree methods and fixed point methods. Fixed point
method is a very useful tool on solving the differential equations, integral equations
and so on. In 2006 Zead Mustafa introduced the notion of G-metric spaces [13] as
the generalization of ordinary metric and analysed the topological structure of the
G-metric spaces. From then on, G-metric spaces have been studied and applied
to obtain different kinds of fixed point theorems, see [8, 9, 14, 15, 17, 21, 23]. The
topic of G-metric is still concerned by many peoples [4, 6, 8, 9, 12, 19, 24, 25]. In
2012, Jleli and Samet [10], Samet and Vetro [20], and An. et al. [1] reported
that most of fixed point results on G-metric spaces can be derived from the fixed
point theorems on the usual metric spaces or quasi-metric spaces. In 2013 Asadi et
al. [2], Karapınar and Agarwal [11] stated and proved some theorems that cannot
be obtained from the existence results on metric spaces or quasi-metric spaces.
Very recently Agarwal et al. [3] announced that many contractive conditions in G-
metric spaces can be expressed in the terms of quasi-metric spaces after a suitable
substitution, for example y = Tx, even in [2,11]. Inspired by the results of paper [3]
we have different opinions with [3] and give some theorems on G-metric spaces that
cannot be expressed in the terms of quasi-metric spaces.

In the sequel, let N, R respectively denote the set of all nonnegative integers and
real numbers.

Definition 1.1 ( [13]). Let X be a non-empty set, G : X × X × X −→ R+ be a
mapping satisfying the following properties:

(G1) G(x, y, z) = 0 if x = y = z;
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(G2) 0 < G(x, x, y) for all x, y ∈ X with x ̸= y;
(G3) G(x, x, y) ≤ G(x, y, z) for all x, y, z ∈ X with y ̸= z;
(G4) G(x, y, z) = G(x, z, y) = G(y, z, x) = · · · (symmetry in all three variables);
(G5) G(x, y, z) ≤ G(x, a, a) +G(a, y, z) for all x, y, z, a ∈ X (rectangle inequality).

Then the mapping G is called a generalized metric, or, more specially, a G-metric
on X, and the pair (X,G) is called a G-metric space.

It should be noticed that G(x, x, y) may not be equal to G(x, y, y). In the case
G(x, y, y) = G(x, x, y), we have the following definition.

Definition 1.2 ( [13]). A G-metric space (X,G) is symmetric if G(x, y, y) =
G(x, x, y) for all x, y ∈ X.

Example 1.1. Let (X, d) be a metric space, and

(1) G1(x, y, z) = max{d(x, y), d(x, z), d(y, z)},

(2) G2(x, y, z) = d(x, y) + d(x, z) + d(y, z),

then (X,G1), and (X,G2) are symmetric G-metric spaces.

The following definitions are about convergence and completeness on G-metric
spaces.

Definition 1.3 ( [13]). Let (X,G) be a G-metric space.

(1) A sequence {xn} in X G-converges to x if and only if G(xn, x, x) → 0 as
n → ∞. That is for each ε > 0 there exists n0 ∈ N such that for all n > n0,
G(x, xn, xn) < ε, or G(xn, x, x) < ε.

(2) Sequence {xn} in X is called a G-Cauchy sequence if for each ε > 0, there exists
n0 ∈ N such that G(xn, xm, xl) < ε for each n,m, l ≥ n0.

(3) The G-metric space (X,G) is said to be G-complete if every Cauchy sequence
is G-convergent.

Proposition 1.1 ( [13]). In a G-metric space (X,G)

(1) the sequence {xn} is G-Cauchy if and only if limn,m→∞G(xn, xn, xm) = 0;
(2) G(x, x, y) ≤ 2G(x, y, y);
(3) G(x, y, z) = 0 ⇒ x = y = z.

Proposition 1.2 ( [13]). Let (X,G) be a G-metric space, then the function G(x, y, z)
is jointly continuous in all three of its variables.

