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Abstract This work is committed to establish the necessary assumptions
related with the existence and uniqueness of solutions to a nonlocal coupled
impulsive fractional differential equation. We attain our main results by the
use of Krasnoselskii’s fixed point theorem and Banach contraction principle.
Additionally, we create a framework for studying the Hyers—Ulam stability of
the considered problem. For the applications of theoretical result, we discuss
an example at the end.
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1. Introduction

In the last few decades, the theory of fractional differential equations (FDEs) has
become one of the most attractive research area for finding new results. The reason
behind this attractiveness is the fact that it precisely describes a large number of
nonlinear phenomena in different branches of science and engineering like, viscoelas-
ticity, control hypothesis, speculation, fluid dynamics, hydrodynamics, aerodynam-
ics, information processing, system networking, picture processing etc. It is also
a useful instrument for the depiction of memory and inherited properties of many
materials and processes. As a result, FDEs theory gained a significant development
in recent years, for details we refer the reader to [1,7-9,11,12,15,19,20,22,25,39-42].

Qualitative analysis of solutions to dynamical systems is a great tool for an-
alyzing its different behaviors. Among these properties, surety of existence and
uniqueness of solutions to the given dynamical systems is a challenging task for
mathematicians. The aforementioned properties has been explored well for integer
order differential equations (DEs). However, for FDEs there are many aspects that
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requires further investigations. The literature devoted to the existence and unique-
ness of solutions has been marvelously studied by adapting Riemann—Liouville and
Caputo factional derivatives, for more details we recommend [2,16,26,44,45].

In the study of dynamical systems, stability analysis is a basic requirement for
the applicability of results. In stability theory, especially Ulam’s stability, which
was first established by Ulam [30], in 1940 and extended by Hyers [10] to DEs plays
a pivot role. Many mathematicians further worked on the Hyers result in different
directions, as can be seen in [3,13,14,17,18,21,23,24,27-29, 33, 34, 38, 46-52].

In [35], Wang et al. studied the existence of solutions to the following system of
FDES

“Diz(t) = 0(t, 2(t)), t € [0,T], T >0,
2(0) + 9(2) = 20,

where ©D1 is the Caputo fractional derivative of order ¢ € (0,1),6:[0,T] xR = R
is continuous and zg € R.

In [43], Zhang investigated the existence and uniqueness of solutions for the
model given by

“DIx(t) = 0.(t,2(1)), L€ (0,1), 1<q<2,
z2(0)+ 2/ (0) =0, 2(1)+ 2'(1) =0,
where 6, : [0,1] x Rt — RT is continuous.

Many targets have been achieved about stability analysis of integer order DEs,
but for FDEs only few monographs are devoted. Recently, Wang et. al in [36]
studied Ulam’s type stability of different kinds for FDEs. In [37], the authors
studied the aforementioned stabilities for:

¢Diz(t) = 0(t, 2(t)), t € [a,00), 0 < g <1,
z«(a) =0,

and

cDIz(t) = 0(t, 2(t)), t € [a,00), 1 < g <2,
z(a) = z(b) = 0,
where 0 : [a,00) x R — R is continuous.
Impulsive FDEs play a significant role in the applied models, for details see [4,32].
As pointed out in [4], the theory of initial and boundary value problems (BVPs) for
the nonlinear impulsive FDEs is still in the early stage. In [4], the authors studied
the following impulsive hybrid BVPs of FDEs:
cD°2z(t) + fi(t,2(t)) =0, t € J=[0,1] — {t1,t2, ..., tm}, 1 <5 <2,
z(0)+2'(0) =0, 2(1)+ 2 (1) =0, k=1,2,...,m,
Az(ty) = I(2(t,)), AZ'(t,) = f(z(t,:)), tr € (0,1),



140 M. Ahmad, A. Zada, W. Dong & J. Xu

and

°D%%(t) +f1(t 2(t)) =0, t€J=10,1] — {tl,tg,... tm}, 1 <6 <2,
az(0) + B2'(0 fo q1(s)z(s)ds, az(1) + B2'(1 fo q2(s
Az(ty) = Ik(z(tz)% Az (tﬁ) = I(=(t;)), tr € (071)~

Motivated by the above mentioned work, in this article our target is to investigate
the existence, uniqueness and Hyers—Ulam stability for the following system of FDEs

DY) —x1 (1) 2() = ot 2(t),w(?)), t € J = [0,1]—{t1,to,.. .. tm} 1<a <2,

)=, 2(t), w(t), t € J=[0,1]—{t1,t2,..., tm}, 1<a <2,
2), A1)+ (1) =g(2),

Az(tr) = In(2(tr)), A2 (tk) = 1(2(t4)),
Aw(tk) = Ik(w(tk)), Aw’(tk) = I( (tk) 0<ty <1,
(1.1)
where ¢D® presents the Caputo derivative of order « € (1,2] of z and w with the
lower limits tx, £k = 1,2,....m, 0 =1ty < t1 < tog < -+ < tyy < ty1 = 1,

