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ANALYSIS OF AUTONOMOUS
LOTKA-VOLTERRA SYSTEMS BY LÉVY

NOISE∗
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Abstract The present paper deals with the problem of autonomous Lotka-
Volterra systems by Lévy noise. The essential mathematical features are ana-
lyzed with the help of the existence and uniqueness of the positive solution, the
pth moment boundedness, asymptotic pathwise estimation, extinction, asymp-
totic stability and persistence by Lyapunov analysis methods. An example of
three species predator-prey chain model is presented to illustrate the analytical
findings.

Keywords Lévy noise, extinction, asymptotic stability, persistence.

MSC(2010) 60J05, 60J60, 93D05.

1. Introduction

Recently, stochastic Lotka-Volterra population system driven by Brownian motion
has been studied extensively, see [4–13, 15, 17, 18, 20, 21]. A classical stochastic
Lotka-Volterra system can be expressed as follows

dxi(t) = xi(t)

bi +

n∑
j=1

aijxj(t)

 dt+ σidWi(t)

 ,
x(0) = x0,

(1.1)

where xi(t) is the density of the ith population, bi is the intrinsic growth rate of
the ith population and the coefficient aij describes the influence of the jth pop-
ulation upon the ith population. The signs of aij and aij(i 6= j) determine the
nature of the interaction between the populations i and j. All parameters bi, aij for
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i, j = 1, 2, · · · , n and σi are constants, Wi(t) is mutually independent Brownian mo-
tion with Wi(0) = 0. The authors in [21] investigated n-species model of facultative
mutualism in random environments. The environment variability in this study is
characterized with both white noise and color noise modeled by Markovian switch-
ing. They established new sufficient conditions ensuring that the system model is
positive recurrent. They also showed the existence of a unique ergodic stationary
distribution. The authors in [11] discussed a randomized n-species Lotka-Volterra
competition system. They showed that this system is stable in time average under
certain conditions and there is a stationary distribution of this system if extra con-
ditions are satisfied. They obtained the same sufficient condition that all species
become extinct. They also yielded the sufficient condition that some species will
die out while the others will tend to the equilibrium states. The authors in [18]
examined the asymptotic behavior of the stochastic extension of the Lotka-Volterra
model. The stochastic version of this process appears to have far more intriguing
properties than its deterministic counterpart. It is essentially a continuation of the
moment results derived by the authors in [17]. The authors in [13] investigated the
dynamical behavior of the non-autonomous stochastic Lotka-Volterra competitive
system. They obtained the sufficient conditions for the existence of global positive
solutions, stochastic permanence, extinction and global attractivity.

However, the effects due to sudden environmental shocks (earthquakes, hurri-
canes, epidemics, etc.) have been neglected. These phenomena can not be described
by the stochastic system (1.1). To describe these phenomena, introducing a jump
process into the underlying population dynamics is important. The authors in [2]
proposed a stochastic competitive Lotka-Volterra population model with jumps and
they considered the existence and uniqueness, boundedness, tightness, Lyapunov
exponents and extinction of positive solutions. The authors in [3] developed a gen-
eral Lotka-Volterra population model with jumps. They showed that the stochastic
differential equation has a unique global positive solution by using the Khasminskii-
Mao theorem, and discussed the asymptotic pathwise estimation of such a model by
applying an exponential martingale inequality with jumps. The authors in [16] es-
tablished a new sufficient condition for stochastic permanence which is much weaker
than [2]. They proposed sufficient and necessary conditions for persistence in the
mean and extinction of each population for three stochastic Lotka-Volterra models
of two interacting species perturbed by Lévy noise.

Keeping this in mind, we discuss a modification of the model (1.1) taking into
account the effect of jumps:

dxi(t) = xi(t−)

bi +

n∑
j=1

aijxj(t−)

 dt+ σidWi(t) +

∫
Y

Hi(u)Ñ(dt, du)

 ,
x(0) = x0.

(1.2)
Here x(t−) is the left limit of x(t), bi, aij and σi are defined as in system (1.1), Wi(t)
is mutually independent Brownian motion defined on a complete probability space
(Ω,F , {Ft}t≥0,P) with a filtration {Ft}t≥0 satisfying the usual conditions, N is a
Poisson counting measure with characteristic measure λ on a measurable subset Y
of [0,∞) with λ(Y ) < ∞, and Ñ(dt, du) := N(dt, du) − λ(du)dt. Throughout the
paper, we assume that W and N are independent. We also assume:

(A)−H0 ≤ Hi(u) ≤ H, i = 1, 2, · · · , n, where 0 < H0 < 1 and H > 0;
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(B)There exists a positive diagonal matrix C such that− 1

2
(CA+ATC)

is positive-definite,where C=diag(c1, · · · , cn), ci>0, i.e., for each x=(x1, · · · , xn)T

there existsλ > 0 such that− 1

2
xT (CA+ATC)x ≥ λ‖x‖2.