Definition 1.4 ( [13]). Let (X,G) be a G-metric space and T : X → X be a self-
map. T is said to be G-continuous if for any G-convergent sequence {xn} to x, then
{Txn} is G-convergent to T (x).

Lemma 1.1. Let (X,G) be a G-metric space. Let T : X → X be a G-continuous
mapping. If a sequence of T based on x ∈ X {Tnx} is G-convergent to z ∈ X, then
z is a fixed point of T .
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Proof. Since T is G-continuous, then limn→∞G(Tn+1x, Tz, Tz) = 0. Meanwhile
limn→∞G(Tn+1x, z, z) = 0, we can get z = Tz from the unique limit of sequence
on G-metric spaces.

In 1931 Wilson [22] introduced the notion of quasi−metric spaces. The notion
of a (left, right) Cauchy sequence of a quasi−metric spaces were raised in Reilly et
al.’s work [18]. For more detail, please refer to book [7].

Definition 1.5. Let X be a nonempty set and q : X × X → [0,∞) be a given
function which satisfies

(1) q(x, y) = 0 if and only if x = y;
(2) q(x, y) ≤ q(x, z) + q(z, y) for any points x, y, z ∈ X.

Then q is called a quasi-metric and the pair (X, q) is called a quasi-metric space.

The quasi-metric is a generalization of a metric. A metric is a quasi-metric, but
a quasi-metric probably is not a metric because q(x, y) ̸= q(y, x).

Definition 1.6. Let (X, q) be a quasi-metric space, {xn} be a sequence in X, and
x ∈ X. We say that:

(1) {xn} right-converges to x if limn→∞ q(xn, x) = 0;
(2) {xn} left-converges to x if limn→∞ q(x, xn) = 0;
(3) {xn} converges to x if and only if {xn} right-converges and left-converges to x;
(4) {xn} is a right-Cauchy sequence if for all ε > 0 there exists n0 ∈ N such that

q(xn, xm) < ε for all m > n > n0;
(5) {xn} is a left-Cauchy sequence if for all ε > 0 there exists n0 ∈ N such that

q(xm, xn) < ε for all m > n > n0;
(6) {xn} is Cauchy if and only if it is left-Cauchy and right-Cauchy;
(7) (X, q) is complete if every Cauchy sequence in X is convergent.

Proposition 1.3 ( [20]). Let (X,G) be a G-metric space. Let q : X ×X → [0,∞)
be the function defined by q(x, y) = G(x, y, y) or q(x, y) = G(x, x, y). Then

(1) (X, q) is a quasi-metric space;
(2) {xn} ⊂ X is G-convergent to x ∈ X if and only if {xn} is convergent in (X, q);
(3) {xn} ⊂ X is G-Cauchy if and only if {xn} is Cauchy in (X, q);
(4) (X,G) is G-complete if and only if (X, q) is complete;
(5) {xn} is right-cauchy if and only if it is left-cauchy in (X,q).

Definition 1.7 ( [3]). If function φ : [0,∞) → [0,∞) satisfying the following
conditions:

(1) φ is monotonous non-decreasing;
(2) Σ∞

n=1φ
n(t) <∞ for all t > 0, where φn is the nth iteration of φ.

Then the function is called a (c)-comparison function. If φ is a (c)-comparison
function then φ(t) < t for all t > 0. Indeed, there are many functions satisfying
the conditions (1)-(2). For example, φ(t) = kt for all t ≥ 0, where k ∈ [0, 1), and
φ(t) = t

1+t for all t ≥ 0.
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2. Main results
In the definition of G-metric space the condition (G3) and (G5) are the basic in-
equalities of G-metric space. The proposition 1.1 (2) is also a key inequality. It is
important to know how to use these inequalities effectively to get some available
theorems.

