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Abstract An efficient overlapping multi-domain spectral method is presented
and used in the analysis of a two-dimensional steady laminar MHD mixed
convection flow, heat and mass transfer over a vertical flat plate embedded
in a porous medium. The effect of chemical reaction, thermal radiation, heat
source/sink and other parameters influencing the flow has been analyzed by
imposing magnetic force transverse to the plate in a non-Darcy porous medium
with constant wall temperature and concentration conditions. The flow equa-
tions are expressed in dimensionless form and solved using overlapping multi-
domain bivariate spectral local linearization method (OMD-BSLLM). An anal-
ysis of the convergence and accuracy of the OMD-BSLLM is given using error
norms and residual errors. Comparisons with previously published work for
special cases of the problem are performed and excellent concurrence is found;
hence reliable results are being presented. The influence of certain param-
eters on the fluid properties and flow characteristics is analyzed. The skin
friction, heat and mass transfer coefficients are presented for the concentrated
flow and the turbulent boundary layer flow. The flow characteristics are found
to be smaller for turbulent boundary layer flows than concentrated particle
flows. This type of flow has an application in catalytic and chromatographic
reactions, packed absorption and distillation towers.

Keywords Spectral local linearisation method, overlapping multi-domain
grid, micropolar fluid, thermal radiation, chemical reaction, heat source/sink.

MSC(2010) 76A05, 76R99, 76M22, 76M60.

1. Introduction
Extensive studies have been carried out on combined heat and mass transfer in
between flows under the assumption of different physical real-life situation. Flows
through the porous medium are quite prevalent in nature and the study of such
flows has applications in environmental and engineering fields such as in enhanced
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oil recovery, paper and textile coating, and composite manufacturing processes.
Early studies on porous media used Darcy’s law which is a linear empirical rela-
tion between the velocity and the pressure drop across the porous medium. In
many practical applications, for example, packed sphere beds, the porous medium
is bounded by an impermeable wall, has higher flow rates, and nonhomogeneous
porosity variation near the wall, making Darcy’s law inapplicable [8]. The non-
Darcian convective heat transport in porous media has been a subject of interest
to many researchers. Subsequently, the Darcian law has been modified to include
the effects of inertia. Inertial effects on porous media transport have been generally
studied using the Darcy-Forchheimer model which uses a quadratic impedance term
for inertial drag. Chien and Cha’o [8] reported that the inclusion of non-Darcian
effects significantly alters the flow and heat transfer characteristics from those pre-
dicted by the traditional Darcy’s model. Ranganathan and Viskanta [28] studied
mixed convection boundary layer flow along a vertical porous medium, and their
results show that the inertial and viscous effects have a significant influence on the
flow. Giving specific attention to flow through a porous medium in the vicinity
of an impermeable boundary, Vafai and Tien [35] examined the effects of a solid
boundary and the inertial forces on flow and heat transfer in porous media.

The studies on magnetohydrodynamics (MHD) flow for electrically conducting
fluid past a vertical surface are important from a technological point of view. These
studies have a bearing on industrial applications such as power generators, turbo-
machinery, solidification process in metallurgy and some astrophysical problems. In
most cases, the Hall term is ignored in applying Ohms law as it has no marked
effect for small magnetic fields. However, to study the effects of strong magnetic
fields on the electrically conducting fluid flow, the influence of the electromagnetic
force is noticeable. The effects of Hall current on MHD free or convective flow along
a vertical surface with or without mass transfer have been studied by several au-
thors [3,18,19,27,29]. When convective flows occur at high temperatures, radiation
effects on the flow become significant. Many processes in engineering areas occur at
high temperatures and knowledge of radiative heat transfer becomes very important
for the design of pertinent equipment. The effect of radiation has been examined
by several researchers including Hossain and Takhar [20], Muthucumaraswamy and
Kumar [26], and Kinyanjui et al. [21] to name a few. Various practical diffusive op-
erations include the molecular diffusion of a species with chemical reaction within
or at the boundary. Chemical reaction can be classified as either homogeneous or
heterogeneous reaction. Homogeneous reaction take place uniformly throughout a
given phase. The species generation in a homogeneous chemical reaction is similar
to internal source of heat generation. On the other hand, heterogeneous chemical
reaction occurs in a restricted region or within the boundary of a phase. For that
reason, it can be taken as a boundary condition analogous to the heat flux condition
in heat transfer. The study of heat and mass transfer analysis in the presence of
chemical reaction is important due to its existence in numerous fields of science
and engineering. Rashad and EL-Kabeir [32] investigated coupled heat and mass
transfer in transient flow by mixed convection over a vertical stretched sheet em-
bedded in a fluid-saturated porous medium with chemical reaction. Chamkha et
al. [11] analyzed the effects of thermal radiation and chemical reaction on heat and
mass transfer by non-Darcian free convection past a vertical cylinder embedded in
a porous medium.

Micropolar convection flows have been analyzed by many researchers following
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the seminal work of Eringen [13], who introduced the micropolar fluid. The theory
of fluids with microstructures has been the subject of interest to a large number of
investigations. These investigations are realistic and important from a technologi-
cal point of view. The classical theories of continuum mechanics are inadequate to
explain the microscopic manifestations of complex hydrodynamic behaviour. Mi-
crocontinuum theory or generalized continuum theories incorporate independent
deformations of the microstructure inside of a material point. There are a number
of microcontinuum theories, namely couple stress, micropolar, microstretch and mi-
cromorphic [14, 15]. These theories impose more or less constraints on the motion
of microstructure inside of a material point. In microstretch theory, it is assumed
that the microstructure of each material point can undergo expansion or contrac-
tion independently in addition to translation and rigid rotation. This theory is
a generalization of micropolar theory, in which the microstructure can only have
translation and rigid rotation. Micromorphic theory constitutes extensions of the
classical field theories concerned with the deformations, motions, and electromag-
netic interactions of material media, as continua, in microscopic time and space
scales. In micromorphic theory, a material body is considered as a continuous col-
lection of deformable particles, each with finite size and inner structure. A subclass
of these fluids introduced by Eringen [16], is the micropolar fluids, which exhibit mi-
crorotational effects observed in colloidal solutions, blood, dielectric fluids, plasmas,
liquid crystals, etc. The theory and applications of micropolar fluids is explained
in the monographs by Ariman et al. [5, 6] and in Lukaszewicz [22]. Such fluids
find applications in the purification of crude oil, in polymer technologies, centrifu-
gal separation processes, cooling tower dynamics, chemical reaction engineering,
metallurgical drawing of filaments and solar energy systems.

