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Abstract Two new equivalent forms of the matrix nearness problem are
developed. Some sufficient and necessary conditions for a symmetric matrix
X∗ being a solution of the considered problem are presented. Based on the new
equivalent forms of the above problem and the idea of the alternating direction
method with multipliers (ADMM), we establish two new iterative methods
to compute its solution, and analyze the global convergence of the proposed
algorithms. Numerical results demonstrate the efficiency of our methods. The
development here is an extension of the recent work of Peng, Fang, Xiao and
Du [SpringerPlus, 5:1005, 2016] on the nearness symmetric solution of the
matrix equation AXB = C.
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1. Introduction

Throughout this paper, we will use the following notations. The set of all m × n
real matrices is denoted by Rm×n. SRn×n denotes the set of all symmetric matrices
in Rn×n. For A ∈ Rm×n, AT and A† will denote the transpose and Moore-Penrose
generalized inverse of the matrix A, respectively. The inner product in space Rm×n
is defined by 〈A,B〉 = trace(ATB) for all A,B ∈ Rm×n, and the induced matrix
norm ‖A‖ =

√
〈A,A〉 is the so-called Frobenius norm. Accordingly, Rm×n can be

seen as a real Hilbert space. For A = (aij), B = (bij) ∈ Rm×n, A ◦ B = (aijbij)
denotes the Hadamard product of A and B.

Assume that O is a closed convex subset in a real Hilbert space H and x is a
point in H. It was known that the point in O nearest to x is called the projection
of x onto O and represented by PO(x). More precisely, PO(x) is the solution of the
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problem miny∈O ‖y − x‖H , that is,

‖PO(x)− x‖H = min
y∈O
‖y − x‖H .

Here, ‖·‖H denotes some norm defined in H(see [2,9]). Now, we turn to matrix space
Rm×n. The problem of finding a nearness matrix X∗ in a constraint matrix set to a
given matrix X̄ is refered to as the matrix nearness problem. Since the preliminary
estimation X̄ is frequently obtained from experiments, it may not satisfy the given
restrictions. Thus, it is necessary to find a nearness matrix X∗ in this constraint
matrix set to replace the estimation X̄ [13]. In the area of scientific computing and
engineering applications, including structure design, finite element model updating
and control theory, and so forth, the matrix set is always the (constraint) solution
set or the least square (constraint) solution set of some matrix equations [8, 11].

In recent years, there has been a surge of interest in the research on matrix
nearness problems. Peng et al. [18] constructed an iterative method for solving
symmetric solutions and optimal approximation solution of the system of matrix
equations A1XB1 = C1, A2XB2 = C2. Cai and Chen [6] presented an itera-
tive algorithm for the least squares bisymmetric solutions of the matrix equations
A1XB1 = C1, A2XB2 = C2. Chen et al. [7], based on LSQR Algorithm [17], pro-
posed an matrix based iterative method for solving common symmetric solution or
common symmetric least-squares solution of the pair of matrix equations AXB = E
and CXD = F . In addition, they studied the corresponding matrix nearness prob-
lems. Based on the alternating projection algorithm [16], Duan and Li [10] proposed
a new iterative algorithm to solve the matrix nearness problem associated with the
matrix equations AXB = E, CXD = F . Li et al. [15] applied Dykstra’s alternat-
ing projection algorithm to compute the optimal approximate symmetric positive
semidefinite solution of the matrix equations AXB = E, CXD = F . Based on
the idea of the alternating variable minimization with multiplier (AVMM) method,
Peng et al. [20] developed two iterative methods to solve the nearness symmetric
solution of the matrix equation AXB = C to a given matrix X̃ in the sense of the
Frobenius norm. Ke and Ma [14] applied the unified frame of alternating direction
method of multipliers to solve three classes of matrix equations arising in control
like AXB = E,AXB +CXD = E,and AX2 +BX +C = 0. Peng [19] presented a
matrix iterative method to compute the solutions of the matrix equation AXB = C,
based on LSQR algorithm. Zhang and Nagy [23] presented an alternating direction
method of multipliers to solve a linear ill-posed inverse problem g = Kx+ e, where
K has a Kronecker product structure.