Definition 2.1. Let (X,G) be a G-metric space. A mapping T : X → X is said to
be a Gφ−contraction if there exists a (c)-comparison function φ such that for all
x, y ∈ X :

G(Tx, Ty, T 2y) ≤ φ(G(x, y, Ty)). (2.1)
Definition 2.2. Let (X,G) be a G-metric space. A mapping T : X → X is said
to be a weak Gφ−contraction if there exists a (c)-comparison function φ such that
for all x ∈ X :

G(Tx, T 2x, T 3x) ≤ φ(G(x, Tx, T 2x)). (2.2)
We denote by Ω(X,Gφ) the collection of all Gφ−contraction mappings and by

Ω(X,WGφ) the collection of all weak Gφ−contraction mappings on a G-metric
space (X,G). Obiviously

Ω(X,Gφ) ⊆ Ω(X,WGφ).

Theorem 2.1. Let (X,G) be a complete G-metric space and T : X → X be a
G-continuous mapping. If T is a weak Gφ−contraction mapping, then T has a fixed
point.

Proof. Let x0 ∈ X. We define an iterative sequence {xn} as follows:

xn+1 = Txn = Tn+1x0

for all n ∈ N. If xn0+1 = xn0
for some n0 ∈ N, then xn0

is a fixed point of T .
Throughout the proof, we assume that xn+1 ̸= xn for all n ∈ N. Consequently, we
have G(xn+1, xn, xn) > 0 for every n ∈ N.

From (2.2), with x = xn−1, and φ is monotonous non-decreasing, we have

G(xn, xn+1, xn+2) ≤ φ(G(xn−1, xn, xn+1)) ≤ · · · ≤ φn(G(x0, x1, x2))

for all n ∈ N. Since

G(xn, xn, xn+1) ≤ G(xn, xn+1, xn+2)

with xn+1 ̸= xn+2, so

G(xn, xn, xn+1) ≤ φn(G(x0, x1, x2)).

For all n,m ∈ N, n < m we have

G(xn, xn, xm) ≤ G(xn, xn, xn+1)+G(xn+1, xn+1, xn+2)+· · · +G(xm−1, xm−1, xm)

≤ (φn + φn+1 + · · ·+ φm−1)(G(x0, x1, x2))

=

m−1∑
k=n

φk(G(x0, x1, x2)).

(2.3)
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Since
∑∞

n=1 φ
n(t) <∞ for all t > 0, so limG(xn, xn, xm) = 0, as n,m→ ∞. Thus,

{xn} is a G-Cauchy sequence. Due to the completeness of (X,G), there exists z ∈ X
such that {xn} is G-convergent to z. Since T is G-continuous, z is the fixed point
of T .

Corollary 2.1. Let (X,G) be a complete G-metric space and T : X → X be a
G-continuous mapping. If T satisfy the following condition for all x ∈ X:

G(Tx, T 2x, T 3x) ≤ kG(x, Tx, T 2x) (2.4)

where 0 ≤ k < 1, then T has a fixed point.

Proof. φ(t) = kt is a (c)-comparison function for all t ≥ 0, where k ∈ [0, 1).

Remark 2.1. Corollary 2.1 cannot be expressed in quasi-metric spaces because
G(Tx, T 2x, T 3x) cannot be expressed in the style of G(z, y, y) or G(z, z, y). The
following corollaries cann’t be expressed in quasi-metric spaces too.

Corollary 2.2. Let (X,G) be a complete G-metric space and T : X → X be a
G-continuous mapping. If T satisfy the following condition for all x, y ∈ X:

G(Tx, Ty, T 2y) ≤ aG(x, y, Ty) (2.5)

where 0 ≤ a < 1 then T has a fixed point.

Proof. Let y = Tx, we get G(Tx, T 2x, T 3x) ≤ aG(x, Tx, T 2x). Then the condi-
tion of Corollary 2.1 is satisfied, so we can get this conclusion.

Remark 2.2. The condition of Corollary 2.2 is stronger than Corollary 2.1. Be-
cause for every x, y ∈ X the G(Tx, Ty, T 2y) ≤ aG(x, y, Ty) is satisfied, we can
choose the special point y = Tx. Then using the Corollary 2.1 we know T has a
fixed point.