Remark 1.1. From assumption (B), it is easy to see that
n∑

i,j=1

ciaijxixj ≤ −λ‖x‖2.

This paper is organized as follows. We show that the solution of system (1.2)
is global and positive under appropriate conditions (i.e. the population will not
explode in a finite time) in Section 2. We obtain the pth moment boundedness
of the solution for p ≥ 2 in Section 3 and asymptotic pathwise estimation of the
solution which is much better than [2] in Section 4. We present conditions for all
species of system (1.2) to be extinct in Section 5. The asymptotic behavior of this
model is analyzed via Lyapunov functions in Section 6. We discuss that this system
is persistent in mean in Section 7. We use three species predator-prey chain model
as an example to confirm our analytical results in Section 8.

2. Existence and uniqueness of the positive solution

In this section, we show that there is a unique globally positive solution of system
(1.2).

Theorem 2.1. Let assumptions (A) and (B) hold. For any initial value x0 ∈ Rn+,
system (1.2) has a unique positive solution x(t) for t ≥ 0 almost surely.

Proof. Since the drift coefficient does not satisfy the linear growth condition, the
general theorems of existence and uniqueness can not be implemented for this equa-
tion. However, it is locally Lipschitz continuous, so for any given initial condition
x0 ∈ Rn+ there is a unique local solution x(t) for t ∈ [0, τe), where τe is the explosion
time.

Now we show that this solution is global, i.e. we show that τe = ∞ a.s. Let
m0 ≥ 1 be sufficiently large so that x1(0), x2(0), · · · , xn(0) all lie within the interval
[ 1
m0
,m0]. For each integer m ≥ m0, define the stopping time

τm = inf
{
t ∈ [0, τe) : min{x1(t), x2(t), · · · , xn(t)} ≤ 1

m
or

max{x1(t), x2(t), · · · , xn(t)} ≥ m
}
,

where throughout this paper, we set inf ∅ =∞(as usual, ∅ denotes the empty set).
Clearly, τm is increasing as m → ∞. Set τ∞ = limm→∞ τm, whence τ∞ ≤ τe a.s.
If we show that τ∞ = ∞ a.s., then τe = ∞ and x(t) ∈ Rn+ a.s. for all t ≥ 0. In
other words, to complete the proof all we need to show is that τ∞ =∞ a.s. If this
statement is false, then there is a pair of constants T > 0 and ε ∈ (0, 1) such that

P{τ∞ ≤ T} > ε.

Hence there is an integer m1 ≥ m0 such that

P{τm ≤ T} ≥ ε for all m ≥ m1.
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Define a C2-function V : Rn+ → R+ by

V (x) =

n∑
i=1

ci(xi − 1− log xi),

where ci is defined as in the assumption (B). Applying Ito,s formula, we obtain

dV (x(t)) ={
n∑
i=1

ci (xi(t−)− 1)

bi +

n∑
j=1

aijxj(t−)

+

n∑
i=1

1

2
ciσ

2
i

−
n∑
i=1

ci

∫
Y

[log (1 +Hi(u))−Hi(u)]λ(du)}dt

+

n∑
i=1

ci(xi(t−)− 1)σidWi(t)

+

n∑
i=1

ci

∫
Y

[xi(t−)Hi(u)− log(1 +Hi(u))]Ñ(dt, du)

=LV dt+

n∑
i=1

ci(xi(t−)− 1)σidWi(t)

+

n∑
i=1

ci

∫
Y

[xi(t−)Hi(u)− log(1 +Hi(u))]Ñ(dt, du)

where

LV =

n∑
i=1

ci(xi − 1)

bi +

n∑
j=1

aijxj

+

n∑
i=1

1

2
ciσ

2
i

−
n∑
i=1

ci

∫
Y

[log(1 +Hi(u))−Hi(u)]λ(du).

(2.1)

By Taylor’s formula, we deduce that there exist θ ∈ (0, 1) such that

log(1 +Hi(u)) = Hi(u)− H2
i (u)

2(1 + θHi(u))2
. (2.2)

Substituting this into (2.1), with assumption (A) and (B), we have

LV =

n∑
i=1

ci(xi − 1)

bi +

n∑
j=1

aijxj

+

n∑
i=1

1

2
ciσ

2
i +

n∑
i=1

ci

∫
Y

H2
i (u)

2(1 + θHi(u))2
λ(du)

≤− λ‖x‖2 +

n∑
i=1

cibixi −
n∑

i,j=1

ciaijxj −
n∑
i=1

cibi +

n∑
i=1

1

2
ciσ

2
i

+

n∑
i=1

ci
(H0 ∨H)2

2(1−H0 ∧H)2
λ(Y )

≤max

−λ‖x‖2 +

n∑
i=1

cibixi −
n∑

i,j=1

ciaijxj

+

n∑
i=1

1

2
ciσ

2
i
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+

n∑
i=1

ci
(H0 ∨H)2

2(1−H0 ∧H)2
λ(Y ).