Considering the above introduction, the algorithm of Peng et al. [20] attracted
our interest because of the relatively high efficiency in solving the nearness sym-
metric solution of the matrix equation AXB = C. However, when we deal with
some more complicated computational problems, we need to solve the symmetric
solution of a pair of matrix equations with different high dimension, at this time,
the algorithm of Peng et al. can not be directly used to solve the pair of matrix
equations. Therefore, we try to extend of the idea of Peng et al., in order to obtain
a new efficient algorithm which can be used more widely. In this paper, we consider
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the following matrix nearness problem

min
X∈SRn×n

1
2‖X − X̄‖

2

subject to{
A1XB1 = C1,

A2XB2 = C2,

(1.1)

where X̄ ∈ Rn×n is a given matrix and A1 ∈ Rm1×n, B1 ∈ Rn×p1 , C1 ∈ Rm1×p1 ,
A2 ∈ Rm2×n, B2 ∈ Rn×p2 and C2 ∈ Rm2×p2 are known matrices.

The remainder of this paper is organized as follows: in Section 2, we derive some
necessary and sufficient conditions for the matrix X∗ being a solution of the matrix
nearness problem (1.1). In Section 3, we propose two iterative methods for solving
the matrix nearness problem (1.1). Furthermore, we analyze the global convergence
properties of the new algorithms. In Section 4, some numerical experiments are
provided to show the performance of our methods. Finally, some concluding remarks
are given in Section 5.

2. Two equivalent forms of the matrix nearness
problem (1.1)

In this section, we will give two equivalent constrained optimization problems of
the matrix nearness problem (1.1), and explore the properties of the solutions of
the mentioned constrained optimization problems.

Extending the line of the idea of Peng et al. [20], the matrix nearness problem
(1.1) is equivalent to the following constrained optimization problem

min
X∈SRn×n,Y ∈Rm1×n,Z∈Rm2×n

F (X,Y, Z) = 1
2‖X − X̄‖

2

subject to
A1X − Y = 0,

Y B1 − C1 = 0,

A2X − Z = 0,

ZB2 − C2 = 0

(2.1)

or

min
X∈SRn×n,Y ∈Rn×p1 ,Z∈Rn×p2

F (X,Y, Z) = 1
2‖X − X̄‖

2

subject to
XB1 − Y = 0,

A1Y − C1 = 0,

XB2 − Z = 0,

A2Z − C2 = 0.

(2.2)

Now, we are in position to discuss the properties of the solutions of the con-
strained optimization problems (2.1) and (2.2).
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Theorem 2.1. Matrix triple [X∗ : Y ∗ : Z∗] is a solution of the constrained op-
timization problem (2.1) if and only if there exists matrices M∗ ∈ Rm1×n, N∗ ∈
Rm1×p1 , S∗ ∈ Rm2×n and T ∗ ∈ Rm2×p2 such that the following equalities (2.3-2.9)
hold.

(X∗ − X̄ −AT1M∗ −AT2 S∗) + (X∗ − X̄ −AT1M∗ −AT2 S∗)T = 0, (2.3)

M∗ −N∗BT1 = 0, (2.4)

S∗ − T ∗BT2 = 0, (2.5)

A1X
∗ − Y ∗ = 0, (2.6)

Y ∗B1 − C1 = 0, (2.7)

A2X
∗ − Z∗ = 0, (2.8)

Z∗B2 − C2 = 0. (2.9)

Proof. The proof is inspired by the proof of Theorem 1 in [20].
On one hand, assume that there exists matrices M∗ ∈ Rm1×n, N∗ ∈ Rm1×p1 ,

S∗ ∈ Rm2×n and T ∗ ∈ Rm2×p2 such that the equalities (2.3-2.9) hold. Define

F̄ (X,Y, Z)=F (X,Y, Z)−〈M∗, A1X−Y 〉−〈N∗, Y B1−C1〉−〈S∗, A2X−Z〉−〈T ∗, ZB2−C2〉.

Then, for any matrices U ∈ SRn×n, V ∈ Rm1×n and W ∈ Rm2×n, it follows from
(2.3), (2.4) and (2.5) that

F̄ (X∗ + U, Y ∗ + V,Z∗ +W )