Many researchers have examined different flow geometries for micropolar fluid.
Modather et al. [23] studied the impact of chemical reaction on heat and mass
transfer of micropolar fluids in a saturated porous medium over an infinite moving
plate with transverse magnetic field. Ayano [1] analyzed MHD mixed convection
flow of micropolar fluid over a semi-infinite plate with uniform heat and mass flux
in the presence of Hall and Ion-slip currents. Chamkha et al. [9] investigated the
influence of radiation and chemical reaction on coupled heat and mass transfer by
MHD natural convection flow of a micropolar fluid over a permeable truncated
cone. Srinivasacharya and Mendu [33] examined MHD free convection heat and
mass transfer in a micropolar fluid over a vertical plate with radiation and chemical
reaction effect. The influence of heat source/sink on MHD flow of micropolar fluid
along a shrinking sheet was investigated by Ahmad [4]. Rashad et al. [30] studied
the effects of chemical reaction and thermal radiation on coupled heat and mass
transfer by a natural convection flow of a micropolar fluid over a vertical flat plate
embedded in a porous medium. Rashad et al. [31] considered coupled heat and mass
transfer by mixed convection flow of a micropolar fluid past a continuously moving
isothermal vertical surface saturated in a thermally and solutally stratified medium
with chemical reaction. Chamkha [12] considered the problem of unsteady heat and
mass transfer by mixed convection flow of a micropolar fluid near the region of the
stagnation point on a double-infinite vertical flat plate in the presence of chemical
reaction and thermal radiation. Ayano and Mathunjwa [2] investigated the effects of
chemical reaction and radiation on MHD flow of micropolar fluid over vertical plate
with varying temperature. Mishra et al. [24] studied the flow of micropolar fluid
along with heat and mass transfer over a porous shrinking sheet in the presence of
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heat source and chemical reaction.
The objective of this study is to investigate the effects of simultaneous heat and

mass transfer on the mixed convection MHD flow of an incompressible electrically
conducting micropolar fluid over an infinite vertical plate embedded in a saturated
porous medium by taking into account the effects of radiation, heat source/sink,
Hall current and chemical reaction. To the best of the authors’ knowledge, the
present problem has not been studied. The transformed nonlinear partial differen-
tial equations (PDEs) are solved by an efficient overlapping multi-domain bivariate
spectral local linearisation method. The novelty of the present work is the use of
an improved multi-domain spectral collocation-based method to find the solution
to the problem. The need to continually improve on existing spectral collocation-
based methods for solving nonlinear differential equations that cannot be solved
analytically cannot be overstated. Since the previous multi-domain approach has
been applied to either space or time but not both in existing spectral collocation-
based methods, the present work incorporates the multi-domain technique in both
space and time intervals to increase the accuracy of the method. In addition to
that, the method uses the overlapping grid strategy when splitting the space inter-
val. The overlapping grid approach holds a great potential of improving accuracy
of the method since it produces less dense (sparse) matrices that can be inverted
in a computationally efficient manner. The sparsity of matrices due to overlapping
sub-domains minimizes the storage of large matrices and make it easy to perform
matrix-vector multiplications. Consequently, the proposed method will require less
computer memory and computational time to produce highly accurate results. In
the present study, we describe the development of the method and demonstrate
its applicability to a system of nonlinear boundary layer equations. We also high-
light the accuracy, robustness and efficiency of the method when applied to highly
nonlinear PDEs with significant complexities. To establish the accuracy of the nu-
merical method, certain limiting solutions of the momentum and energy equations
are considered. Since the method combines the bivariate spectral local linearisation
method [25], non-overlapping and overlapping multi-domain technique, for refer-
ence purposes we shall refer to the method as overlapping multi-domain bivariate
spectral local linearisation method (OMD-BSLLM).

2. Mathematical formulation of the problem
We consider the mixed convection boundary-layer flow in the vicinity of an im-
permeable vertical plate embedded in a porous medium which is saturated with
micropolar fluid. The fluid is assumed laminar, incompressible, two-dimensional
and, the ambient temperature and concentration are considered as T∞ and C∞,
respectively. The x− coordinate is along the plate, the y-coordinate is measured
normal to the plate. The vertical plate chosen in this work is infinitely long, con-
centration, temperature and velocity equations are only depend on y. A uniform
magnetic field is applied normal to the plate and the induced magnetic field is neg-
ligible in comparison with the applied one suggesting a small magnetic Reynolds
number. The effect of Hall current is taken into account. It is assumed that there is
no applied voltage of which implies the absence of an electric field. All fluid proper-
ties are considered to be constant except for the density variation which induces the
buoyancy force. With these assumptions and taking into account the Boussinesq
and boundary layer approximations the basic equations of a micropolar fluid in a
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Darcy-Forchheimer saturated porous medium can be written as:
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where u and v are velocity components in the x and y directions, Γ is microrotation,
j is the micro-inertia density, ρ is the fluid density, µ, κ and γ are the material
constants (viscosity coefficients), g∗ is the acceleration due to gravity, βT is the
coefficient of thermal expansion, βc is the coefficient of solutal expansion, B0 mag-
netic field intensity, βh = σβB0 is Hall parameter, α is the thermal diffusivity, Cp
is the specific heat, Kp is the permeability of the porous medium, D is the mass
diffusivity, λ is the thermal conductivity and K1 is the chemical reaction parameter.
The term Q(Tw − T∞) is the heat generated or absorbed per unit volume, where Q
is a constant, which may be either positive (Tw < T∞) for a heat sink or negative
(Tw > T∞) for a heat source. The radiative heat flux term by using the Rosse-
land approximation is given by qr = −4 σ

3χ
∂T 4

∂y . We assume that the temperature
differences within the flow are sufficiently small such that T 4 may be expressed as
a linear function of the temperature

T 4 ∼= 4T 3
∞T − T 4

∞.

The boundary conditions for a stationary plate with constant heat flux from the
plate to the fluid are given by

u = v = w = 0, Γ = −n∂u
∂y
, T = Tw, C = Cw, at y = 0 (2.7)

u = U∞, w = 0, Γ = 0, T = T∞, C = C∞, as y → ∞, (2.8)

where n (0 ≤ n ≤ 1) is the constant that is related to micro-gyration vector and
shear stress. The case n = 0 represents concentrated particle flows in which the
microelements close to the wall surface are unable to rotate. This case is also
known as the strong concentration of microelements. The case n = 0.5 indicates the
vanishing of anti-symmetric part of stress tensor and denotes the weak concentration
of microelements. The case n = 1 is used for modelling turbulent boundary layer
flows. In the present study we shall consider n = 0 and n = 1.



118 Mkhatshwa, Motsa, Ayano & Sibanda

To transform the nonlinear PDEs (2.1)-(2.6) into dimensionless form, we intro-
duce the following transformations
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where Ψ is the stream function with u = ∂Ψ
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∂x , thus satisfying the mass
conservation equation. Substituting equation (2.9) - (2.10) into equations (2.1) -
(2.6), we obtain the following non-dimensional equations
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where prime denotes differentiation with respect to η, ReL = U∞L
ν is the local

Reynolds number, Ha =
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χλ is the radiation parameter.

The boundary conditions take the form

f(ξ, 0) = −4
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f ′(ξ,∞) = 1, g(ξ,∞) = ω(ξ,∞) = θ(ξ,∞) = ϕ(ξ,∞) = 0. (2.18)

The non-dimensional skin friction, Nusselt and Sherwood numbers are respec-
tively given by
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3. Method of solution
In this section, we introduce the OMD-BSLLM for approximating solutions of a
system of nonlinear PDEs. Consider a system of n nonlinear PDEs of the form

Γ1[F1, F2, ..., Fn] = 0,
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...
Γn[F1, F2, ..., Fn] = 0, (3.1)

where the operators Fi(i = 1, 2, 3, ..., n) are of the form

F1 =

{
g1,

∂g1
∂η

,
∂2g1
∂η2

, ...,
∂sg1
∂ηs

,
∂g1
∂ξ

,
∂

∂ξ

(
∂g1
∂η

)}
F2 =

{
g2,

∂g2
∂η

,
∂2g2
∂η2

, ...,
∂sg2
∂ηs

,
∂g2
∂ξ

,
∂

∂ξ

(
∂g2
∂η

)}
...