J =10,1] — {t1,t2,...,tm} and x1(-),x2(-) , are linear and bounded operators
on R. Furthermore, I; and I, are the impulsive operators. The nonlinear func-
tions ¢ : C(J,R) — D(x1(.)), ¢ : CJ,R) — D(x2(.)) are continuous. More-
over, Ax(t)ltomn, = 2(1) — 2(t7 )y Aw(ti)limt, — w(tF) — (5 )y A (0)lrams, =
2(t7) - (1) and A (b)ligmr, = ' (t7) — (1), where 2(6), w(ti), 2 (t7),
w'(t) are right and 2(t;,), w(ty, ), 2/(t;, ), w'(t; ) left limits, respectively.

The manuscript is organized as follows: In Section 2, we give essential definitions,
lemmas and theorems. In Section 3, we develop suitable conditions for the existence
and uniqueness of solution to (1.1), using Krasnoselskii’s fixed point theorem and
Banach contraction principle. In Section 4, we built up generalized results according
to which problem (1.1) satisfies the conditions of Hyers—Ulam stability. In Section
5, we verify our results by discussing a particular example.

2. Preliminaries

In this part, we assemble some fundamental facts, definitions and lemmas used
throughout this article, for detail reader should study [1,15,22].

For ¢, € J,such that 0 =tp <1 < -+ <ty < Tand J =1[0,1]—{t1,t2,...,tm},
define the space PC(J,R) = {z:J — R z € C(J)}, where left limit 2(¢, ) and right
limit 2(¢}) exist and

Az(t)|imt, = 2(8)) — 2(t;), 1 <k <m.

Similarly, we also define PC(J,R) = {w : J = R : w € C(J), where left limit w(t})
and right limit w(t}) exist and

Aw(t)|i=t, = w(tf) —w(ty), 1<k<m.
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Bequeathing the norms, ||z||pc = maxsey |2(t)| and ||w|lpc = maxiey |w(t)] in
PC(J,R), which form a Banach space under these norms, and hence their product
E = PC x PC is again a Banach space with norm defined by ||(z,w)|lpc = ||z]|pc +

lw[lpe-

Definition 2.1 ( [15]). Let § € R™, then the arbitrary order integral in the
Riemann—Liouville sense for a function p : J — R is given as

t
o [ (=9 p(s)ds,

(9) /0
such that the integral on the right side is pointwise defined on RT.

Definition 2.2 ( [15]). Let p be a given function on close interval [zg,wp]. Then
the noninteger order derivative in the Caputo sense of p is stated as

6 t — s n—6—1 n
ar®) = [ U () )ds € - 1,

where n = 1 + [n]. Particularly, if p is defined on the closed interval [xg,wo] and
d € (0,1], then

o1 b r(s) 1oy — 49(s)
@p(t) =T =) /I0 = 8)5ds, where ¢'(s) = 1

It is to be noted that the integral on the right hand side is pointwise defined on R™.
Theorem 2.1 ( [6]). Let 6 € [n—1,n). For p € C([xo,wo]), the unique solution of
%p(t} = 0 has the following form p(t) = [26]: cxt®, where e € R, k=1,2,...,[],
1+ (5 =n. o

Theorem 2.2 ( [6]). Let § € [n—1,n). For p € C"([zo,wo]), I‘;j—;p(t) =p(t) +

[9]
3 apt®, for some ar, €R, k=1,2,...,[8], 1 +[0] = 7.
k=0

Theorem 2.3 ( [5]). Let S # 0 be a closed convex subset of Banach space E. Let
Y1, Yo be two operators such that

(i). T1(z,w) + Ta(Z,@) € S, where (z,w), (£,@) € S;
(ii). Y1 is contraction;
(#ii). Yo is completely continuous.
Then the operating system (z,w) = T1(z,w)+Y2(z,w) has a a solution in (z,w) € S.

Definition 2.3 (Urs [31], Definition 2). Consider a Banach space E such that
®1, P, : E — E be two operators. Then the operator system provided by

(2.1)
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is called Hyers—Ulam stable if we can find constants Cj—1 234 > 0 such that for
each gj—12 > 0 and each solution (z,@) € E of the inequalities given by

||/Z\_ QS(ZZJ)”PC < 01,

(2.2)
& = ¢(Z,0)[lpc < o2,
there exists a solution (£, @) € E of system (2.1) which satisfy
1z = Zl[pc < Cro1 + C202, (2.3)

|0 —@lpc < Cs01 + Capo.