=
1

2
‖X∗+U−X̄‖2−〈M∗, A1(X∗+U)−(Y ∗ + V )〉−〈N∗, (Y ∗+V )B1−C1〉

− 〈S∗, A2(X∗ + U)− (Z∗ +W )〉 − 〈T ∗, (Z∗ +W )B2 − C2〉

=F̄ (X∗, Y ∗, Z∗)+
1

2
‖U‖2+〈X∗−X̄−AT1M∗−AT2 S∗, U〉+〈M∗−N∗BT1 , V 〉

+ 〈S∗ − T ∗BT2 ,W 〉

=F̄ (X∗, Y ∗, Z∗) +
1

2
‖U‖2 +

1

2
〈X∗ − X̄ −AT1M∗ −AT2 S∗

+ (X∗ − X̄ −AT1M∗ −AT2 S∗)T , U〉+ 〈M∗ −N∗BT1 , V 〉+ 〈S∗ − T ∗BT2 ,W 〉

=F̄ (X∗, Y ∗, Z∗) +
1

2
‖U‖2

≥F̄ (X∗, Y ∗, Z∗), (2.10)

where the third equality exploits the fact that 〈A,U〉 = 1
2 〈A + AT , U〉 since U ∈

SRn×n. The above inequality (2.10) implies that the matrix triple [X∗ : Y ∗ :
Z∗] is a global minimizer of the matrix function F̄ (X,Y, Z). Thus, F̄ (X,Y, Z) ≥
F̄ (X∗, Y ∗, Z∗) holds for all X ∈ SRn×n, Y ∈ Rm1×n and Z ∈ Rm2×n, which
together with (2.6), (2.7), (2.8) and (2.9) imply that

F (X,Y, Z)≥F (X∗, Y ∗, Z∗)+〈M∗, A1X−Y 〉−〈N∗, Y B1−C1〉
−〈S∗, A2X−Z〉−〈T ∗, ZB2−C2〉,

from which we can conclude that F (X,Y, Z) ≥ F (X∗, Y ∗, Z∗) holds for all X ∈
SRn×n with A1X − Y = 0, Y B1 −C1 = 0, A2X − Z = 0 and ZB2 −C2 = 0. That
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is, the matrix triple [X∗ : Y ∗ : Z∗] is a solution of the constrained optimization
problem (2.1).

On the other hand, if the matrix triple [X∗ : Y ∗ : Z∗] is a solution of the
constrained optimization problem (2.1), then the matrix triple [X∗ : Y ∗ : Z∗]
definitely satisfies Karush-Kuhn-Tucker (KKT) conditions of the problem (2.1) [4,
Chapter 5], which are

∂L(X,Y, Z,M,N, S, T,H)

∂X
= X − X̄ −AT1M −AT2 S −HT +H = 0, (2.11)

∂L(X,Y, Z,M,N, S, T,H)

∂Y
= M −NBT1 = 0, (2.12)

∂L(X,Y, Z,M,N, S, T,H)

∂Z
= S − TBT2 = 0, (2.13)

A1X − Y = 0, (2.14)

Y B1 − C1 = 0, (2.15)

A2X − Z = 0, (2.16)

ZB2 − C2 = 0, (2.17)

XT −X = 0, (2.18)

where

L(X,Y, Z,M,N, S, T,H)

=
1

2

∥∥X − X̄∥∥2 − 〈M,A1X − Y 〉 − 〈N,Y B1 − C1〉 − 〈S,A2X − Z〉

− 〈T,ZB2 − C2〉 − 〈H,XT −X〉

is the Lagrange function of the convex optimization problem (2.1) in Rn×n×Rm1×n×
Rm2×n ×Rm1×n ×Rm1×p1 ×Rm2×n ×Rm2×p2 ×Rn×n. It follows from (2.11) that

(X − X̄ −AT1M −AT2 S) + (X − X̄ −AT1M −AT2 S)T = 0. (2.19)

Combining (2.12)-(2.19), if the matrix triple [X∗ : Y ∗ : Z∗] is a solution of the
constrained optimization problem (2.1), then there exist matrices M∗ ∈ Rm1×n,
N∗ ∈ Rm1×p1 , S∗ ∈ Rm2×n and T ∗ ∈ Rm2×p2 such that (2.3)-(2.9) hold.

Similarly, we can prove the following Theorem 2.2.

Theorem 2.2. Matrix triple [X∗ : Y ∗ : Z∗] is a solution of the constrained op-
timization problem (2.2) if and only if there exists matrices M∗ ∈ Rn×p1 , N∗ ∈
Rm1×p1 , S∗ ∈ Rn×p2 and T ∗ ∈ Rm2×p2 such that the following equalities (2.20-
2.26) hold.