Fn =

{
gn,

∂gn
∂η

,
∂2gn
∂η2

, ...,
∂sgn
∂ηs

,
∂gn
∂ξ

,
∂

∂ξ

(
∂gn
∂η

)}
, (3.2)

and gk(η, ξ) and Γk are non-linear operators containing spatial and time derivatives
of gk(η, ξ). To apply OMD-BSLLM, the time interval ξ ∈ [ξ0, ξF ] is decomposed
into q non-overlapping sub-intervals defined as

Jυ = (ξυ−1, ξυ), υ = 1, 2, 3, ..., q, (3.3)

where each Jυ interval is discritised into Nξ + 1 collocation points. The space
interval [a, b] is decomposed into p overlapping sub-intervals of length L, denoted
by

Iµ = [ηµ0 , η
µ
Nη

], µ = 1, 2, 3, ..., p, (3.4)
where each Iµ interval is further discretized into Nη+1 collocation points. Without
loss of generality, we will consider that each sub-interval has the same length
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for the overlap to be possible and the same number of collocation points is used in
each subinterval. In the domain decomposition scheme, we use overlapping subin-
tervals Iµ, where the first two points of the interval Iµ+1 coincide with the last two
points of the interval Iµ, that is η10 = a, ηpNη
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domain decomposition in both the space and time intervals is shown in Figure 1.
The Chebyshev-Gauss-Lobatto points and the corresponding differentiation ma-

trices [7,34] are defined in the interval [−1, 1]. Therefore, before applying the spec-
tral method on the sub-intervals, the time interval ξ ∈ [ξυ−1, ξυ] and the space
interval η ∈ [ηµ0 , η
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] are respectively transformed into τ ∈ [−1, 1] and z ∈ [−1, 1]
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I1
I2 Ip−1 Ip

J1

J2

Jq

η10

a

η20

η1Nη−1

η1Nη

η21

η30

η2Nη−1

η2Nη

η31

ηp−1
0

ηp−2
Nη−1

ηp−2
Nη

ηp−1
1

ηp0

ηp−1
Nη−1

ηp−1
Nη

ηp1

ηpNη

b

ξ10 = ξ0

ξ1Nξ−1

ξ20 = ξ1Nξ

ξ2Nξ−1

ξ30 = ξ2Nξ

ξq0

ξqNξ−1

ξqNξ
= ξF

Figure 1. Overlapping and non-overlapping grid
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We assume that at each sub-interval, the solution can be approximated by a
bivariate Lagrange interpolation polynomial of the form
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for µ = 1, 2, 3, ..., p and υ = 1, 2, 3, ..., q. The function Li is the characteristic La-
grange cardinal polynomial based on the Chebyshev-Gauss-Lobatto points

Li(η) =
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that satisfy the Kronecker delta equation
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within the subdomain. The function Lj is defined in a similar manner. Applying
the quasilinearisation method gives

Γk[F1, F2, ..., Fn] ≈ Γk[F1,r, F2,r, ..., Fn,r]

+(F1,r+1 − F1,r, F2,r+1 − F2,r, ..., Fn,r+1)− Fn,r).∇Γk[F1,r, F2,r, ..., Fn,r], (3.11)
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where r and r + 1 denote previous and current iteration, respectively. The vector
of the partial derivatives denoted by ∇ is defined as

∇ = {∇g1 ,∇g2 , ...,∇gn} . (3.12)
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where the prime denotes differentiation with respect to η. The linearized equation
(3.11) can be expressed as a system
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(0,µ,υ)
n,r+1

∂ξ
+ γ(µ,υ,n)r

∂g
(1,µ,υ)
n,r+1

∂ξ
= R(µ,υ)

n , (3.18)

where α(µ,υ,k)
l,r (η, ξ), β(µ,υ,k)

r (η, ξ) and γ(µ,υ,k)r (η, ξ) are variable coefficients of g(l,µ,υ)k,r+1 ,
∂g

(0,µ,υ)
k,r+1

∂ξ , and ∂g
(1,µ,υ)
k,r+1

∂ξ , respectively, for k = 1, 2, . . . , n and l = 0, 1, 2, . . . , s. These
variable coefficients correspond to the kth equation, for k = 1, 2, . . . , n. Since con-
stant s denotes the order of differentiation, then

α
(µ,υ,k)
l,r =

∂Γk

∂g
(l,µ,υ)
k,r

, β(µ,υ,k)
r =

∂Γk

∂

(
∂g

(0,µ,υ)
k,r

∂ξ

) , γ(µ,υ,k)r =
∂Γk

∂

(
∂g

(1,µ,υ)
k,r

∂ξ

) , (3.19)

R
(µ,υ)
k =

s∑
l=0

α
(µ,υ,k)
l,r g

(1,µ,υ)
k,r + β(µ,υ,k)

r

∂g
(0,µ,υ)
k,r

∂ξ
+ γ(µ,υ,k)r

∂g
(1,µ,υ)
k,r

∂ξ
− Γk. (3.20)

Equations (3.16)–(3.18) are evaluated at the Chebyshev-Gauss-Lobatto grid
points ξj(j = 0, 1, 2, ..., Nξ) and ηi(i = 0, 1, 2, ..., Nη). The values of the time deriva-
tives are computed at the Chebyshev-Gauss-Lobatto points as

∂g
(µ,υ)
n

∂ξ

∣∣∣∣∣
(zκ,τi)

=

(
2

ξυ − ξυ−1

) Nξ∑
j=0

di,jg
(µ,υ)
n (zκ, τj) (3.21)
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=

(
2

ξυ − ξυ−1

) Nξ∑
j=0

di,jG(µ,υ)
n,j . (3.22)

The values of the first, second and higher sth order space derivatives are computed
as

∂g
(µ,υ)
n

∂η

∣∣∣∣∣
(zκ,τi)

=
2

ηµNη
− ηµ0

Nη∑
ν=0

D(µ)
κ,νg

(µ,υ)
n (zν , τi), (3.23)

∂2g
(µ,υ)
n

∂η2

∣∣∣∣∣
(zκ,τi)

=

(
2

ηµNη
− ηµ0

)2 Nη∑
ν=0

[
D(µ)
κ,ν

]2
g(µ,υ)n (zν , τi), (3.24)

∂sg
(µ,υ)
n

∂ηs

∣∣∣∣∣
(zκ,τi)

=

(
2

ηµNη
− ηµ0

)s Nη∑
ν=0

[
D(µ)
κ,ν

]s
g(µ,υ)n (zν , τi) =

[
D(µ)

]s
G(µ,υ)
n,i , (3.25)

where the vector G(µ,υ)
n,i is defined as

G(µ,υ)
n,i =

[
g(µ,υ)n (η

(µ)
0 , ξ

(υ)
i ), g(µ,υ)n (η

(µ)
1 , ξ

(υ)
i ), g(µ,υ)n (η

(µ)
2 , ξ

(υ)
i ), ..., g(µ,υ)n (η

(µ)
Nη
, ξ

(υ)
i )
]T

(3.26)
and T denotes matrix transpose. Substituting equations (3.21)–(3.25) into equa-
tions (3.16)–(3.18) yields

A
(µ,υ)
1,1 G(µ,υ)

1,i,r+1+βββ
(µ,υ,1)
r

Nξ∑
j=0

di,jG(µ,υ)
1,j +γγγ(µ,υ,1)r

Nξ∑
j=0

di,jD(µ)G(µ,υ)
1,j =R(µ,υ)

1,i (3.27)

A
(µ,υ)
2,2 G(µ,υ)

2,i,r+1+βββ
(µ,υ,2)
r

Nξ∑
j=0

di,jG(µ,υ)
2,j +γγγ(µ,υ,2)r

Nξ∑
j=0

di,jD(µ)G(µ,υ)
2,j =R(µ,υ)

2,i (3.28)

...