From a proof similar to that in A. Gray and X. Mao( [9, Theorem 3.1]), we
obtain the desired assertion.

3. The pth moment boundedness of the solution

In this section, we show that the pth moment of the solution is bounded.

Theorem 3.1. Let assumptions (A) and (B) hold. For any initial value x0 ∈ Rn+,
there exists a positive constant M(p) such that the solution x(t) of system (1.2) has
the property

E

[(
n∑
i=1

cixi

)p]
≤M(p), for all t ∈ [0,∞), p ≥ 2,

where ci is defined as in the assumption (B).

Proof. Define a Lyapunov function for p ≥ 2

V (x) :=

(
n∑
i=1

cixi

)p
, x ∈ Rn+.

Let H(x, u) =
∑n
i=1 cixiHi(u)∑n

i=1 cixi
, we have −H0 ≤ H(x, u) ≤ H. Applying Ito,s

formula, we obtain

E(etV (x(t))) = V (x(0)) + E

∫ t

0

es[V (x(s)) + LV (x(s), s)]ds,

where

LV =pV
p−1
p

n∑
i=1

cixi

bi +

n∑
j=1

aijxj

+
1

2
p(p− 1)V

p−2
p

(
n∑
i=1

ciσixi

)2

+ V

∫
Y

[(1 +H(x, u))p − 1− pH(x, u)]λ(du).

(3.1)

By Taylor’s formula, we deduce that there exist θ ∈ (0, 1) such that

(1 +H(x, u))p = 1 + pH(x, u) +
1

2
p(p− 1)(1 + θH(x, u))p−2H2(x, u).

Substituting this into (3.1) and with assumption (B), we have

LV ≤pV max
1≤i≤n

bi − pλV
p−1
p ‖x‖2 +

1

2
p(p− 1)V max

1≤i≤n
σ2
i

+ V

∫
Y

1

2
p(p− 1)(1 + θH(x, u))p−2H2(x, u)λ(du).
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By the inequality V
1
p (x) =

∑n
i=1 cixi ≤ ‖c‖‖x‖ and assumption (A), we obtain

LV ≤pV max
1≤i≤n

bi −
pλ

‖c‖2
V
p+1
p +

1

2
p(p− 1)V max

1≤i≤n
σ2
i +

1

2
p(p− 1)(1 +H)pλ(Y )V

=

[
p max
1≤i≤n

bi +
1

2
p(p− 1) max

1≤i≤n
σ2
i +

1

2
p(p− 1)(1 +H)pλ(Y )

]
V − pλ

‖c‖2
V
p+1
p .

(3.2)
Then, we can deduce that there exists a positive constant M such that

V + LV ≤
[
1 + p max

1≤i≤n
bi +

1

2
p(p− 1) max

1≤i≤n
σ2
i +

1

2
p(p− 1)(1 +H)pλ(Y )

]
V

− pλ

‖c‖2
V
p+1
p

≤M.

Hence

EV (x(t)) = e−tV (x(0)) +M(1− e−t) ≤ V (x(0)) +M := M(p).

Letting t→∞, we obtain

lim sup
t→∞

EV (x(t)) ≤M(p).

Hence the proof of this theorem is completed.

4. Asymptotic pathwise estimation

In this section, we show pathwise properties of the solutions. Before giving the main
theorem, we first give a lemma.

Lemma 4.1 ( [1]). Assume that g : [0,∞) → R and h : [0,∞) × Y → R are both
predictable adapted processes such that for any T > 0,∫ T

0

| g(t) |2 dt <∞ a.s. and

∫ T

0

∫
Y

| h(t, u) |2 λ(du)dt <∞ a.s.

Then for any constants α, β > 0,

P{ sup
0≤t≤T

[

∫ T

0

g(s)dW (s)− α

2

∫ t

0

| g(s) |2 ds+

∫ t

0

∫
Y

h(s, u)Ñ(ds, du)

− 1

α

∫ t

0

∫
Y

[eαh(s,u) − 1− αh(s, u)]λ(du)ds] > β} ≤ e−αβ .