Definition 2.4. If the matrix H* € C™*™ has eigenvalues p;, for j =1,2,...,m,
then p(H*) (spectral radius) is defined by

p(H*) = max{|y;|, j=1,2,...,m}.

Furthermore, the matrix H* converge to 0 if p(H*) < 1.

Theorem 2.4 ( [31]). Consider a Banach space E with ®1, P2 : E — E be two
operators such that

Mpe < Aillz = Z|lpc + Azl|w — ©[pc,

&)

||<I>1(z,w) - @1(2

&)

[@2(z,w) = @2(2,0)[[pc < Asllz = Z][pc + Adllw = Glpc,

and if the matriz

Ay Ay
As Ay

*

converges to 0, then the fized points consequential to the operational system (2.1)
are Hyers—Ulam stable.

3. Existence Results

Before coming to the main result, we follow some restrictions.
(H;). The bounded linear operators x; j=12 : D(x;) — R* are closed and for any

t € J, sup ‘Xl(t)z(t)‘ < M,, sup ’Xz(t)w(t)‘ < M, and
tel ted

X1 (8)2(t) = xa(H)2(8)] <Mp,|2 — 2],
Ix2(H)w(t) = x2 ()@ (t)| <My gllw — &,

where M, My, M, 5 and M, 4 are positive constants.
(Hy). The functions ¢, ¢ : JXRxR — R are continuous such that V (z,w), (2,0) € E
and ¢ € J, there exist M, M/, > 0, satisfying

|6 (t, 2(t), w(t)) = b(t, 2(t), @ (1))] <M (|2(t) = Z(t) | +]w(t) ~@(8)]) = My | (2 — 2, w—@) |pc,
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lo(t, 2(1), w(t)) —(t, 2(1), @(8)| <My (|2(t) = Z(t) |+ ]w(t) —@(t)]) = M || (2 — 2, w—a)||pc-
(Hj3). For all (z,w) € E and t € J there exist Mg, M, > 0, such that

|6, 2(t), w(t))| <Myfllzllpc + wllpc} < Myll(2,w)llpc,
lo(t, 2(t), w(t)) | <Mp{l|zllpc + [lwllpc} < Myl|(z,w)llpc-

(Hy). Ik,fk : R — R are continuous, and there exist constants l;,l; > 0 for any
(z,w), (2,) € E such that

[Tk (2(8)) — Ie(2(2))| <lr]z — 2],
Tk (w(t) — Te(@ (1)) <l7lw — &,
Te(2(8)) — Ln(2()| <lfl= - 2],
| Tu(w(t) = In(@(t)| <llw -,

where k=0,1,...,m
(Hs). I, I : R — R are continuous, and there exist constants M, M; > 0 for any
(z,w) € E such that

[Te(2(8))] <My lzl, [Li(=(t)] < Mjl2],
Te(w(®))] <Mjlwl, [I(w(t))] < M,

where £k =0,1,...,m
(Hg). h,g : R — R are continuous and V (z,w), (2,0) € E there exist, constants
In,lgylgn, lgn > 0 such that

Ih(2) = h(2)| <lnlz = 2], [g(w) — 9(@)] < glw —@f,
l9(2) = h(2)| <lgnlz], |9(w) = h(w)] < lgn|w].
Theorem 3.1. Let p1,ps € PC(J,R) and D(x1), D(x2) are bounded linear opera-
tors. Then the solution of the coupled system
D%(t) —x1(t)z(t) = p1(t), 1<a <2, te
CDaw(t) - XQ(t)w(t) = pQ(t)a I<a< 27 te Ja

supplemented with the boundary conditions in (1.1) is equivalent to the solution of
the following integral equations

z(t) =ﬁ /tm (t—$)* " (x1(s)2(s) + p1(s))ds + (§ - t)ﬁ

1
/ (1— )" (xa(s)2(5) + pa(s))ds

m

& oy [ e )i
& 1

HGo0mm X [ -9 () + p9)ds

I'(a) 0<tp<1vtr-1
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+<§_t)ﬁ > (§+1—tk)/t:1(tk—8)“‘2(X1(8)Z(3)+Pl(5))d3

1 tk B
+ m Z /tkl(tk - S)Q (X1(S)Z(s) + ,01(8))ds

0<tr<1
1 ty B
+ Tla—1) Ogl;q(t —tg) /tk_l(tk —8)*2(x1(8)2(s) + p1(s))ds

+ ) {Tiz(te) + (¢ = ti) Tez(t)} + é{/\h(Z) + (At =&)(g(2) — h(2))}
k=1

G- Y G- whGen+ G -0 Y hew), ()