(X∗ − X̄ −M∗BT1 − S∗BT2 ) + (X∗ − X̄ −M∗BT1 − S∗BT2 )T = 0, (2.20)

M∗ −AT1N∗ = 0, (2.21)

S∗ −AT2 T ∗ = 0, (2.22)

X∗B1 − Y ∗ = 0, (2.23)

A1Y
∗ − C1 = 0, (2.24)

X∗B2 − Z∗ = 0, (2.25)

A2Z
∗ − C2 = 0. (2.26)
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3. Iterative methods to solve the matrix nearness
problem (1.1)

In this section, based on the idea of AVMM method [1], we develop iterative methods
to compute the solutions of the equivalent constrained optimization problems (2.1)
and (2.2), and hence to compute the solution of the matrix nearness problem (1.1).
It should be mentioned here that the AVMM method is the so-called alternating
direction method with multipliers (ADMM) in the field of optimization [12].

For the constrained optimization (2.1), its augmented Lagrangian in SRn×n ×
Rm1×n × Rm2×n × Rm1×n × Rm1×p1 × Rm2×n × Rm2×p2 is

Lα,β,γ,δ(X,Y, Z,M,N, S, T ) =
1

2
‖X − X̄‖2 − 〈M,A1X − Y 〉 − 〈N,Y B1 − C1〉

− 〈S,A2X − Z〉 − 〈T,ZB2 − C2〉+
α

2
‖A1X − Y ‖2

+
β

2
‖Y B1−C1‖2+

γ

2
‖A2X−Z‖2+

δ

2
‖ZB2−C2‖2,

(3.1)
where α, β, γ, δ > 0 are penalty parameters. Based on the idea of ADMM, at each
iteration step, we first alternatively minimizes the augmented Lagrangian func-
tion Lα,β,γ,δ(X,Y, Z,M,N, S, T ) defined as in (3.1) with respect to the variables
X ∈ SRn×n, Y ∈ Rm1×n, Z ∈ Rm2×n, and then update the Lagrange multipliers
M,N,S, T according to the steepest ascent principle [5]. More precisely, we propose
the ADMM-based iterative method for solving the constrained optimization (2.1)
as the Algorithm 1.

Algorithm 1

Step 0: Input the matrices A1, A2, B1, B2, C1, C2, X̄.
Step 1: Choose the initial matrices Y0, Z0,M0, N0, S0, T0 and the parameters
α, β, γ, δ > 0. Set k = 0.
Step 2: Exit if a stopping criterion has been met.
Step 3: Compute

Xk+1 = arg min
X∈SRn×n

Lα,β,γ,δ(X,Yk, Zk,Mk, Nk, Sk, Tk), (3.2)

Yk+1 = arg min
Y ∈Rm1×n

Lα,β,γ,δ(Xk+1, Y, Zk,Mk, Nk, Sk, Tk), (3.3)

Zk+1 = arg min
Z∈Rm2×n

Lα,β,γ,δ(Xk+1, Yk+1, Z,Mk, Nk, Sk, Tk), (3.4)

Mk+1 = Mk − α(A1Xk+1 − Yk+1), (3.5)

Nk+1 = Nk − β(Yk+1B1 − C1), (3.6)

Sk+1 = Sk − γ(A2Xk+1 − Zk+1), (3.7)

Tk+1 = Tk − δ(Zk+1B2 − C2). (3.8)

Step 4: Set k = k + 1 and go to Step 2.

For the constrained optimization (2.2), its augmented Lagrangian in SRn×n ×
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Rn×p1 × Rn×p2 × Rn×p1 × Rm1×p1 × Rn×p2 × Rm2×p2 is

L̄α,β,γ,δ(X,Y, Z,M,N, S, T ) =
1

2
‖X − X̄‖2 − 〈M,XB1 − Y 〉 − 〈N,A1Y − C1〉

− 〈S,XB2 − Z〉 − 〈T,A2Z − C2〉+
α

2
‖XB1 − Y ‖2

+
β

2
‖A1Y −C1‖2+

γ

2
‖XB2−Z‖2+

δ

2
‖A2Z−C2‖2.

(3.9)
Analogously, according to (3.9), we propose the ADMM-based iterative method for
solving the constrained optimization (2.2) as the Algorithm 2.