Theorem 4.1. Let assumptions (A) and (B) hold. For any initial value x0 ∈ Rn+,
the solution of system (1.2) has the property

lim sup
t→∞

log ‖x(t)‖
log t

≤ 1

p
, p ≥ 2.
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Proof. Applying Ito,s formula, we have

d log V (x(t)) =p{

∑n
i=1 cixi(t−)

(
bi +

∑n
j=1 aijxj(t−)

)
∑n
i=1 cixi(t−)

− 1

2

(∑n
i=1 ciσixi(t−)∑n
i=1 cixi(t−)

)2

+

∫
Y

[log(1 +Hi(u))−Hi(u)]λ(du)}dt+ p

∑n
i=1 ciσixi(t−)∑n
i=1 cixi(t−)

dWi(t)

+

∫
Y

log(1 +H(x, u))pÑ(dt, du)

={LV
V
− 1

2
p2V

2(p−1)
p

(
∑n
i=1 ciσixi(t−))2

V 2
+

∫
Y

[log(1 +H(x, u))p

− (1 +H(x, u))p + 1]λ(du)}dt+ p

∑n
i=1 ciσixi(t−)∑n
i=1 cixi(t−)

dWi(t)

+

∫
Y

log(1 +H(x, u))pÑ(dt, du),

where V,LV and H(x, u) are defined as in the proof of Theorem 3.1. Then, by Ito,s
formula,

et log V (x(t))

= log V (x(0)) +

∫ t

0

es{log V (x(s)) +
LV

V
− 1

2
p2

(
∑n
i=1 ciσixi(s))

2

(
∑n
i=1 cixi(s))

2

+

∫
Y

[log(1 +H(x, u))p − (1 +H(x, u))p + 1]λ(du)}ds

+

∫ t

0

esp

∑n
i=1 ciσixi(s)∑n
i=1 cixi(s)

dWi(s) +

∫ t

0

∫
Y

es log(1 +H(x, u))pÑ(ds, du).

(4.1)

Let

Z(x(s)) = p

∑n
i=1 ciσixi(s)∑n
i=1 cixi(s)

, Q(x, u) = (1 +H(x, u))p.

In the light of Lemma 4.1, for any α, β, T > 0,

P{ sup
0≤t≤T

[

∫ t

0

esZ(x(s))dWi(s)−
α

2

∫ t

0

e2sZ2(x(s))ds+

∫ t

0

∫
Y

es logQ(x, u)Ñ(ds, du)

− 1

α

∫ t

0

∫
Y

[eαe
s logQ(x,u) − 1− αes logQ(x, u)]λ(du)ds] > β} ≤ e−αβ .

Choose T = kδ, α = εe−kδ and β = (1+δ)ekδ log kδ
ε , where K ∈ N, 0 < δ < 1 and

0 < ε < 1 in the above equation. Since
∑∞
k=1

1
(kδ)1+δ

<∞, we can deduce from the

Borel-Cantelli lemma that there exists an Ωi ⊆ Ω with P (Ωi) = 1 such that for any
ε ∈ Ωi, an integer ki = ki(ω, ε) can be found such that∫ t

0

esZ(x(s))dWi(s) +

∫ t

0

∫
Y

logQ(x, u)Ñ(dt, du)

≤ (1 + δ)ekδ log kδ

ε
+
εe−kδ

2

∫ t

0

e2sZ2(x(s))ds
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+
1

εe−kδ

∫ t

0

∫
Y

[eεe
s−kδ logQ(x,u) − 1− εes−kδ logQ(x, u)]λ(du)ds

whenever k ≥ ki, 0 ≤ t ≤ kδ. Substituting this into (4.1), we have

log V (x(t))

≤e−t log V (x(0)) +
(1 + δ)ekδ−t log kδ

ε
+

∫ t

0

es−t[log V (x(s)) +
LV (x(s))

V (x(s))

− 1− ε
2

Z2(x(s))]ds+

∫ t

0

es−t
∫
Y

[logQ(x(s), u)−Q(x(s), u) + 1]λ(du)ds

+
1

εet−kδ

∫ t

0

∫
Y

{[Q(x(s), u)]εe
s−kδ
− 1− εes−kδ logQ(x(s), u)}λ(du)ds

=e−t log V (x(0)) +
(1 + δ)ekδ−t log kδ

ε

+

∫ t

0

es−t[log V (x(s)) +
LV (x(s))

V (x(s))
− 1− ε

2
Z2(x(s))]ds

+
1

εet−kδ

∫ t

0

∫
Y

{εes−kδ(1−Q(x(s), u)) + [Q(x(s), u)]εe
s−kδ
− 1}λ(du)ds.