A(µ,υ)
n,n G(µ,υ)

n,i,r+1+βββ
(µ,υ,n)
r

Nξ∑
j=0

di,jG(µ,υ)
n,j +γγγ(µ,υ,n)r

Nξ∑
j=0

di,jD(µ)G(µ,υ)
n,j =R(µ,υ)

n,i (3.29)

where

A
(µ,υ)
1,1 =

s∑
l=0

α
(µ,υ,1)
l,r

[
D(µ)

]l
, ..., A(µ,υ)

n,n =

s∑
l=0

α
(µ,υ,n)
l,r

[
D(µ)

]l
,

Imposing the boundary conditions, equations (3.27)–(3.29) become

A
(µ,υ)
1,1 G(µ,υ)

1,i,r+1+βββ
(µ,υ,1)
r

Nξ−1∑
j=0

di,jG(µ,υ)
1,j +γγγ(µ,υ,1)r

Nξ−1∑
j=0

di,jD(µ)G(µ,υ)
1,j =K(µ,υ)

1,i (3.30)

A
(µ,υ)
2,2 G(µ,υ)

2,i,r+1+βββ
(µ,υ,2)
r

Nξ−1∑
j=0

di,jG(µ,υ)
2,j +γγγ(µ,υ,2)r

Nξ−1∑
j=0

di,jD(µ)G(µ,υ)
2,j =K(µ,υ)

2,i (3.31)

...
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A(µ,υ)
n,n G(µ,υ)

n,i,r+1+βββ
(µ,υ,n)
r

Nξ−1∑
j=0

di,jG(µ,υ)
n,j +γγγ(µ,υ,n)r

Nξ−1∑
j=0

di,jD(µ)G(µ,υ)
n,j =K(µ,υ)

n,i (3.32)

where

K(µ,υ)
1,i = R(µ,υ)

1,i − βββ(µ,υ,1)
r di,Nξ

G(µ,υ)
1,Nξ

− γγγ(µ,υ,1)r di,Nξ
D(µ)G(µ,υ)

1,Nξ
, (3.33)

K(µ,υ)
2,i = R(µ,υ)

2,i − βββ(µ,υ,2)
r di,Nξ

G(µ,υ)
2,Nξ

− γγγ(µ,υ,1)r di,Nξ
D(µ)G(µ,υ)

2,Nξ
, (3.34)

...

K(µ,υ)
n,i = R(µ,υ)

n,i − βββ(µ,υ,n)
r di,Nξ

G(µ,υ)
n,Nξ

− γγγ(µ,υ,n)r di,Nξ
D(µ)G(µ,υ)

n,Nξ
. (3.35)

Each equation from (3.30) -(3.32) can be converted into a matrix system:

AΩ
(µ,ν)
i,r+1 = K(µ,ν)

ε,r+1, (3.36)

where Ω = {G1,G2, ...,Gn} and ε = {1, 2, 3, ..., n} . The size of matrix A is (M +
1)× (M + 1), where M = Nη + (Nη − 1)(p− 1), is the total number of collocation
points over a single domain [−1, 1]. The coefficient of matrix A has the structure

A
(p)
0,0 A

(p)
0,1 · · · A

(p)
0,Nη−1 A

(p)
0,Nη

A
(p)
1,0 A

(p)
1,1 · · · A

(p)
1,Nη−1 A

(p)
1,Nη

. . . . . . . . . . . . . . .

A
(p)
Nη−1,0 A

(p)
Nη−1,1 · · · A(p)

Nη−1,Nη−1 A
(p)
Nη−1,Nη

A
(p−1)
1,0 A

(p−1)
1,1 · · · A

(p−1)
1,Nη−1 A

(p−1)
1,Nη

A
(p−1)
2,0 A

(p−1)
2,1 · · · A

(p−1)
2,Nη−1 A

(p−1)
2,Nη

. . . . . . . . . . . . . . .

A
(p−1)
Nη−1,0 A

(p−1)
Nη−1,1 · · · A(p−1)

Nη−1,Nη−1 A
(p−1)
Nη−1,Nη

. . . . . .

A
(1)
1,0 A

(1)
1,1 · · · A

(1)
1,Nη−1 A

(1)
1,Nη

A
(1)
2,0 A

(1)
2,1 · · · A

(1)
2,Nη−1 A

(1)
2,Nη

. . . . . . . . . . . . . . .

A
(1)
Nη,0

A
(1)
Nη,1

· · · A(1)
Nη,Nη−1 A

(1)
Nη,Nη



.(3.37)

Since the highest order of differentiation for equations (2.11)–(2.15) is s = 3 and
n = 5, applying OMD-BSLLM method to the equations, we obtain

A
(µ,υ)
1,1 G(µ,υ)

1,i + βββ(µ,υ,1)
r

Nξ∑
j=0

di,jG(µ,υ)
1,j + γγγ(µ,υ,1)r

Nξ∑
j=0

di,jD(µ)G(µ,υ)
1,j = R(µ,υ)

1,i , (3.38)

A
(µ,υ)
2,2 G(µ,υ)

2,i + βββ(µ,υ,2)
r

Nξ∑
j=0

di,jG(µ,υ)
2,j + γγγ(µ,υ,2)r

Nξ∑
j=0

di,jD(µ)G(µ,υ)
2,j = R(µ,υ)

2,i , (3.39)

A
(µ,υ)
3,3 G(µ,υ)

3,i + βββ(µ,υ,3)
r

Nξ∑
j=0

di,jG(µ,υ)
3,j + γγγ(µ,υ,3)r

Nξ∑
j=0

di,jD(µ)G(µ,υ)
3,j = R(µ,υ)

3,i , (3.40)
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A
(µ,υ)
4,4 G(µ,υ)

4,i + βββ(µ,υ,4)
r

Nξ∑
j=0

di,jG(µ,υ)
4,j + γγγ(µ,υ,4)r

Nξ∑
j=0

di,jD(µ)G(µ,υ)
4,j = R(µ,υ)

4,i , (3.41)

A
(µ,υ)
5,5 G(µ,υ)

5,i + βββ(µ,υ,5)
r

Nξ∑
j=0

di,jG(µ,υ)
5,j + γγγ(µ,υ,5)r

Nξ∑
j=0

di,jD(µ)G(µ,υ)
5,j = R(µ,υ)

5,i , (3.42)

where

A
(µ,υ)
1,1 =

3∑
l

α
(µ,υ,1)
l,r

[
D(µ)

]l
, A

(µ,υ)
2,2 =

3∑
l

α
(µ,υ,2)
l,r

[
D(µ)

]l
, A

(µ,υ)
3,3 =

3∑
l

α
(µ,υ,3)
l,r

[
D(µ)

]l
,

A
(µ,υ)
4,4 =

3∑
l

α
(µ,υ,4)
l,r

[
D(µ)

]l
, A

(µ,υ)
5,5 =

3∑
l

α
(µ,υ,5)
l,r

[
D(µ)

]l
.