Remark 2.3. In Corollary 2.2 the fixed point is unique. We suppose Tu = u and
Tv = v. Let x = u, y = v in (2.5), then

G(Tu, Tv, T 2v) ≤ aG(u, v, Tv) ⇒ G(u, v, v) ≤ aG(u, v, v)

⇒ (1− a)G(u, v, v) ≤ 0

⇒ G(u, v, v) = 0

⇒ u = v.

(2.6)

If the contractive condition contains two variables x and y, then the uniqueness
of fixed point can be deduced. The T need not to be continuous to guarantee
that the limit of {xn} is the fixed point of T . Using the triangle inequality and
contraction condition we get

G(Tu, u, u) ≤G(Tu, xn+1, xn+1) +G(xn+1, u, u)

≤G(Tu, xn+1, xn+2) +G(xn+2, xn+2, xn+1) +G(xn+1, u, u)

≤aG(u, xn, xn+1) +G(xn+2, xn+2, xn+1) +G(xn+1, u, u).

(2.7)

Let n→ ∞, we get G(Tu, u, u) = 0, so Tu = u.
We can get many other corollaries by replacing Tx with y or T 2x with y in the

condition of Corollary 2.1.
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Corollary 2.3. Let (X,G) be a complete G-metric space. Let T : X → X be a
G-continuous mapping satisfying the following condition for all x, y ∈ X:

G(Tx, T 2x, Ty) ≤ aG(x, Tx, y) (2.8)

or
G(Tx, Ty, T 3x) ≤ aG(x, y, T 2x) (2.9)

or
G(Tx, T 2x, T 2y) ≤ aG(x, Tx, Ty) (2.10)

where 0 ≤ a < 1. Then T has a fixed point.

Corollary 2.4. Let (X,G) be a complete G-metric space. Let T : X → X be a
G-continuous mapping satisfying the following condition for all x, y, z ∈ X:

G(Tx, T 2x, Ty) +G(Tx, T 2x, Tz) ≤ aG(x, Tx, y) + bG(x, Tx, z) (2.11)

where 0 ≤ a+ b < 2. Then T has a fixed point.

Proof. Let y = z = T 2x, we get G(Tx, T 2x, T 3x) ≤ a+b
2 G(x, Tx, T 2x). Then the

condition of Corollary 2.1 is satisfied, so we can get this conclusion.
The following corollary is from [2], but we add G-continuity to T to let this

theorem be the corollary of Theorem 2.1.

Corollary 2.5. Let (X,G) be a complete G-metric space. Let T : X → X be a
G-continuous mapping satisfying the following condition for all x, y, z ∈ X:

G(Tx, Ty, T 2y) ≤ aG(x, Tx, T 2x)+bG(y, Ty, T 2y)+cG(x, Tx, Ty)+dG(y, Ty, T 3x)
(2.12)

where a, b, c, d are non-negative and a+ b+ c+ d < 1. Then T has a fixed point.

Proof. Let y = Tx, we get G(Tx, T 2x, T 3x) ≤ a+c
1−b−dG(x, Tx, T

2x). Then the
condition of Corollary 2.1 is satisfied, so we can get this conclusion.

As we all know, the fixed point theorem always be proofed by an iteration of
mapping on one point. Although the G-metric contains three variables but we
always take the place of deferent variable by the same form during the proof. So we
can reduce the variables to only one variable and add the continuity of the mapping
to guarantee the existence of fixed point. Inspired by [9] (Theorem 2.6, Theorem
2.7, Theorem 2.8 in [9]), we get the following corollaries.

Corollary 2.6. Let (X,G) be a complete G-metric space. Let T : X → X be a
G-continuous mapping satisfying the following condition for all x, y, z ∈ X:

G(Tx, Ty, Tz) ≤ α(
min{G(y, Ty, Tz), G(y, z, Tz)}[1 +G(x, Tx, Ty)]

1 +G(x, y, z)
)+βG(x, y, z),

where α, β are nonnegative reals, satisfying α+β < 1. Then T has a fixed point in
X.