Next, from the inequality xr−1 ≤ r(x−1), x > 0, 0 < r < 1, for any ω ∈ Ωi
and 0 < ε < 1, 0 ≤ t ≤ kδ with k ≥ ki,

1

εet−kδ

∫ t

0

∫
Y

{εes−kδ(1−Q(x(s), u)) + [Q(x(s), u)]εe
s−kδ
− 1}λ(du)ds

≤ 1

εet−kδ

∫ t

0

∫
Y

{εes−kδ(1−Q(x(s), u)) + εes−kδ[Q(x(s), u)− 1]}λ(du)ds = 0.

It then follows from (3.2) that∫ t

0

es−t[log V (x(s)) +
LV (x(s))

V (x(s))
− 1− ε

2
Z2(x(s))]ds

≤
∫ t

0

es−t[log V (x(s)) + p max
1≤i≤n

bi +
p(p− 1)

2
max
1≤i≤n

σ2
i +

p(p− 1)

2
(1 +H)pλ(Y )

− pλ

‖c‖2
V

1
p ]ds

≤
∫ t

0

es−t[p max
1≤i≤n

bi+
p(p−1)

2
max
1≤i≤n

σ2
i +

p(p−1)

2
(1+H)pλ(Y )−p−p log

λ

‖c‖2
]ds

≤p max
1≤i≤n

bi +
p(p− 1)

2
max
1≤i≤n

σ2
i +

p(p− 1)

2
(1 +H)pλ(Y )− p− p log

λ

‖c‖2
:= K1(p)

where

log V − pλ

‖c‖2
V

1
p = p[log(

λ

‖c‖2
V

1
p )− λ

‖c‖2
V

1
p ]− p log

λ

‖c‖2
≤ −p− p log

λ

‖c‖2

according to the inequality x − 1 − log x ≥ 0,∀x > 0. Thus, for ω ∈ Ωi and
(k − 1)δ ≤ t ≤ kδ with k ≥ ki, we have

log V (x(t))

log t
≤ e−t log V (0)

log(k − 1)δ
+

(1 + δ)eδ log kδ

ε log(k − 1)δ
+

K1(p)

log(k − 1)δ
.
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Supposing that k →∞, we have

lim sup
t→∞

log V (x(t))

log t
≤ (1 + δ)eδ

ε
.

Let δ ↓ 0 and ε→ 1, we have

lim sup
t→∞

log V (x(t))

log t
≤ 1

and

lim sup
t→∞

log ‖x(t)‖
log t

≤ 1

p
.

Hence the proof of this theorem is completed.

5. Extinction

In this section, we present conditions for all species of system (1.2) to be extinct.

Lemma 5.1 ( [14]). Let M(t), t ≥ 0, be a local martingale vanishing at time 0 and
define

ρM (t) :=

∫ t

0

d〈M〉(s)
(1 + s)2

, t ≥ 0,

where 〈M〉(t) := 〈M,M〉(t)is Meyers angle bracket process. Then

lim
t→∞

M(t)

t
= 0 a.s. provided that lim

t→∞
ρM (t) <∞ a.s.

Theorem 5.1. Let assumptions (A) and (B) hold. For any initial value x0 ∈ Rn+,
if

max
1≤i≤n

bi <
1

2
min

1≤i≤n
σ2
i +

(H0 ∧H)2

2(1 +H0 ∨H)2
λ(Y ), (5.1)

the solution of system (1.2) has the property

lim sup
t→∞

log
∑n
i=1 cixi(t)

t
≤ max

1≤i≤n
bi −

1

2
min

1≤i≤n
σ2
i −

(H0 ∧H)2

2(1 +H0 ∨H)2
λ(Y ) < 0 a.s.

where ci is defined as in the assumption (B).

Proof. By Ito,s formula, we have

d log

n∑
i=1

cixi(t) ={

∑n
i=1 cixi(t−)

(
bi+
∑n
j=1 aijxj(t−)

)
∑n
i=1 cixi(t−)

− 1

2

(∑n
i=1 ciσixi(t−)∑n
i=1 cixi(t−)

)2

+

∫
Y

[log(1 +H(x, u))−H(x, u)]λ(du)}dt

+

∑n
i=1 ciσixi(t−)∑n
i=1 cixi(t−)

dWi(t) +

∫
Y

log(1 +H(x, u))Ñ(dt, du).
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It follows from assumption (B), (2.2) and the inequality
∑n
i=1 cixi ≤ ‖c‖‖x‖ that

d log

n∑
i=1

cixi(t)

≤{ max
1≤i≤n

bi −
λ

‖c‖2
n∑
i=1

cixi(t−)− 1

2
min

1≤i≤n
σ2
i −

(H0 ∧H)2

2(1 +H0 ∨H)2
λ(Y )}dt

+

∑n
i=1 ciσixi(t−)∑n
i=1 cixi(t−)

dWi(t) +

∫
Y

log(1 +H(x, u))Ñ(dt, du)

and

log
∑n
i=1 cixi(t)

t
≤

log
∑n
i=1 cixi(0)

t
+ max

1≤i≤n
bi −

λ

‖c‖2
n∑
i=1

cixi −
1

2
min

1≤i≤n
σ2
i

− (H0 ∧H)2

2(1 +H0 ∨H)2
λ(Y ) +

1

t

∫ t

0

∑n
i=1 ciσixi(s)∑n
i=1 cixi(s)

dWi(s)

+
1

t

∫ t

0

∫
Y

log(1 +H(x, u))Ñ(ds, du).