0<trp<1 0<tr<1
and
w(t) =ﬁ /tm (1= )° (xas)eos) + pas)) s + (5 - t)ﬁ

X /t (1-— s)a_l(xg(s)w(s) + pg(s))ds

+ G =03y ] 09 alodelo) + )

G0 2 e ekt + nl)s

0<tr <1

1 e B
+ m O;kd /tkl(tk —5)” (Xz(S)w(s) + pz(S))ds

T X -w) / k:ak — )2 (xa(s)uls) + pa(s)) ds
+ D Lww(ty) + (¢ —te) () + %Qh(w) + (At = ) (g(w) = h(w))}
k=1 k=1
G0 Y G-k G- Y hew). 62
0<tr<1 0<tp<l
Proof. First we consider
DY%(t) —x1(t)z(t) = p1(t), 1<a<2, tel (3.3)
For t € [0, ¢1], the use of Z% on each side of (3.3), gives
A1) = ﬁ/o (= )% (x1(5)2(5) + pa (s))ds — b — tby. (3.4)

Differentiating (3.4) with respect to ¢, we obtain

/ _ 1 h a—2
0 = famp / (t — 8)°2(x1(5)2(5) + p1(s))ds — by

a—1
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Applying the initial conditions, we gain —bg = %bl + %h(z) Therefore, (3.4)
becomes

A1) = %/0 (= 5)°" (xa(5)2(5) + pa(s))ds + b1(§ )+ %h(z). (3.5)

(07

Now for t € (t1,t2] and using Z on (3.3), we get

(07

z@ZFS%LU—®%WM@4$+m®WB—%—@—MQ- (3.6)

Differentiating (3.6) with respect to ¢, we have
1 k 5
! t) = —— t — a— ds — .
Y1) = gy [ 0900 (E)200) + 1)) e

Using the initial conditions, we get

A7) = ﬁ /O (11— 5"~ (1 (5)2(9) + pa())ds + b1 (5 — 1) + $h(2),
and z(t]) = —co.
Because
Az(t)) = Li(z(t)) = 2(t7) — 2(t7)
IS N 1
= —co — F(a)/o (tr = 5)*7 (xa(s)z(s) + pu(s))ds = ba(5 —t1) = Th(2)
Which gives
—co = I1(2(t1)) ﬁ /0 1 (t1 — )2 H(x1(8)2(s) + p1(s))ds + b1(§ —t1)+ %h(z)
(3.7)

Similarly using A(2'(t1)) = L (2(t1)) = 2/(t7) — 2/(t]), gives

ey =D (2(th)) + ]')/Yn—w%%m@4@+m@m&wy (3.8)
0

MNa-1
Putting (3.7) and (3.8) in (3.6), we get

z@:&®Aﬁ—QWNm@4@+m@ms
t i [ 69T a2 + o
F et [ = e)26)
Fu()ds + Dp(t) + (6~ )Rp(t) + (5 1)+ Fh(z).

In identical way for any t € (tx, 1), we gain

aw]wwéﬁ@“%m@ag
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+ p1(s))ds + L Z /lc (tr — )" 1 (xa(s)z(s)

(o) 0<tp<t”th-1

+ p1(s))ds + Z I‘Eoz_—tkl /tkkl (tr — 8)* 2 (x1(s)z(s) + p1(s))ds
3 L) + S - t) T2 (t) + b1(§ — 0+ %h(z).
k=1 k=1
By differentiating with respect to t, we get
Y1) =y | - 970 (0)ste) + (e

Utilizing Az(1) + £2/(1) = g(z), we obtain

1

1
b =T / (= 0 s)s(e) + o)

T(a)
+)\F(cfl)/ (1= 5)"" (xa(5)2(s) + pa(s))ds
+7Z/tk (tr — )" (x1(5)2(5) + p1(s))ds

+ka( )+ > (t—t)I(
k=1

= 1 i (i +1- tk) /tti (te — 5)272(x1(5)2(s)

+ p1(s))ds + ~{h(z) — g(2)}.

>/\>—‘

Substituting the value of b; in (3.5), we obtain (3.1). On the same process, we can
obtain (3.2). The proof is complete. O

(H7). Suppose that £* = max{¢],&5} < 1.
Choose a closed ball

r r
Br ={(z,w) €E fl(z, )l < 7 ll2ll = 5, lwll < 5} c B

where
. M*Cy + M**C*
T 1—(Cp + MyC3 + M,C3%)’

Define the operators F = (Fq,F3), G = (G1,G2) on B, by
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£
+ Mo —1)
1 t o
" T(a) 0<§;<1 /tk 1(tk —8)* X (s)2(s)ds
+ ﬁ > (§ T ty) /tkkl(tk o (s)2(s)ds