To apply our method, we let f(η, ξ) = g1(η, ξ), g(η, ξ) = g2(η, ξ), ω(η, ξ) = g3(η, ξ),
θ(η, ξ) = g4(η, ξ) and ϕ(η, ξ) = g5(η, ξ). Therefore, we have

Γ1 =
1

ϵ(1−N)
g
(3,µ,υ)
1,r +

3

4ϵ2
g
(0,µ,υ)
1,r g

(2,µ,υ)
1,r −

(
1

2ϵ2
+ ξ

Fs

Da

)(
g
(1,µ,υ)
1,r

)2
+ λg

(0,µ,υ)
4,r

−
(

N

1−N

)
g
(1,µ,υ)
2,r + g

(0,µ,υ)
3,r − ξ

1
2

DaRe
1/2
L

g
(1,µ,υ)
1,r − ξ

1
2Ha2

ϵ(1 + β2
h)Re

1/2
L

g
(1,µ,υ)
1,r

− ξ
1
2 βhHa

2

ϵ(1 + β2
h)Re

1/2
L

g
(0,µ,υ)
2,r − ξ

ϵ2

(
g
(1,µ,υ)
1,r

∂g
(1,µ,υ)
1,r

∂ξ
− g

(2,µ,υ)
1,r

∂g
(0,µ,υ)
1,r

∂ξ

)
, (3.43)

Γ2 =
1

ϵ(1−N)
g
(2,µ,υ)
2,r +

3

4ϵ2
g
(0,µ,υ)
1,r g

(1,µ,υ)
2,r − 1

2ϵ2
g
(0,µ,υ)
2,r g

(1,µ,υ)
1,r − ξ

Fs

Da

(
g
(0,µ,υ)
2,r

)2
− ξ1/2

DaRe
1/2
L

g
(0,µ,υ)
2,r +

ξ1/2Ha2

ϵ(1 + β2
h)Re

1/2
L

(βhg
(1,µ,υ)
1,r − g

(0,µ,υ)
2,r )

− ξ

ϵ2

(
g
(1,µ,υ)
1,r

∂g
(0,µ,υ)
2,r

∂ξ
− g

(1,µ,υ)
2,r

∂g
(0,µ,υ)
1,r

∂ξ

)
, (3.44)

Γ3 =
2−N

2− 2N
g
(2,µ,υ)
3,r +

3

4ϵ
g
(0,µ,υ)
1,r g

(1,µ,υ)
3,r −

(
N

1−N

)
ξ

1
2 (2g

(0,µ,υ)
3,r +

1

ϵ
g
(2,µ,υ)
1,r )

− 1

4ϵ
g
(1,µ,υ)
1,r g

(0,µ,υ)
3,r − ξ

ϵ

(
g
(1,µ,υ)
1,r

∂g
(0,µ,υ)
3,r

∂ξ
− g

(1,µ,υ)
3,r

∂g
(0,µ,υ)
1,r

∂ξ

)
, (3.45)

Γ4 =
1

Pr
(1 +

4

3
Rd)g

(2,µ,υ)
4,r +

3

4
g
(0,µ,υ)
1,r g

(1,µ,υ)
4,r − ξ

1
2
δ

Pr
g
(0,µ,υ)
4,r

−ξ

(
g
(1,µ,υ)
1,r

∂g
(0,µ,υ)
4,r

∂ξ
− g

(1,µ,υ)
4,r

∂g
(0,µ,υ)
1,r

∂ξ

)
, (3.46)

Γ5 =
1

Sc
g
(2,µ,υ)
5,r +

3

4
g
(0,µ,υ)
1,r g

(1,µ,υ)
5,r − ξ

1
2Kg

(0,µ,υ)
5,r

−ξ

(
g
(1,µ,υ)
1,r

∂g
(0,µ,υ)
5,r

∂ξ
− g

(1,µ,υ)
5,r

∂g
(0,µ,υ)
1,r

∂ξ

)
. (3.47)
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The variable coefficients for s = 0, 1, 2, 3 are given by

α
(1,µ,υ)
3,r =

1

ϵ(1−N)
, α

(1,µ,υ)
2,r =

3

4ϵ2
g
(0,µ,υ)
1,r +

ξ

ϵ2
∂g

(0,µ,υ)
1,r

∂ξ
, α

(1,µ,υ)
0,r =

3

4ϵ2
g
(2,µ,υ)
1,r ,

α
(1,µ,υ)
1,r = − 1

ϵ2
g
(1,µ,υ)
1,r − ξ

1
2Ha2

ϵ(1 + β2
h)Re

1
2

L

− ξ
1
2

DaRe
1
2

L

− 2
ξFs

Da
g
(1,µ,υ)
1,r − ξ

ϵ2
∂g

(1,µ,υ)
1,r

∂ξ
,

α
(2,µ,υ)
2,r =

1

ϵ(1−N)
, α

(2,µ,υ)
1,r =

3

4ϵ2
g
(0,µ,υ)
1,r +

ξ

ϵ2
∂g

(0,µ,υ)
1,r

∂ξ
,

α
(2,µ,υ)
0,r = − 1

2ϵ2
g
(1,µ,υ)
1,r − ξ

1
2

DaRe
1
2

L

− 2
ξFs

Da
g
(0,µ,υ)
2,r − ξ

1
2Ha2

ϵ(1 + β2
h)Re

1
2

L

,

α
(3,µ,υ)
2,r =

2−N

2− 2N
,α

(3,µ,υ)
1,r =

3

4ϵ
g
(0,µ,υ)
1,r +

ξ

ϵ

∂g
(0,µ,υ)
1,r

∂ξ
,

α
(3,µ,υ)
0,r = − 1

4ϵ
g
(1,µ,υ)
1,r − 2Nξ

1
2

1−N
, α

(4,µ,υ)
2,r =

1

Pr

(
1 +

4

3
Rd

)
,

α
(4,µ,υ)
1,r =

3

4
g
(0,µ,υ)
1,r + ξ

∂g
(0,µ,υ)
1,r

∂ξ
, α

(4,µ,υ)
0,r = −ξ

1
2 δ

Pr
, α

(5,µ,υ)
2,r =

1

Sc
,

α
(5,µ,υ)
1,r =

3

4
g
(0,µ,υ)
1,r + ξ

∂g
(0,µ,υ)
1,r

∂ξ
, α

(5,µ,υ)
0,r = −ξ 1

2K β(1,µ,υ)
r =

ξ

4ϵ2
g
(2,µ,υ)
1,r ,

β(2,µ,υ)
r = − ξ

4ϵ2
g
(1,µ,υ)
1,r , β(2,µ,υ)

r = −ξ
ϵ
g
(1,µ,υ)
1,r , β(3,µ,υ)

r = − ξ

4ϵ
g
(1,µ,υ)
1,r ,

β(4,µ,υ)
r = −ξg(1,µ,υ)1,r , β(5,µ,υ)

r = −ξg(1,µ,υ)1,r , γ(1,µ,υ)r = − ξ

4ϵ2
g
(1,µ,υ)
1,r ,

γ(2,µ,υ)r = γ(3,µ,υ)r = γ(4,µ,υ)r = γ(5,µ,υ)r = 0

and the right hand side for k = 1, 2, 3, 4, 5 is given by

R
(µ,υ)
k,i =

3∑
l=0

α
(µ,υ,k)
l,r g

(1,µ,υ)
k,r + β(µ,υ,k)

r

∂g
(0,µ,υ)
k,r

∂ξ
+ γ(µ,υ,k)r

∂g
(1,µ,υ)
k,r

∂ξ
− Γk. (3.48)

Imposing the boundary conditions, equations (3.38)–(3.42) can be expressed as a
matrix system of the form given in equation (3.36).