Let M1(t) =
∫ t
0

∑n
i=1 ciσixi(s)∑n
i=1 cixi(s)

dWi(s), which is a real-valued continuous local

martingale, M1(0) = 0 and

lim sup
t→∞

〈M1,M1〉t
t

= lim sup
t→∞

∫ t
0
(
∑n
i=1 ciσixi(s)∑n
i=1 cixi(s)

)2ds

t
≤ max

1≤i≤n
σ2
i .

Then by the strong law of large numbers, we have

lim
t→∞

M1(t)

t
= 0 a.s.

Let M2(t)=
∫ t
0

∫
Y

log(1+H(x, u))Ñ(ds, du), which is a local martingale, M2(0)=
0 and

〈M2〉(t) := 〈M2,M2〉t =

∫ t

0

∫
Y

(log(1 +H(x, u)))2λ(du)ds.

Note

ρM2
(t) : =

∫ t

0

d〈M2〉(s)
(1 + s)2

=

∫ t

0

∫
Y

(log(1 +H(x, u)))2λ(du)

(1 + s)2
ds

≤
∫ t

0

[log2(1 +H) ∨ log2(1−H0)]λ(Y )

(1 + s)2
ds <∞.

Then by Lemma 5.1, we have

lim
t→∞

M2(t)

t
= 0 a.s.

which implies that

lim sup
t→∞

log
n∑
i=1

cixi(t)

t
≤ max

1≤i≤n
bi −

1

2
min

1≤i≤n
σ2
i −

(H0 ∧H)2

2(1 +H0 ∨H)2
λ(Y ) a.s.
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From the assumption (5.1), we get

lim sup
t→∞

log
n∑
i=1

cixi(t)

t
< 0 a.s.

Namely,

lim
t→∞

n∑
i=1

cixi(t) = 0 a.s.

Hence the proof of this theorem is completed.

6. Asymptotic behavior around the equilibrium x∗

of system (1.2)

In this section, we show that the solution of system (1.2) is going around x∗ under
some conditions.

Let B = (b1, · · · , bn)T . Assume that there exists x∗ ∈ Rn+ such that B+Ax∗ = 0.
Then system (1.2) can be written as

dxi(t) = xi(t−)

 n∑
j=1

aij(xj(t−)− x∗j )dt+ σidWi(t) +

∫
Y

Hi(u)Ñ(dt, du)

 .
Theorem 6.1. Let assumptions (A) and (B) hold. For any initial value x0 ∈ Rn+,
the solution of system (1.2) has the property

lim sup
t→∞

1

t

∫ t

0

‖x(s)− x∗‖2ds ≤ K(σ,H0, H) a.s.

where K(σ,H0, H) = 1
2λ

n∑
i=1

cix
∗
i [σ

2
i + (H0∨H)2

(1−H0∧H)2λ(Y )], λ and ci are defined as in

the assumption (B).

Proof. Define a C2-function V : Rn+ → R+ by

V (x) =

n∑
i=1

ci(xi − x∗i − x∗i log
xi
x∗i

),

where ci is defined as in the assumption (B). Applying Ito,s formula, we obtain

dV (x(t)) ={
n∑

i,j=1

ciaij(xi(t−)− x∗i )(xj(t−)− x∗j ) +

n∑
i=1

1

2
cix
∗
i σ

2
i

−
n∑
i=1

cix
∗
i

∫
Y

[log(1 +Hi(u))−Hi(u)]λ(du)}dt

+

n∑
i=1

ciσi(xi(t−)− x∗i )dWi(t)
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+

n∑
i=1

ci

∫
Y

[xi(t−)Hi(u)− x∗i log(1 +Hi(u))]Ñ(dt, du).