Proof. Let y = Tx,z = T 2x we get G(Tx, T 2x, T 3x) ≤ β
1−αG(x, Tx, T

2x). Then
the condition of Corollary 2.1 is satisfied, so we can get this conclusion.
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Corollary 2.7. Let (X,G) be a complete G-metric space. Let T : X → X be a
G-continuous mapping satisfying the following condition for all x, y, z ∈ X:

G(Tx, Ty, Tz) ≤a1(
G(y, Ty, Tz)[1 +G(x, Tx, Ty)]

1 +G(x, y, z)
)

+ a2(
G(y, z, Tz)[1 +G(x, Tx, Ty)]

1 +G(x, y, z)
) + a3G(x, y, z),

(2.13)

where a1, a2, a3 are nonnegative reals, satisfying a1 + a2 + a3 < 1. Then T has a
fixed point in X.

Proof. Let y = Tx, z = T 2x, we get G(Tx, T 2x, T 3x) ≤ a3

1−a1−a2
G(x, Tx, T 2x).

Then the condition of Corollary 2.1 is satisfied, so we can get this conclusion.

Corollary 2.8. Let (X,G) be a complete G-metric space. Let T : X → X be a
G-continuous mapping satisfying the following condition for all x, y, z ∈ X:

G(Tx, Ty, Tz) ≤a1G(x, y, z) + a2[G(x, Tx, T
2x) +G(y, Ty, T 2y)]

+ a3[G(T
2x, Ty, z) + 2G(x, y, z) + 2G(Tx, Ty, Tz)]

+ a4min{G(y, Ty, Tz), G(y, z, Tz)}
[1 +G(x, Tx, T 2x)]

1 +G(x, y, z)

+ a5G(T
2x, Ty, z)[1 +G(x, Ty, z) +G(x, y, Tz)][1 +G(x, y, z)]−1

+a6G(x, y, z)[1+G(x, Tx, T
2x)+G(T 2x, Ty, z)][1+G(x, y, z)]−1

+ a7G(T
2x, Ty, z),

(2.14)

where ai are nonnegative reals, i = 1, 2, 3, 4, 5, 6, 7, satisfying a1+2a2+4a3+a4+a6 <
1. Then T has a fixed point in X.

Proof. Let y=Tx, z=T 2x, we get G(Tx, T 2x, T 3x) ≤ a1+a2+2a3+a6

1−a2−2a3−a4
G(x, Tx, T 2x).

Then the condition of Corollary 2.1 is satisfied, so we can get this conclusion.
Using the same skill we can get many other corollaries. We omit the corollaries

of following theorems.

Theorem 2.2. Let (X,G) be a complete G-metric space. Let T : X → X be a
G-continuous and onto mapping satisfying the following condition for all x ∈ X:

G(Tx, T 2x, T 3x) ≥ aG(x, Tx, T 2x) (2.15)

where a > 1. Then T has a fixed point.

Proof. Let x0 ∈ X. Since T is onto, there exists x1 ∈ X such that x0 = Tx1. By
continuing this process, we get iterative sequence {xn} as follows:

xn = Txn+1

for all n ∈ N. If xn0+1 = xn0
for some n0 ∈ N, then xn0+1 is a fixed point of T .

Throughout the proof, we assume that xn+1 ̸= xn for all n ∈ N. From (2.15), with
x = xn+1, we have

G(xn, xn−1, xn−2) ≥ aG(xn+1, xn, xn−1),
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and so

G(xn+1, xn, xn−1) ≤ hG(xn, xn−1, xn−2) ≤ hn−1G(x2, x1, x0),

for all n ∈ N, where h = 1
a < 1. We can readily show that {xn} is a G-Cauchy

sequence. Since (X,G) is a G-complete space, then exists w ∈ X such that {xn} is
G-convergent to w. Since T is G-continuous, w is the fixed point of T .

The following corollary is from [2], but we add G-continuity to T to let this
theorem be the corollary of Theorem 2.2.

Corollary 2.9. Let (X,G) be a complete G-metric space. Let T : X → X be a
G-continuous and onto mapping satisfying the following condition for all x ∈ X:

G(Tx, Ty, T 2y) ≥ aG(x, Tx, T 2x) (2.16)

where a > 1. Then T has a fixed point.