0<tr<1

+ Z +17tk Ik(( ))+ Z Ik(z(tk))]

0<tr<1 0<trp<1

g 5 e s

O<t <1

+ﬁ 2 (t_t’“)/tkkl(t’“_S)a_2X1<s>z(s)ds

0<tr<1 -

+ ) {ez(te) + (= ) Tez(t) } + %{Ah(Z) + (A =8)(9(2) = h(2)},

/t (1 —5)*"?x1(s)2(s)ds

F2(wlt) =y / (t— ) xa(s)w(s)ds

(a

+G5 -0 [F(la) = atetegas

. mf_l) [ (1 - 9 2 ya(s)(s)ds
o / (te = 51 xa(s)w(s)ds
. ﬁ Z<§ 1t / :’“luk — 9T P (s)uls)ds
i Z 1t wt) + Y Ik(w ]
0<tr<l 0<tr<1
;. Z / =) (sl
4 ﬁ 0<%:<1(t —tr) /t:kl(tk —5)* 2 xa(s)w(s)ds
n é[kw(tk) + g:l(t — t) Iy (tr)

+ 15 D) + (M — )(g(w) — )},
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and
Gy (2(), w(t) = / (£ — )2 (s, 2(s), w(s))ds

1
+(3-) [r1> [0 ot st

(«

Al(a —1) /tm(l —5)*72(s, 2(s),w(s))ds

T /tk:(tk—s)o‘1¢(s,z(s),w(s))ds

F(a) 0<tr<1

+ r(alf 1)O§<1(§\+1—tk)/t:kl(tk—s)a_2¢(s, 2(s), w(s))ds

+ T > / (tk — 55165, 2(s), w(s))ds

+ T X -w) / :klak — 5265, 2(s),w(s))ds,
Galx(0).(0) s | m (t = )" (s, 2(5), w(s))ds

+G 1) [F(la) [ =ttt

+ Ar(cf— 1) /tm(l —5)* (s, 2(s), w(s))ds

T > | = et toas
N F(al_l)o;d(jﬂ—tk) [ oottt
T > | et oas
T X a-w / :kluk — 5 2p(s, 2(s), w(s))ds.

(3.10)

Theorem 3.2. Let the assumptions, (Hy) to (Hy) are satisfied. Then the problem
(1.1) has at least one solution.

Proof. For any (z,w) € B,, we have
[F(z,w) + G(z,w)[lpc <[|F(z,w)lpc + |G(z,w)|pc

<|IF1(2)|[pc + ||F2(w)]lpc
+ [|G1(2,w)|lpc + [|G2(z,w)||pc- (3.11)
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From (3.9), we get

|F12(t)] S‘F(la)/t (t—8)*"1x1(5)2(s)ds

+ (§ ) Ha) /tm“ — )y (5)2(s)ds

A (e — 1) /tm(l — 5)*7%x1(s)2(s)ds

1 tr B
’ T(a) <)<%:<1 /tk 1(tk = 8) xa(s)(s)ds

r(al— 1) 2. é +1-t) /t (tr = 5)*2x1(s)2(s)ds

0<tr<1 -

_|_

+ Z =4+ 1—t Ik(( ))“r Z Ik<z(tk))]’

0<tr <1 0<tr<1

Z tk — ) 1x1(s)2(s)ds

O<t <17tk
o DRy NRCER i
+ (t —tx) / (tx — 8)* “x1(8)2(s)ds
INa-1) 0l ey

S () + (- m(sz(tk))}\
k=1

+ 3 R + (= 90l - 1)),

Which gives

M,  e+x[ M, €M,
IFv=()] “Tla+D " x |TlatD " A
mM, (g2 (M, )

M M
*m(rmil) )+ m( -+ 1)
+ 55 (Mlzle + €+ Vi lloc ).

Here M* = max{M,, M;, M;},

2X+¢& (m+1)E%+ Bm+ 1)EN + 3mA? N mé? + 4méX 4+ 5mA?

Cr =+ DSr N1 (a) A2

and

1
C3 =153 </\lh + €+ A)zgh>.
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Alternatively, we can write
* Yk 1 *
|F12||lpc < M*CT + 502. (3.12)
Following the same procedure, we get
sk Ykok 1 ok
||F2w||pc <M Ol + 502 . (313)

Furthermore,

‘(Gl(z,w)(t)‘ g‘i /tt (t — )2 Lo(s, 2(s), w(s))ds

I'(a)
1
+ (% +1) F(la)/t (1—5)*"1o(s, 2(s),w(s))ds
+ )\F(ag—l) /tm(l — s)a—2¢(5,2(s),w(s))d5
1 " a—1
R, 2, T s

+ % Z (% +2) /tkkl(tk —8)* 2 ¢(s, z(s),w(s))ds]