By assumption (B) and (2.2), one can show that

dV (x(t)) ≤{−λ‖x(t−)− x∗‖2 +
1

2

n∑
i=1

cix
∗
i [σ

2
i +

(H0 ∨H)2

(1−H0 ∧H)2
λ(Y )]}dt

+

n∑
i=1

ciσi(xi(t−)− x∗i )dWi(t)

+

n∑
i=1

ci

∫
Y

[xi(t−)Hi(u)− x∗i log(1 +Hi(u))]Ñ(dt, du)

and

V (x(t))

t
≤V (x(0))

t
− λ

∫ t
0
‖x(s)− x∗‖2ds

t
+

1

2

n∑
i=1

cix
∗
i [σ

2
i +

(H0 ∨H)2

(1−H0 ∧H)2
λ(Y )]

+

n∑
i=1

ci[
1

t

∫ t

0

σi(xi(s)− x∗i )dWi(s) +
1

t

∫ t

0

∫
Y

xi(s)Hi(u)Ñ(ds, du)

− 1

t

∫ t

0

∫
Y

x∗i log(1 +Hi(u))Ñ(ds, du)].

(6.1)

Let M3(t) =
∫ t
0
σi(xi(s) − x∗i )dWi(s), which is a real-valued continuous local

martingale, M3(0) = 0.
In view of Theorem 4.1, we see that

lim sup
t→∞

log xi(t)

log t
≤ lim sup

t→∞

log ‖x(t)‖
log t

≤ 1

p
, p ≥ 2.

For arbitrary small 0 < ε < 1
2 −

1
p , there exist a constant T = T (ω) and a set Ωε

such that P (Ωε) ≥ 1− ε and for t ≥ T , ω ∈ Ωε, xi(t) ≤ t
1
p+ε. Then,

lim sup
t→∞

〈M3,M3〉t
t

= lim sup
t→∞

∫ t
0
σ2
i (xi(s)− x∗i )2ds

t

≤ lim sup
t→∞

∫ t
0

2σ2
i (x2i (s) + x∗2i )ds

t
<∞.

Let ε→ 0, by the strong law of large numbers, we have

lim
t→∞

M3(t)

t
= 0 a.s.

Let M4(t) =
∫ t
0

∫
Y
xi(s)Hi(u)Ñ(ds, du), which is a local martingale, M4(0) = 0

and

〈M4〉(t) := 〈M4,M4〉t =

∫ t

0

∫
Y

(xi(s)Hi(u))2λ(du)ds.

Note

ρM4
(t) :=

∫ t

0

d〈M4〉(s)
(1 + s)2

=

∫ t

0

∫
Y

(xi(s)Hi(u))2λ(du)

(1 + s)2
ds
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≤λ(Y )[H2
0 ∨H2]

∫ t

0

x2i (s)

(1 + s)2
ds <∞.

Then by Lemma 5.1, we have

lim
t→∞

M4(t)

t
= 0 a.s.

Let M5(t) =
∫ t
0

∫
Y
x∗i log(1 + Hi(u))Ñ(ds, du), which is a local martingale,

M5(0) = 0. In the same way,

lim
t→∞

M5(t)

t
= 0 a.s.

It then follows from (6.1) that

lim sup
t→∞

1

t

∫ t

0

‖x(s)− x∗‖2ds ≤ K(σ,H0, H) a.s.

Hence the proof of this theorem is completed.

7. Persistence

In this section, we show that this system is persistent in mean.

Theorem 7.1. Let assumptions (A) and (B) hold. If x∗i > K
1
2 (σ,H0, H), then

the solution x(t) of system (1.2) with any initial value x0 ∈ Rn+ has the following
property

lim inf
t→∞

1

t

∫ t

0

xi(s)ds ≥ x∗i −K
1
2 (σ,H0, H) > 0 a.s.

where K(σ,H0, H) is defined in Theorem 6.1, so system (1.2) is persistent in mean.

Proof. By the result of Theorem 6.1 and the Holder inequality, one can derive
that

lim sup
t→∞

(
1

t

∫ t

0

‖x(s)− x∗‖ds)2 ≤ lim sup
t→∞

1

t

∫ t

0

‖x(s)− x∗‖2ds ≤ K(σ,H0, H) a.s.

i.e.,

lim sup
t→∞

1

t

∫ t

0

‖x(s)− x∗‖ds ≤ K 1
2 (σ,H0, H) a.s. (7.1)

It then follows from (7.1) and the inequality xi − x∗i ≤ ‖x− x∗‖ that

lim sup
t→∞

1

t

∫ t

0

xi(s)ds ≤ x∗i + lim sup
t→∞

1

t

∫ t

0

‖x(s)−x∗‖ds ≤ x∗i +K
1
2 (σ,H0, H) a.s.

which implies

lim inf
t→∞

1

t

∫ t

0

(xi(s)− x∗i )ds ≥ − lim sup
t→∞

1

t

∫ t

0

‖x(s)− x∗‖ds ≥ −K 1
2 (σ,H0, H) a.s.