Theorem 2.3. Let (X,G) be a complete G-metric space. Let T : X → X be a
G-continuous mapping satisfying the following condition for all x ∈ X:

G(Tx, T 2x, T 2x) ≤ aG(x, Tx, T 2x), (2.17)

or
G(Tx, Tx, T 2x) ≤ aG(x, Tx, T 2x), (2.18)

where 0 ≤ a < 1
3 . Then T has a fixed point.

Proof. Let x = xn in (2.17), we get

G(xn+1, xn+2, xn+2) ≤ aG(xn, xn+1, xn+2)

≤ a(G(xn, xn+1, xn+1) +G(xn+1, xn+1, xn+2))

≤ aG(xn, xn+1, xn+1) + 2aG(xn+1, xn+2, xn+2)

(2.19)

for all n ∈ N . Then

G(xn+1, xn+2, xn+2) ≤
a

1− 2a
G(xn, xn+1, xn+1) ≤ (

a

1− 2a
)n+1G(x0, x1, x1).

The {xn} is obviously a G-Cauchy sequence. Due to the completeness of (X,G),
there exists z ∈ X such that {xn} is G-convergent to z. Since T is G-continuous, z
is the fixed point of T . Similarly, the other conclusion can be deduced.

Theorem 2.4. Let (X,G) be a complete G-metric space. Let T : X → X be a
G-continuous mapping satisfying the following condition for all x ∈ X:

G(Tx, T 2x, T 3x) ≤ G(x, Tx, T 2x) +G(Tx, T 2x, T 3x)

G(x, Tx, T 2x) +G(Tx, T 2x, T 3x) + a
G(x, Tx, T 2x) (2.20)

where 0 < a. Then T has a fixed point.

Proof. Let x0 ∈ X. We define an iterative sequence {xn} as follows:

xn+1 = Txn = Tn+1x0

for all n ∈ N. If some xn0+1 = xn0
for some n ∈ N, then xn0

is a fixed point of T .
Throughout the proof, we assume that xn+1 ̸= xn for all n ∈ N. Consequently, we
have G(xn, xn, xn+1) > 0 for every n ∈ N.
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From(2.20), with x = xn, let dn = G(xn, xn+1, xn+2) we have

dn+1 ≤ dn + dn+1

dn + dn+1 + a
dn.

Let an = dn+dn+1

dn+dn+1+a , then we get

dn+1 ≤ andn ≤ anan−1dn−1 ≤ · · · ≤ anan−1 · · · a0d0.

Since 0 < G(xn, xn, xn+1) ≤ G(xn, xn+1, xn+2) = dn, we get 0 < an < 1. And
dn+1 ≤ andn < dn, so {dn} is a strictly decreasing sequence. {an} is also a strictly
decreasing sequence, because

dn < dn−1 ⇒ dn + dn+1 < dn−1 + dn

⇒ 1 +
a

dn−1 + dn
< 1 +

a

dn + dn+1

⇒ dn−1 + dn + a

dn−1 + dn
<
dn + dn+1 + a

dn + dn+1

⇒ 1

an−1
<

1

an

⇒ an < an−1

(2.21)

for all n ∈ N. Then
dn+1 < an+1

0 d0.

Since
G(xn, xn, xn+1) ≤ G(xn, xn+1, xn+2) = dn < an0d0.

The {xn} is obviously a G-Cauchy sequence. Due to the completeness of (X,G),
there exists z ∈ X such that {xn} is G-convergent to z. Since T is G-continuous, z
is the fixed point of T .

Remark 2.4. We can change the condition of Theorem 2.4 to

G(Tx, T 2x, T 3x) ≤ Σk
i=0G(T

ix, T i+1x, T i+2x)

Σk
i=0G(T

ix, T i+1x, T i+2x) + a
G(x, Tx, T 2x),

where k ∈ N, and the conclusion is still correct.