4. Results and discussion
The set of coupled dimensionless PDEs (2.11)–(2.15) along with the boundary con-
ditions (2.16)–(2.18) have been solved numerically using the OMD-BSLLM. The
edge of the boundary layer has been taken as η∞ = 20 and the number of col-
location points used in space and time are Nη = 20 and Nξ = 5, respectively.
In order to get a physical sense of the dynamics of the flow, a parametric study
was undertaken to determine the effects of different parameters namely the ra-
diation parameter Rd, the heat source/sink δ, the chemical reaction parameter
K, the Forchheimer number Fs, Hartman number Ha, the coupling number N
and the Hall parameter βh on the fluid properties and flow characteristics. In
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the entire numerical computations, we have chosen the following parameter val-
ues ϵ = 0.6, δ = 0.5, N = 0.6, P r = 0.72, Sc = 0.22, Da = 10, Rd = 0.3, Fs =

Ha = 0.1,K = βh = λ = 0.5, Re
1/2
L = n = 1. The fluid properties for different

values of the main controlling parameters are considered for the concentrated par-
ticle flows (n = 0) and the flow characteristics are considered for the turbulent
boundary layer flows (n = 1). The numerical solutions obtained are tested for con-
vergence and accuracy using both the convergence error norms and the residual
errors. The errors are defined using the l∞ norm. The convergence error norm is
the difference between successive approximations, while the residual error quantifies
the extent to which the solutions are approximated. The residual errors in the solu-
tions f(ξ, η), g(ξ, η), ω(ξ, η), θ(ξ, η) and ϕ(ξ, η) at each ξ are defined approximately
as

Res(ψ) = ||∆ψ

[
F(µ,υ)
r+1,i,G

(µ,υ)
r+1,i,Ω

(µ,υ)
r+1,i,Θ

(µ,υ)
r+1,i,Φ

(µ,υ)
r+1,i

]
||∞, ψ = {f, g, ω, θ, ϕ} ,

(4.1)
and the convergence error norms are defined as

Eψ = ||Ψ(µ,υ)
r+1,i −Ψ

(µ,υ)
r,i ||∞, Ψ(µ,υ) =

{
F(µ,υ),G(µ,υ),Ω(µ,υ),Θ(µ,υ),Φ(µ,υ)

}
, (4.2)

where i = 0, 1, 2, ..., Nξ, ∆ψ represent the nonlinear PDEs. The convergence error
norms and the residual errors for the solutions f(ξ, η), g(ξ, η), ω(ξ, η), θ(ξ, η) and
ϕ(ξ, η) when ξ = 1 are shown in Figure 2. The errors decrease rapidly with an
increase in the number of iterations. This is an indication that the numerical scheme
converges. From Figure 2 (a) the OMD-BSLLM converges after 7 iterations and
the size of the error is between 10−10 and 10−14. We observe in Figure 2(b) that the
results are consistent and the residual error is in the range 10−10 to 10−12 after 5
iterations. This analysis of the convergence and accuracy of the method of solution
show that we can trust the numerical solutions obtained using the OMD-BSLLM.
For validation of the method, our numerical results of the skin friction and heat
transfer rate are compared with previously published results [9,10,17,36] for the case
when ϵ = 1, δ = N = λ = Rd = Ha = Fs = Sc = K = βh = ξ = n = 0, Da → ∞.
The comparison is shown in Tables 1 and 2. The results are found to be in excellent
agreement.
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Figure 2. Error norms and residual errors against the number of iterations

Figure 3 illustrates the effect of the heat source/sink parameter and thermal
radiation parameter on the temperature profiles. From Figure 3(a) we observe a
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Table 1. Comparison of numerical values of f ′′(0, 0) at different values of Pr.

Pr Yih [36] Chamkha [10] Chamkha et al. [9] Elbashbeshy et al. [17] Present results
0.0001 1.4998 1.4997 1.4997 - 1.4998031
0.001 1.4728 1.4727 1.4727 - 1.4728521
0.01 1.3968 1.3965 1.3965 - 1.3967946
0.1 1.2104 1.2151 1.2151 1.2151 1.2152609
1 0.9084 0.9081 0.9081 0.9082 0.9081912
10 0.5927 0.5927 0.5927 0.5928 0.5928323
100 0.3559 0.3558 0.3558 - 0.3559337
1000 0.2049 0.2049 0.2049 - 0.2049424
10000 0.1161 0.1161 0.1161 - 0.1162981

Table 2. Comparison of numerical values of −θ′(0, 0) at different values of Pr.

Pr Yih [36] Chamkha [10] Chamkha et al. [9] Elbashbeshy et al. [17] Present results
0.0001 0.0060 0.0059 0.0059 - 0.0059186
0.001 0.0189 0.0188 0.0188 - 0.01889173
0.01 0.0570 0.0574 0.0574 - 0.0573601
0.1 0.1629 0.1630 0.1630 0.1627 0.1627577
1 0.4012 0.4012 0.4012 0.4010 0.4010331
10 0.8266 0.8274 0.8274 0.8268 0.8268430
100 1.5493 0.5503 0.5503 - 1.5494888
1000 2.8035 2.8044 2.8044 - 2.8035516
10000 5.0127 5.0131 5.0131 - 5.0270365
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Figure 3. Effect of δ and Rd on temperature

reduction in the temperature of the micropolar fluid flow due to an increase in the
strength of heat generation (δ > 0). From the same figure, we note that the temper-
ature of the micropolar fluid flow increases due to an increase of the heat absorption
(δ < 0) strength. The same results were observed by Ahmad [4]. Physically speak-
ing, the presence of the heat generation coefficient tends to reduce the micropolar
fluid temperature. This causes the thermal buoyancy effects to decrease resulting in
a net reduction in the temperature in the domain. The opposite is true for the heat
absorption parameter. It is also observed from the figure that the thermal bound-
ary layer thickness decreases as the heat generation coefficient increases, whereas
is enhanced with the heat absorption coefficient. Generally, the temperature pro-
file is expected to increase with increasing values of heat generation and decrease
with heat absorption, but due to the domination of the external temperature, the
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Figure 4. Effect of δ and Kon concentration

opposite results to that of expected are noted. The effect of the thermal radiation
parameter on the temperature distribution across the boundary layer is presented
in Figure 3(b). The increment in thermal radiation is seen to give more heat to the
fluid which results in a rise in the dimensionless temperature in the boundary layer.
Moreover, the thermal boundary layer thickness is enhanced with greater values of
the thermal radiation parameter. The thermal boundary layer is energized with
greater radiative flux contribution which leads to high fluid temperature.

The influence of the heat source/sink parameter and chemical reaction param-
eter on the concentration profiles is depicted in Figure 4. Figure 4(a) shows that
the effect of heat source/sink on the concentration distribution is less significant
in the micropolar fluid flow. Generally, the concentration profiles move to cooler
areas when external heat to the flow is produced. Since the heat source/sink act
like heat observer, the heat generation increases the concentration and the heat
absorption reduces the concentration profiles as shown in Figure 4(a). It is seen in
Figure 4(b) that increasing the chemical reaction parameter causes a decrease in
the concentration of the micropolar fluid flow along the surface due to the thinning
of the solutal boundary layer thickness.

Figures 5–7 depict the effects of the coupling number, thermal radiation parame-
ter, chemical reaction parameter, heat source/sink parameter, Forchheimer number
and Hartman number on the microrotation profiles. We observe that the microro-
tation changes in sign from negative to positive within the boundary layer. The
striking feature of the distribution is that at approximately η = 3, where the pro-
files intersect each other suggesting the reverse effect for η > 3. This observation
concurs with findings reported by Srinivashacharya and Mendu [33]. The angular
velocity satisfies the boundary conditions (2.7)–(2.8) since the microrotation takes
the negative values of the gradient of velocity at the plate surface and approach
zero away from the plate surface.