Algorithm 2

Step 0: Input the matrices A1, A2, B1, B2, C1, C2, X̄.
Step 1: Choose the initial matrices Y0, Z0,M0, N0, S0, T0 and the parameters
α, β, γ, δ > 0. Set k = 0.
Step 2: Exit if a stopping criterion has been met.
Step 3: Compute

Xk+1 = arg min
X∈SRn×n

L̄α,β,γ,δ(X,Yk, Zk,Mk, Nk, Sk, Tk), (3.10)

Yk+1 = arg min
Y ∈Rn×p1

L̄α,β,γ,δ(Xk+1, Y, Zk,Mk, Nk, Sk, Tk), (3.11)

Zk+1 = arg min
Z∈Rn×p2

L̄α,β,γ,δ(Xk+1, Yk+1, Z,Mk, Nk, Sk, Tk), (3.12)

Mk+1 = Mk − α(Xk+1B1 − Yk+1), (3.13)

Nk+1 = Nk − β(A1Yk+1 − C1), (3.14)

Sk+1 = Sk − γ(Xk+1B2 − Zk+1), (3.15)

Tk+1 = Tk − δ(A2Zk+1 − C2). (3.16)

Step 4: Set k = k + 1 and go to Step 2.

For these two algorithms, the iteration kernel involves computing Xk+1, Yk+1

and Zk+1. In what follows, we will probe how to compute Xk+1, Yk+1 and Zk+1.
Firstly, we devote ourselves to compute Xk+1. By straightforward calculations,

Xk+1 in (3.2) can be reformulated as

Xk+1 = arg min
X∈SRn×n

1

2
‖X − X̄‖2 − 〈Mk, A1X − Yk〉+

α

2
‖A1X − Yk‖2

− 〈Sk, A2X − Zk〉+
γ

2
‖A2X − Zk‖2

= arg min
X∈SRn×n

1

2
‖X − X̄‖2 +

α

2

∥∥∥∥A1X −
(
Yk +

1

α
Mk

)∥∥∥∥2
+
γ

2

∥∥∥∥A2X −
(
Zk +

1

γ
Sk

)∥∥∥∥2

= arg min
X∈SRn×n

1

2

∥∥∥∥∥∥∥∥∥


√
αA1

√
γA2

In

X −

√
αYk +Mk/

√
α

√
γZk + Sk/

√
γ

X̄


∥∥∥∥∥∥∥∥∥

2
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= arg min
X∈SRn×n

1

2
‖AX −B‖2, (3.17)

whereA =


√
αA1

√
γA2

In

 ∈ R(m1+m2+n)×n, B =


√
αYk +Mk/

√
α

√
γZk + Sk/

√
γ

X̄

 ∈ R(m1+m2+n)×n.

Similarly, Xk+1 as defined in (3.10) can be expressed as

Xk+1 = arg min
X∈SRn×n

1

2
‖XA−B‖2, (3.18)

where A = [In,
√
αB1,

√
γB2] ∈ Rn×(n+p1+p2), B = [X̄,

√
αYk + Mk/

√
α,
√
γZk +

Sk/
√
γ] ∈ Rn×(n+p1+p2).

In order to solve the problems (3.17) and (3.18), we need the following Lemma
3.1.

Lemma 3.1 ([22]). Given matrix B ∈ Rn×n and Σ = diag(σ1, σ2, · · · , σn) with
σi > 0 (i = 1, · · · , n), then the problem ‖XΣ − B‖2 = min has a unique least
squares symmetric solution in SRn×n with the following expression

X̂ = Φ ◦ (BΣ + ΣBT ),

where Φij = 1
σ2
i+σ

2
j

(1 ≤ i, j ≤ n), Φ = (Φij) ∈ Rn×n.

It follows from the fact that the matrix A in (3.17) is full column rank that the
singular value decomposition (SVD) of the matrix A is

A = U

Σ

0

V T ,
where Σ = diag(σ1, · · · , σn) with σi > 0, i = 1, · · · , n, and U = [U1, U2] ∈
R(m1+m2+n)×(m1+m2+n), V ∈ Rn×n are orthogonal matrices, U1 ∈ R(m1+m2+n)×n.
Therefore, formula (3.17) can be expressed as

Xk+1 = arg min
X∈SRn×n

1

2

∥∥∥∥∥∥U
Σ

0

V TX −B
∥∥∥∥∥∥
2

= arg min
X∈SRn×n

1

2

∥∥∥∥∥∥
Σ

0

V TXV − UTBV
∥∥∥∥∥∥
2

= arg min
X∈SRn×n

1

2

∥∥∥∥∥∥
Σ

0

V TXV −
UT1
UT2

BV
∥∥∥∥∥∥
2

= arg min
X∈SRn×n

1

2
‖ΣV TXV − UT1 BV ‖2

= arg min
X̃∈SRn×n

1

2
‖X̃Σ− B̃T ‖2, (3.19)
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where X̃ = V TXV and B̃ = UT1 BV . According to (3.19) and Lemma 3.1, the
solution of the problem (3.2) can be expressed as

Xk+1 = V (Φ ◦ (ΣB̃ + B̃TΣ))V T .