Ila—1 0<tr<1

+’i > /t::(tkS)“1¢(s,z(s),w(s))ds

F(O() 0<tr<1

S X [ ) ()

P(a—1) 0<tp<l
M¢ 6 +A M¢ §M¢ mM¢
= IMNa+1) * A (I‘(a +1) * AT () + IMNa+1) (3.14)
mMy (€ +27) mMy mMy
AT (a) ) Tlat1) ' T(a) ] Iz, )llec
<MyC3r, (3.15)
where
. 1L E+A 1 L€ m m(€ 4 2X) m m

Ta+tD) T(a)

Tlat D) A(@) Tlatr) T AT

57 T(at+1) X
Similarly
1G2(z, W) [pc < MpC5™(|(2,w)lpe- (3.16)
Thus, by using (3.12), (3.13), (3.14) and (3.16) in (3.11), we get

IF(z,w) + G(z,w)|[pc <M*CT 4+ M™CT* + (Cy, + MyC3 + M,C3™)r
<r

)

where C,, = max{C3,C5*}. Therefore, F(z,w) + G(z,w) € B,.
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Next, for any t € J, (z,w) and (Z,&) € B,., we have
[|F(z,w) = F(z,0)[pc

<|[F1(2) = F1(2)[pc + |[F2(w) — F2(@)|lpc

<{ Mys , E4M| My | EMyy  mMy;

Tlat+1) " X [T(a+1) " Al(a) r(aﬁﬁmll

e e o)

M, 5 M, 5 1
+m<r(aip1) +l,~> +m<r(’;’5’ +ZI> + /\2<>\lh + (§+A)lgh>}z—z||PC

Mq,q i E+ A
Ia+1) A

My 4 §Mgq mMg g
, ’ ’ l
Tla+1)  A(a) Tty ™

52 1)

+m<rg‘fl) + zf> +m<1]l4(’;§ +11) + ;(Azh + (§+A)zg,,,) }Hw —&lpo
<¢M(z,w) = (2,9)[pe.
This yields
IF(z,w) = F(z,0)[lpc <£7([(2,w) = (2,@)[pc, 0 <& < 1.
The last inequality shows that F is contractive. Here £* = max{{;, &5}, while

Mpﬁ E+ A

_ M, 5 My 5
MNa+1) A

Nla+1)  A(«)

mMp 5 (E+2)\) (M, .
iy T me S

M, ; My 1
+m(F(aip1) +lf> +m(r(po§ +l1> + )\2<)\lh+ (£+A)lgh>

St

and

Mg £+ A

. M, & EM, 6 mMy g
& =
Ia+1) A

N(a+1) MN(a) T(ax+1)

(E+2N) (Mg
il l~
e\ ) T

M4 M, 1
—— 4z e 4 — (A Mlgn |-
+m(I‘(a+1) + ,) +m(F(a) + I) + A2( nt+(§+ )gh)
For the continuity and compactness of the operator G, we design a sequence

T, = (zn,wy) in B, such that (z,,w,) = (z,w) for n — oo in B,.. Thus, we have

M}, £+A{ M,

+ml1

_ <
1G (2, wn) — G(z,w)|lpc < Tla+t1l) A |T(a+1)
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LM mM mM(;(§+2A)}

M) Tlatl) | AT(a)
mM,, mM, M, £+ A

e+ T T@ "TTatrn T
M, M, mM,  mM,(E+2)\)
“NTa+1D) T 3@ T Tlar D (@)

mMJD mM(;
+ F(a + 1) + F(Oé) H(Z’ﬂawn) - (Z,OJ)Hpc.

Which implies |G(pp, gn) — G(z,w)|lpc — 0 as n — oo, therefore G is continuous.
Next we confirm that the operator G is uniformly bounded on B,. From (3.14)
and (3.16), we have

IG(z,)llpc < [G1(z,w)(B)llpe + G2 (z,0)Dllpc
< {MyC5 + MyC37} (2 w)llpc < 7-

Thus, G is uniformly bounded on B,..