Example 2.1. G(x, y, z) = max{|x− y|, |x− z|, |y − z|}, X = (0, 2),

Tx =

{
1, if 0 < x < 1,
x
2 + 1

2 , if 1 ≤ x < 2.

Let φ(t) = t
2 for all t ≥ 0. Case 1, when 0 < x < 1, G(Tx, T 2x, T 3x) =

0 ≤ 1
2G(x, Tx, T

2x) = 1−x
2 . Case 2, when 1 ≤ x < 2, we have x

2 + 1
2 ≥ 1.

G(Tx, T 2x, T 3x) = 3
8 (x − 1), G(x, Tx, T 2x) = 3

4 (x − 1). From above, we get
G(Tx, T 2x, T 3x) ≤ 1

2G(x, Tx, T
2x). Then all conditions of Theorem 2.1 are satis-

fied. T has a fixed point 1.

Example 2.2. Let G(x, y, z) = max{|x − y|, |x − z|, |y − z|}, X = [0, 1), and
T : X → X

Tx =
x

1 + x
.
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Let φ(t) = t
1+t for t > 0. Then we have

G(Tx, T 2x, T 3x) =

∣∣∣∣ x

1 + x
− x

1 + 3x

∣∣∣∣
≤ 2x2

(1 + x)(1 + 3x)

≤ 2x2

1 + 2x+ 2x2

≤
2x2

1+2x

1 + 2x2

1+2x

≤ φ(G(x, Tx, T 2x)).

The conditions of Theorem 2.1 are satisfied. Thus T has a fixed point 0. Obviously,
the Banach contractive mapping G(Tx, Ty, Tz) ≤ kG(x, y, z) in G-metric space
does not work, where k ∈ [0, 1).

3. Application to existence of solutions of integral
equations

In this section, we present an example where Corollary 2.1 can be applied to show
the existence of solutions for some integral equations. Consider the integral equation

u(t) =

∫ β

0

G(t, s)f(s, u(s))ds, for all t ∈ [0, β], (3.1)

where β > 0, f : [0, β]×R → R and G : [0, β]× [0, β] → R are continuous functions.
Let X = C([0, β]) be the set of real continuous functions on [0, β]. We endow X
with the G-metric mapping

G(u, v, w) = max
x∈[0,β]

(|u(x)− v(x)|+ |u(x)− w(x)|+ |v(x)− w(x)|).

Consider the self-mapping T : X → X defined by

Tu(x) =

∫ β

0

G(x, s)f(s, u(s))ds.

Clearly, u∗ is a solution of (3.1) if and only if u∗ is a fixed point of T .
Suppose the following conditions are satisfied:

(A) |f(s, x)−f(s, y)|+|f(s, x)−f(s, z)|+|f(s, z)−f(s, y)| ≤ |x−y|+|x−z|+|z−y|
for all s ∈ [0, β] and x, y, z ∈ R;

(B) maxx∈[0,β]

∫ β

0
|G(x, s)|ds = r < 1.

Therefore, we deduce

G(Tu, T 2u, T 3u)

= max
x∈[0,β]

|Tu(x)− T 2u(x)|+ max
x∈[0,β]

|Tu(x)− T 3u(x)|+ max
x∈[0,β]

|T 2u(x)− T 3u(x)|
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= max
x∈[0,β]

|
∫ β

0

G(x, s)(f(s, u(s))− f(s, Tu(s)))ds|

+ max
x∈[0,β]

|
∫ β

0

G(x, s)(f(s, u(s))− f(s, T 2u(s)))ds|

+ max
x∈[0,β]

|
∫ β

0

G(x, s)(f(s, Tu(s))− f(s, T 2u(s)))ds|

≤ max
x∈[0,β]

∫ β

0

|G(x, s)|(|u(s)− Tu(s)|+ |u(s)− T 2u(s)|+ |Tu(s)− T 2u(s)|)ds

≤G(u, Tu, T 2u) max
x∈[0,β]

∫ β

0

|G(x, s)|ds

≤rG(u, Tu, T 2u). (3.2)

The conditions of Corollary 2.1 are satisfied, so T has a fixed point in X.
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