For the optimization problem (3.18), the matrix A is full row rank, and the SVD
of A is

A = P [Σ, 0]QT ,

where Σ = diag(σ1, · · · , σn) with σi > 0, i = 1, · · · , n, and P ∈ Rn×n, Q =
[Q1, Q2] ∈ R(n+p1+p2)×(n+p1+p2) are orthogonal matrices, Q1 ∈ R(n+p1+p2)×n.
Then similar to the above discussion, Xk+1 in (3.18) can be expressed as

Xk+1 = P (Φ ◦ (B̃Σ + ΣB̃T ))PT ,

where B̃ = PTBQ1.
Then, we focus to compute Yk+1. By straightforward calculations, we can rewrite

Yk+1 in (3.3) as

Yk+1 =arg min
Y ∈Rm1×n

1

2

∥∥∥Y [
√
αIn,

√
βB1]−[

√
αA1Xk+1−Mk/

√
α,
√
βC1+Nk/

√
β]
∥∥∥2

= [
√
αA1Xk+1 −Mk/

√
α,
√
βC1 +Nk/

√
β][
√
αIn,

√
βB1]†,

and Yk+1 in (3.11) as

Yk+1 = arg min
Y ∈Rn×p1

1

2

∥∥∥∥∥∥
√αIn√

βA1

Y −
√αXk+1B1 −Mk/

√
α

√
βC1 +Nk/

√
β

∥∥∥∥∥∥
2

=

√αIn√
βA1

† √αXk+1B1 −Mk/
√
α

√
βC1 +Nk/

√
β

 .
Finally, we change our attention to compute Zk+1. By simple calculations, we

can rewrite Zk+1 in (3.4) as

Zk+1 = arg min
Z∈Rm2×n

1

2

∥∥∥Z[
√
γIn,

√
δB2]− [

√
γA2Xk+1 − Sk/

√
γ,
√
δC2 + Tk/

√
δ]
∥∥∥2

= [
√
γA2Xk+1 − Sk/

√
γ,
√
δC2 + Tk/

√
δ][
√
γIn,

√
δB2]†,

and Zk+1 in (3.12) as

Zk+1 = arg min
Z∈Rn×p2

1

2

∥∥∥∥∥∥
√γIn√

δA2

Z −
√γXk+1B2 − Sk/

√
γ

√
δC2 + Tk/

√
δ

∥∥∥∥∥∥
2

=

√γIn√
δA2

† √γXk+1B2 − Sk/
√
γ

√
δC2 + Tk/

√
δ

 .
In the following, we will probe into the global convergence of Algorithm 1 and 2.
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Theorem 3.1. Let (X∗, Y ∗, Z∗,M∗, N∗, S∗, T ∗) be a KKT point for the constrained
optimization problem (2.1), that is, the matrices X∗, Y ∗, Z∗, M∗, N∗, S∗ and T ∗

satisfy conditions (2.3-2.9). Let matrix sequences
{Xk}, {Yk}, {Zk}, {Mk}, {Nk}, {Sk}, {Tk} be generated by Algorithm 1. Define

Pk+1 = A1Xk+1 − Yk+1, Qk+1 = Yk+1B1 − C1, (3.20)

Uk+1 = A2Xk+1 − Zk+1, Vk+1 = Zk+1B2 − C2, (3.21)

Ψk = α‖Yk − Y ∗‖2 +
1

α
‖Mk −M∗‖2 +

1

β
‖Nk −N∗‖2

+ γ‖Zk − Z∗‖2 +
1

γ
‖Sk − S∗‖2 +

1

δ
‖Tk − T ∗‖2, (3.22)

then, we have

Ψk+1 ≤ Ψk−β‖Qk+1‖2−δ‖Vk+1‖2−α‖Pk+1+Yk+1−Yk‖2−γ‖Uk+1+Zk+1−Zk‖2.
(3.23)