By condition x∗i > K
1
2 (σ,H0, H), it is easy to see that

lim inf
t→∞

1

t

∫ t

0

xi(s)ds ≥ x∗i −K
1
2 (σ,H0, H) > 0 a.s.

Hence the proof of this theorem is completed.
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8. Example

Consider the following three species predator-prey chain model

dx1(t) =x1(t)[(b1 − a11x1(t)− a12x2(t))dt+ σ1dW1(t) +

∫
Y

H1(u)Ñ(dt, du)],

dx2(t) =x2(t)[(−b2 + a21x1(t)− a22x2(t)− a23x3(t))dt+ σ2dW2(t)

+

∫
Y

H2(u)Ñ(dt, du)],

dx3(t) =x3(t)[(−b3 + a32x2(t)− a33x3(t))dt+ σ3dW3(t) +

∫
Y

H3(u)Ñ(dt, du)],

(8.1)
where xi(t)(i = 1, 2, 3) denotes the population densities of the species at time t. The
parameters b1, b2, b3, aii(i = 1, 2, 3) are positive constants that stand for intrinsic
growth rate, predator death rate of the second species, predator death rate of the
third species, coefficient of internal competition, respectively. a21, a32 represent
saturated rate of the second and third predator and a12, a23 represent the decrement
rate of the predator to prey. Wi(t)(i = 1, 2, 3) are independent white noises with
Wi(0) = 0, δ2i > 0(i = 1, 2, 3) representing the intensities of the noise. Hi(u)(i =
1, 2, 3) are bounded functions and −H0 ≤ Hi(u) ≤ H (0 < H0 < 1, H > 0).

The matrix A of the model is

A =


−a11 −a12 0

a21 −a22 −a23

0 a32 −a33

 .

Choose C = diag(1, a12a21
, a12a23a21a32

), then

−1

2
(CA+ATC) = diag(a11,

a12a22
a21

,
a12a23a33

a21a32
)

is positive-definite.

If b1 < 1
2 min
1≤i≤n

σ2
i + (H0∧H)2

2(1+H0∨H)2λ(Y ), Theorem 5.1 tells that the solution of

system (1.2) is extinctive with probability one.
It is well known that if b1 − a11

a21
b2 − a11a22+a12a21

a21a32
b3 > 0, then the corresponding

deterministic model has a positive equilibrium x∗ = (x∗1, x
∗
2, x
∗
3). Note that system

(8.1) does not have a positive equilibrium, thus the solution of system (8.1) will
not tend to a fixed positive point. However, Theorem 6.1 shows that the difference
between the solution of system (8.1) and x∗ = (x∗1, x

∗
2, x
∗
3) in time average is only

related with the intensity of the white noise and Lévy noise. The weaker the white
noise and Lévy noise are, the smaller the difference is. If x∗i > K

1
2 (σ,H0, H),

where K(σ,H0, H) is defined in Theorem 6.1, system (8.1) is persistent in mean by
Theorem 7.1.

9. Conclusion

Our aim in this paper is to discuss autonomous Lotka-Volterra systems by Lévy
noise. We analyzed the existence and uniqueness of its global positive solution,
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discussed the boundedness of the pth moment for p ≥ 2 and obtained the pathwise
estimation which is better than that of [2] and [16]. We gave sufficient and neces-
sary conditions for extinction and persistence in the mean. We also discussed the
asymptotic stability of the positive solution of this model, and sufficient conditions
for this are established.
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Math. Anal. Appl., 2014, 410, 750–763.

[17] X. Mao, G. Marion and E. Renshaw, Environmental Brownian noise suppresses
explosions in populations dynamics, Stoch. Proc. Appl., 2002, 97, 95–110.

[18] X. Mao, S. Sabanis and E. Renshaw, Asymptotic behaviour of the stochastic
Lotka-Volterra model, J. Math. Anal. Appl., 2003, 287, 41–156.

[19] X. Mao, Stochastic Differential Equations and Applications, Horwood, Chich-
ester, 1997.

[20] A. Miao, T. Zhang, J. Zhang and C. Wang, Dynamics of a stochastic SIR model
with both horizontal and vertical transmission, J. Appl. Anal. Comput., 2018,
8, 1108–1121.

[21] A. Settati and A. Lahrouz, Stationary distribution of stochastic population
systems under regime switching, Appl. Math. Comput., 2014, 244, 235–243.


	Introduction
	Existence and uniqueness of the positive solution
	 The pth moment boundedness of the solution
	 Asymptotic pathwise estimation
	Extinction
	Asymptotic behavior around the equilibrium x of system (1.2)
	Persistence
	Example
	Conclusion