Figure 5 exhibits the effects of the coupling number and thermal radiation pa-
rameter on the microrotation profiles. It is seen from Figure 5(a) that the magnitude
of microrotation decreases near the surface and increases far away from the wall with
increasing values of the coupling number. The coupling number characterises the
coupling of linear and rotational motion arising from the micromotion of the fluid
motion. Thus, the coupling number signifies the coupling between the Newtonian
and rotational viscosities. From the figure, we observe that the microrotation tends
to zero as is expected that in the limit κ → 0 i.e N → 0 the micropolarity is lost



Non-Darcian mixed convection chemically . . . 129

0 5 10 15
−0.1

−0.05

0

0.05

η

ω
(η

,
ξ
)

 

 

0.1

0.3

0.5

0.7

N

(a)

0 5 10 15
−0.1

−0.05

0

0.05

η

ω
(η

,
ξ
)

 

 

0.1

0.5

1

2

Rd

(b)

Figure 5. Effect of N and Rd on microrotation

and the fluid behaves as a non-polar fluid, and equation (2.11) and (2.13) decoupled
and reduce to viscous fluid flow equations. It is also noted that that as the coupling
number increases, the effect of microstructure becomes significant, whereas with
diminishing values of the coupling number small microrotation is generated. Figure
5(b) shows that the magnitude of microrotation decreases near the vertical plate
and rises away from the plate with increasing thermal radiation parameter. The
microrotation component is enhanced because when the intensity of heat generated
through thermal radiation increases, the bond holding the components of the fluid
particle is easily broken and the fluid velocity will increase. We also observe from
the figure that the higher the value of the thermal radiation parameter, the higher
the thermal boundary layer thickness.

0 5 10 15
−0.1

−0.05

0

0.05

η

ω
(η

,
ξ
)

 

 

0.4

1

1.6

3

K

(a)

0 5 10 15
−0.1

−0.05

0

0.05

η

ω
(η

,
ξ
)

 

 

0.5

1

1.5

2

Ha

(b)

Figure 6. Effect of K and Ha on microrotation

Figure 6 depicts that the microrotation component increases with increasing
values of the chemical reaction parameter and Hartman number near the plate, but
away from the plate the reverse effect is encountered. It is observed from Figure
6(a) that the presence of the magnetic force causes retardation of the fluid motion
represented by a general decrease in the fluid angular velocity (except near the wall).
The decrease in microrotation due to the chemical reaction parameter and Hartman
number in the free stream was also reported by Ayano and Mathunjwa [2]. From
Figure 7(a) we note that the microrotation velocity increases in magnitude as heat
generation increases near the surface, but decreases as heat absorption increases near
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Figure 7. Effect of δ and Fs on microrotation

the surface. The opposite trend occurs away from the surface. Figure 7(b) depicts
that the effect of the inertia coefficient is insignificant near the surface but the
microrotation profiles increase slightly. Away from the boundary, the microrotation
profiles decrease with the increase in the inertia coefficient.
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Figure 8. Effect of K on skin friction and Sherwood number
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Figure 9. Effetc of Rd on skin friction and Nusselt number

The variation of the local skin friction, wall couple stress, Nusselt number and
Sherwood number with different parameters is depicted in Figures 8–11. Figure
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8 presents the effect of the chemical reaction parameter on the local skin friction
and the mass transfer coefficients. It is observed that higher values of the chemical
reaction parameter lead to a reduction in the local skin friction coefficient. On the
other hand, increasing chemical reaction enhances the rate of mass transfer. This is
due to the fact that chemical reaction reduces the solutal boundary layer thickness
and increases the mass transfer. An increase in the values of the chemical reaction
implies more interaction of species concentration with the momentum boundary
layer, thus having a more significant effect on the local Sherwood number. Figure 9
depicts the influence of the thermal radiation parameter on the local skin friction co-
efficient and the heat transfer rate. It is seen that the radiation flux reduces the heat
transfer rate as the thermal radiation parameter increases. On the other hand, the
local skin friction increases with increasing values of the thermal radiation parame-
ter. Figure 10 shows the effect of Forchheimer quadratic drag number and coupling
number on the skin friction coefficient. Increasing values of the Forchheimer and
coupling number is observed to decrease the local skin friction.
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Figure 10. Effect of Fs and N on skin friction
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Figure 11. Effect of δ on skin friction and wall couple stress

Figure 11 documents the effect of the heat source/sink on the local skin friction
and the wall couple stress coefficients. The local skin friction and the couple stress
coefficient increase for smaller values of the heat source/sink parameter which im-
plies that the heat source/sink has the tendency to increase the local skin friction
and wall stress coefficient for δ < 0. The influence of the heat source/sink parameter
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Figure 12. Effect of δ on Nusselt number and Sherwood number

on the local Nusselt number and Sherwood number is depicted in Figure 12. The
figure indicates that the local Nusselt number increases for larger values of the heat
source/sink and the local Sherwood number increases for small values of the heat
source/sink. This means that the magnitude of the local Nusselt number increases
for heat generation (δ > 0) and the magnitude of the local Sherwood number in-
creases for heat absorption (δ < 0). Figures 13–14 illustrate the effect of the thermal
radiation parameter, the coupling number, the chemical reaction parameter, and
the Forchheimer number, on the wall couple stress coefficient. The wall couple
stress increases with increasing values of the thermal radiation parameter and the
coupling number, whereas the reverse trend is seen for the chemical reaction pa-
rameter and the Forchheimer parameter. We observe that the wall couple stress
is weakly influenced by the thermal radiation and chemical reaction, but strongly
influenced by the coupling number and Forchheimer number for increasing values
of ξ. For increasing values of the coupling number, the effect of the microstructure
becomes significant, hence the wall couple stress increases. With the inertial effects
in a micropolar fluid saturated non-Darcy porous medium, the wall couple stress
coefficient reduces. Figure 15 depicts the influence of the coupling number on the
heat and mass transfer rates. It is observed from the figure that as the coupling
number increases from 0 to 1, the rate of heat and mass transfer decreases. This
is due to the presence of microscopic effects arising from the local structure and
micromotion of the fluid elements.

The values of the local skin friction, heat and mass transfer coefficients are
presented in Table 3 for different values n. For all the flow parameters, the local skin
friction, heat and mass transfer coefficients are smaller in the turbulent boundary
layer flows (n = 1) than in the concentrated particle flows (n = 0). This means that
a strong concentration of microelements enhances the local skin friction as well as
the rate of heat and mass transfer in the micropolar fluid flow. It is noted that
the local skin friction, heat and mass transfer coefficients decrease with increasing
values of the coupling and the Forchheimer number. The local skin friction and
mass transfer coefficients are also observed to increase with increasing values of
thermal radiation, while the reverse trend is true for the rate of heat transfer. The
table also displays that the local skin friction and rate of mass transfer decrease
with an increase in the values of the heat source/sink, while the reverse trend is
observed on the rate of heat transfer. The local skin friction and the rate of heat
transfer decrease with increasing values of the chemical reaction parameter and the
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reverse trend are true for the rate of mass transfer. Finally, Table 4 shows that
the local skin friction, heat, and mass transfer coefficients decrease with increasing
values of the tangential coordinate ξ and increase with increasing values of the Hall
parameter.