For equi—continuity, take 71,72 € J with 7 < 75 and for any (z,w) € B, C E,
where G is bounded on B,., we have

|G1(z,w)(11) — G1(z,w)(72)]

1 " a—1
<war [ (T M) s

1

1 n a=1 _ (- _ gl z,w)||ds
+r(a>/0 (12— 8)*7L — (11 — )27 M|l (2, w) |d

1 1
T2 T a—1 =1 & a—2
1-— M, _— 1-— M,
T /tm< )" e + T / (1= 722,
7' -7
D Sl TSR e AT D SRR
0<tp<l?tr—1 ( )0<tk<1
tr
<[ = 9 M ) s
th—1
1 te )
PR (rs— 7 )/ (t — )2 (2, w)|ds
I(a—1) 0<%:<1 ’ ' tr—1 |

(2 —11) n (18 =" — (2 — 1))
T(a+1) T(a+1)

”T?‘“){/tl( CORRSY I

<M¢

m

DR e ms e [ S

0<tr<1’th—1 0<ty

+ Y (-m /k:@k—s)a?dsl Izl

0<tr<1



Stability analysis of a nonlocal fractional ... 153

This implies that ||G1(z,w)(11) — G1(2z,w)(m2)|lpc — 0 as 7, — 72. Similarly,
we can show that, [|Gz(z,w)(11) — Ga(z,w)(72)|lpc — 0 as 71 — 72, Thats why,
IG(z,w)(11) —G(z,w)(72)|lpc — 0 as 71 — 72. Therefore, G is relatively compact on
B,.. By Arzeld—Ascolli theorem, G is completely continuous and compact operator,
so (1.1) has at least one solution, thanks to Theorem 2.3. O

Theorem 3.3. Let the hypothesis, (Hi) to (Hz) be true with A < 1. Then (1.1)
has a unique solution.

Proof. Define an operator ® = (&1, P5) : E — E, such that

O(z,w)(t) = (B1(z,w), Po(z,w))(t),
where

B (0) = [ (69 0as)306) + 66, 25) ()i

@) Jy

r& - {F(la) /tm“ = )% (ua()2(5) + 05, 2(s), w(s))ds

1

e / (1= )" 2001 ()2(5) + Bl 2(5), w(s)))ds
L ’ ) s)z(s s,z(s),w(s s

T Z/ (b= 9)" G 5)a(s) + 95, 2(5)(s))d

1
oD 2.

0<trp<1

G-t [ =9 a0

+ ¢(s, 2(s),w(s)))ds + Z 21—t (2 (te) + Y Tlz(t))

0<trp<1 0<tip<1

1 tr o1
P, 2, /tk (1= 9" (a(5)2(5) + 0L, 2(6); ()

1
+F(0z—1) Z

0<tr<1

=) [ (b= 99206 + 6, 2(5) ()
3 el + (¢~ ) Ta=()} + 35 1ARG) + O = €)(g(2) — h(=)}
k=1

and

Dy (z,w)(t) =Fi/ (t =) (xa(s)w(s) + @(s, 2(s), w(s)))ds
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" ﬁ 2 G-t /fk/i(tk =97 (xals)(s)

+ (s, ))ds+ Z +1 tr) _[k Z Iu(w
0<tr<l ]
Z / (t — 8) M xa(s)w(s) + @(s, 2(s),w(s)))ds
0<t <17tk
1 " a—2 d
—I—m Z (t—tk)/tkgtk—s) (x2(8)w(s)+¢(s, z(s),w(s)))ds

0<tr<1

D a1+ (0=t Tso (1)} + 15 LAR() + =€) (9 () b))

k=1

In view of Theorem 3.2, we have

[@1(2,w) = D1(2,0)[|pc
<M+ My)(llz — Zllpc) | Mjllw — @llpc

= T(a+1) T(a+1)
L (E+N) | (Mpp+ My)(llz = Zllpc) N Myllw — @llpc
A ['(a+1) Ia+1)
¢ (Mps+ My)(|[2 = Zllpc)  Mpllw —olpc ~
S Irllz —
+ \ F(Oé) + I‘(a) +m 1||Z Z||pc
Wlos + M5 2o+ me g
m—————llz— %2 mi w—w
T(o+1) PCT M P a+1) Pe
(E+2N) {Mpp+ ¢ M/
+m X Iz = Zllpc + =2 |lw — @llpc +mizllz — Z|lpc
A ['(a) I'(a)
M5+ M, Mé
z o
#d PR e — Slve + i~ e
M, 5+ M, M’ _
+m{F(a) +lf}||Z z||pc+mr( )||w @llpc

T % ((5 + )+ (€ + 2A)lh> Iz — Z|lpc

o | Myt My (A+m)2A+E) Mp,ﬁ+M(;{(1+m)§2+5A(1+3m)+3mA2}

= AT (a+1) T() 22
m(Mpf;F M;) (52 AN+ 5/\2>
2 2
+m{512xll L& +3§A2 +3A lf} . { (5+2A)zh; (€ + N, H 2 Zloc

My(1+m)2A+&) My (14 m)E2 + N1+ 3m) + 3mA?
+ Mo+ T(a e
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mM, (% + 46X + 5)?)
+ 3z

SA*H(Z7W) - (27"0)”1)0’

lw—@l[lpc

where A* = max{A, Ay} with
(Mp5 + M) (L+m)(2)A + )

A =
! Al'(a+1)
My 5+ My | (14+m)E2 + X1+ 3m) + 3mA?
') A2

+ —m(Mp§2+ M) (62 +4EX + 5)\2>

(E+2N) 0+ (E+ V)l
)\2

E+2X €2 £ 36N + 3)2
Ir+

A A2 Zf

and

Ay — ML +m)A+€) M) [ (14 m)e2 + A1 + 3m) + 3mA2
2T T et () 22
mM (62 + 46N+ 5)%)
+ 2

Following the same steps, we have

[@2(z,w) — a(2,0)[[pc < A™[(2,w) = (2,@)]lpc
where A** = max{As3, A4} with

(Mgt MOAEm)A+E) | My + M,

(14 m)E2 + EA(1 + 3m) + 3m)\2]

Al'(a+1) (@) A2
M, + M’
m( q}q\; 2) (52 + 4N+ 5)\2)
42\, % +3§>\+3/\2l (€4 2N)n + (4 V),
oot A2 it A2
and
A= ML,(1+m)2A+&) M, [ (14 m)E + EX(1 + 3m) + 3mA?
A (o + 1) I'(a) A2
N mM, (% +4EX + 5N?)
A2 ’
Hence,

[8(z,w) = @(2,0)[lpc < All(z,w) = (2,@)]pc,

where A = max{A*,A**} < 1. This implies that the operator ® is contraction.
Therefore by Banach contraction mapping theorem, ® has unique fixed point, which
is the unique solution of (1.1). O
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4. Hyers—Ulam Stability

This section is devoted to the investigate the Hyers—Ulam stability for the solution
of (1.1).

Theorem 4.1. Suppose that the hypothesis (Hy) to (H7) and A < 1 hold along with
the condition that the matriz H* is converging to 0. Then the solutions of (1.1) are
Hyers—Ulam stable.

Proof. In view of Theorem 3.3, we have

[@1(2,w) = ®1(2,0)l[pc < Arllz = Z[[pc + Agllw — @l[pc, (4.1)
[@2(z,w) = @2(2,0)[[pc < Asllz = Z|[pc + Adllw — &flpc.
From (4.1), we obtain the following inequality
[0(w) — 0@ < | ) [P (42)
As Ay lw —@|lpc
where
. [ A A
A5 Ay
Since H* converges to 0, thus (1.1) is Hyers—Ulam stable. O
5. Example

For supporting our theoretical results, we discuss a particular example.

Example 5.1. We take the given system of fractional order impulsive differential
equations as

CD2Z( ) B %Z(t) _ t+sin(|z (t){?otcos(\w(tﬂ) ¢ # %,

“Diw(t) — Lw(t) = Bnle@breosl=0) 4 1

10 10
AZ(O)Jré“Z’(O):kZ_Il Tielp(Gr)l, Az(1)+€2' (D)= 32 o l2(C)l; 0<mi, G <1, T >0,

k=1
10 10
Aw(0)+€w'(0)= 33 la(ne)], Aw(1)+&w' (1) = 3 o-lw(ne)l, 0<mk, G <1, o >0,
k=1 k=1
1 ~ 1
Ax(3) = Ii(=(3) = mipdy A7) =1GG) = miZn;
A 1 =7 1)) lw(3)I A (1 _I~ 1y lw(3)]
w(z) - k(w(z)) I GTNES TR w (2) - (w(z) T 254w’
10
where Z M < 5=, Z L <L X=1and¢=-1.86+1.0011.
k=1 k=1"
From the given sybtem we have
1 et
ty # 5aX1(t) = %J(z(t) Zﬁk (Gl h(w th|q k)]
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10 10

o2) = 30 oolplG)] and g(w) = 3° —lu(G)l

k=1 k=1

After finding Ay, Ao, A3 and A4, we have

—0.0303 — 0.0599¢ 0.0311 + 0.0101.

*

0.2001 — 0.4905. —0.8162 — 0.0052¢

By calculations, we get that, if w; and wy are the eigenvalues corresponding to H*
satisfying the quadratic equation w? +w(0.8465+0.0651:) — (0.0649 — 0.1996¢) = 0,
then the system (5.1) is Hyers—Ulam stable.

6. Conclusion

In this manuscript, we exercise the Arzeld—Ascoli theorem, Banach contraction prin-
ciple and Krasnoselskii’s fixed point theorem to attain the necessary criteria for the
existence as well as uniqueness of the solution to considered switched coupled im-
pulsive FDEs system given in (1.1). Similarly under particular assumptions and
conditions, we have established the Hyers—Ulam stability result of the solution of
the considered problem (1.1). From the obtained results, we conclude that such a
method is very powerful, effectual and suitable for the solutions of nonlinear FDEs.
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