Table 3. Values of f ′′(0, ξ), −θ′(0, ξ) and −ϕ′(0, ξ) for various values of N,K,Rd, δ, Fs, n when ξ = 1

n = 0 n = 1
N Rd δ Fs K f ′′(0, ξ) −θ′(0, ξ) −ϕ′(0, ξ) f ′′(0, ξ) −θ′(0, ξ) −ϕ′(0, ξ)
0.1 0.3 0.5 0.1 0.5 0.7415413 0.6243360 0.3587730 0.7352391 0.6240566 0.3585608
0.3 0.3 0.5 0.1 0.5 0.6247736 0.6208926 0.3562843 0.5876979 0.6191450 0.3549722
0.5 0.3 0.5 0.1 0.5 0.4912103 0.6167750 0.3531429 0.3882922 0.6118465 0.3493634
0.6 0.3 0.5 0.1 0.5 0.4167948 0.6143359 0.3511770 0.2604719 0.6068434 0.3452934
0.7 0.3 0.5 01 0.5 0.3361656 0.6115072 0.3487679 0.1058645 0.6005605 0.3398175
0.6 0.4 0.5 0.1 0.5 0.4218385 0.5879318 0.3516287 0.2662373 0.5807830 0.3458102
0.6 0.6 0.5 0.1 0.5 0.4307030 0.5441857 0.3524495 0.2763563 0.5376275 0.3467414
0.6 0.9 0.5 0.1 0.5 0.4417161 0.4940850 0.3535175 0.2889060 0.4882333 0.3479393
0.6 1.6 0.5 0.1 0.5 0.4607586 0.4169358 0.3554908 0.3105578 0.4122227 0.3501191
0.6 2 0.5 0.1 0.5 0.4690157 0.3866886 0.3563964 0.3199322 0.3824332 0.3511076
0.6 0.3 -0.2 0.1 0.5 0.5068426 0.0735351 0.3617850 0.3664429 0.0517940 0.3578390
0.6 0.3 -0.1 0.1 0.5 0.4886534 0.1784379 0.3595190 0.3356527 0.2096380 0.3540298
0.6 0.3 0 0.1 0.5 0.4726840 0.2710839 0.3575565 0.3265981 0.2559538 0.3529216
0.6 0.3 0.05 0.1 0.5 0.4654380 0.3135074 0.3566791 0.3180851 0.2996029 0.3518880
0.6 0.3 0.3 0.1 0.5 0.4352757 0.4954043 0.3531664 0.2824445 0.4858519 0.3477013
0.6 0.3 0.5 0.2 0.5 0.4165186 0.6142802 0.3511116 0.2602360 0.6067950 0.3452341
0.6 0.3 0.5 1.2 0.5 0.4138067 0.6137367 0.3504726 0.2579583 0.6063284 0.3446585
0.6 0.3 0.5 1.8 0.5 0.4122221 0.6134220 0.3501017 0.2566630 0.6060634 0.3443280
0.6 0.3 0.5 2.4 0.5 0.4106682 0.6131155 0.3497399 0.2554218 0.6058094 0.3440084
0.6 0.3 0.5 3 0.5 0.4091442 0.6128169 0.3493869 0.2542351 0.6055664 0.3436996
0.6 0.3 0.5 0.1 0.6 0.4134516 0.6139002 0.3791885 0.2564855 0.6063287 0.3737293
0.6 0.3 0.5 0.1 1.2 0.3977503 0.6120272 0.5206195 0.2377653 0.6041119 0.5167651
0.6 0.3 0.5 0.1 2 0.3838663 0.6106260 0.6669335 0.2212307 0.6024436 0.6640992
0.6 0.3 0.5 0.1 3 0.3722130 0.6096343 0.8145994 0.2073925 0.6012524 0.8124337
0.6 0.3 0.5 0.1 5 0.3576117 0.6086128 1.0499977 0.1901616 0.6000127 1.0484987
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Figure 13. Effect of Rd and N on wall couple stress

5. Conclusion
This study analyzed two-dimensional MHD micropolar fluid flow, heat and mass
transfer over a vertical plate embedded in a porous medium with heat source/sink,
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Figure 14. Effetc of K and Fs on wall couple stress
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Figure 15. Effect of N on Nusselt Number and Sherwood number

Table 4. Values of f ′′(0, ξ),−θ(0, ξ) and −ϕ′(0, ξ) for various values of ξ and βh when n = 1

βh = 0.4 βh = 1 βh = 3
ξ f ′′(0.ξ) −θ′(0, ξ) −ϕ′(0, ξ) f ′′(0, ξ) −θ(0, ξ) −ϕ(0, ξ) f ′′(0, ξ) −θ′(0, ξ) −ϕ(0, ξ)

0.2 0.3856138 0.4409326 0.2642840 0.3859158 0.4410107 0.2643638 0.3862507 0.4410973 0.2644522
0.4 0.3434633 0.5004336 0.2927064 0.3438839 0.5005226 0.2928036 0.3443517 0.5006217 0.2929116
0.6 0.3138024 0.5433735 0.3136991 0.3143088 0.5434664 0.3138055 0.3148729 0.5435700 0.3139240
0.8 0.2903851 0.5779279 0.3308691 0.2909593 0.5780218 0.3309808 0.2916002 0.5781268 0.3311056
1 0.2708507 0.6072247 0.3456110 0.2714806 0.6073181 0.3457258 0.2721849 0.6074229 0.3458542
2 0.2028573 0.7132170 0.4002134 0.2036542 0.7132998 0.4003276 0.2045547 0.7133941 0.4004569
3 0.1587063 0.7865516 0.4389674 0.1595474 0.7866185 0.4390702 0.1605123 0.7866967 0.4391885
4 0.1261566 0.8440641 0.4697962 0.1269464 0.8441122 0.4698827 0.1278755 0.8441712 0.4699847
5 0.1007451 0.8919864 0.4957218 0.1013945 0.8920128 0.4957885 0.1021957 0.8920498 0.4958706
6 0.0803081 0.9333939 0.5182690 0.0807259 0.9333952 0.5183126 0.0813069 0.9334067 0.5183714
7 0.0636351 0.9700533 0.5383292 0.0637228 0.9700251 0.5383460 0.0639861 0.9700073 0.5383779
8 0.0499974 1.0030845 0.5564758 0.0496417 1.0030205 0.5564606 0.0494786 1.0029681 0.5564613

chemical reaction, radiation and Hall effects. Also, the study presented the first
opportunity to evaluate the accuracy and robustness of the OMD-BSLLM in find-
ing numerical solutions of nonlinear coupled PDEs. The method was found to be
convergent and gave accurate results after few iterations and using minimal grid
points. The obtained results concurred with existing results in the literature for
some limiting cases, hence validating the accuracy of the method. In the study,
we found that the microrotation profiles change the sign from negative to positive
within the boundary layer for all the flow parameters. The skin friction, heat and
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mass transfer rates were found to be smaller in turbulent boundary layer flows than
in concentrated particle flows. This implies that a strong concentration of microele-
ments can enhance flow characteristics. The rest of the findings are summarized as
follows:

• The higher values of the heat source/sink result in higher species concentration
and heat transfer rate but produce lower fluid temperature, microrotation
profiles, skin friction, couple stress coefficient, and mass transfer rate.

• An increase in the chemical reaction parameter enhances the local Sherwood
number while reducing species concentration, microrotation profiles, skin fric-
tion, and couple stress coefficient.

• Thermal radiation tends to enhance micropolar fluid temperature, microro-
tation distribution, skin friction, and couple stress coefficient while reducing
the rate of heat transfer.

• The presence of the inertial effects in micropolar fluid saturated non-Darcy
porous medium reduces the microrotation component, skin friction, and cou-
ple stress coefficient.

• The higher values of the coupling number enhance the couple stress coefficient
and reduce the skin friction, heat, and mass transfer rates.

• Increasing Hall parameter accelerates the local skin friction, Nusselt number
and Sherwood number.
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