Proof. The proof is motivated by the proof of Theorem 3 in [20].
Since (X∗, Y ∗, Z∗,M∗, N∗, S∗, T ∗) is a KKT point of the constrained optimiza-

tion problem (2.1), it is a saddle point of

L(X,Y, Z,M,N, S, T ) =
1

2
‖X − X̄‖2 − 〈M,A1X − Y 〉 − 〈N,Y B1 − C1〉

− 〈S,A2X − Z〉 − 〈T,ZB2 − C2〉,

the Lagrange function of the constrained optimization problem (2.1) in SRn×n ×
Rm1×n ×Rm2×n ×Rm1×n ×Rm1×p1 ×Rm2×n ×Rm2×p2 . It follows from the saddle
point theorem [3] that

L(X∗, Y ∗, Z∗,M,N, S, T ) ≤ L(X∗, Y ∗, Z∗,M∗, N∗, S∗, T ∗)

≤ L(X,Y, Z,M∗, N∗, S∗, T ∗)

for all X,Y, Z,M,N, S and T . Thus, we have

L(X∗, Y ∗, Z∗,M∗, N∗, S∗, T ∗) ≤ L(Xk+1, Yk+1, Zk+1,M
∗, N∗, S∗, T ∗). (3.24)

It follows from (2.6), (2.7), (2.8), (2.9), (3.20), (3.21) and (3.24) that

1

2
‖X∗ − X̄‖2 − 1

2
‖Xk+1 − X̄‖2

≤− 〈M∗, Pk+1〉 − 〈N∗, Qk+1〉 − 〈S∗, Uk+1〉 − 〈T ∗, Vk+1〉. (3.25)

On the other hand, it follows from the first-order optimality condition of the
optimization problem (3.2) and the iterative relations (3.5) and (3.7) that

0 =[Xk+1 − X̄ −AT1Mk + αAT1 (A1Xk+1 − Yk)−AT2 Sk + γAT2 (A2Xk+1 − Zk)]

+ [Xk+1 − X̄ −AT1Mk + αAT1 (A1Xk+1 − Yk)−AT2 Sk + γAT2 (A2Xk+1 − Zk)]T

=[Xk+1 − X̄ −AT1Mk+1 − αAT1 (Yk − Yk+1)−AT2 Sk+1 − γAT2 (Zk − Zk+1)]

+ [Xk+1 − X̄ −AT1Mk+1 − αAT1 (Yk − Yk+1)−AT2 Sk+1 − γAT2 (Zk − Zk+1)]T .
(3.26)
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From (3.26), we can conclude that

Xk+1 =arg min
X∈SRn×n

1

2
‖X−X̄‖2−〈Mk+1−αYk+1+αYk, A1X〉−〈Sk+1−γZk+1+γZk, A2X〉,

from which we have

1

2
‖Xk+1−X̄‖2−〈Mk+1−αYk+1+αYk, A1Xk+1〉−〈Sk+1−γZk+1+γZk, A2Xk+1〉

≤1

2
‖X∗−X̄‖2−〈Mk+1−αYk+1+αYk, A1X

∗〉−〈Sk+1−γZk+1+γZk, A2X
∗〉.

(3.27)

In addition, from the first-order optimality condition of the problem (3.3) and
the iteration relations (3.5) and (3.6), we have

0 = Mk −NkBT1 − α(A1Xk+1 − Yk+1) + β(Yk+1B1 − C1)BT1 = Mk+1 −Nk+1B
T
1 ,

(3.28)
which implies that

Yk+1 = arg min
Y ∈Rm1×n

〈Mk+1 −Nk+1B
T
1 , Y 〉. (3.29)

From (3.29), we have

〈Mk+1 −Nk+1B
T
1 , Yk+1〉 ≤ 〈Mk+1 −Nk+1B

T
1 , Y

∗〉. (3.30)

Similarly, from the first-order optimality condition of the problem (3.4) and the
iteration relations (3.7) and (3.8), we have

0 = Sk−TkBT2 −γ(A2Xk+1−Zk+1)+δ(Zk+1B2−C2)BT2 = Sk+1−Tk+1B
T
2 , (3.31)

which implies that

Zk+1 = arg min
Z∈Rm2×n

〈Sk+1 − Tk+1B
T
2 , Z〉. (3.32)

By (3.32), we obtain

〈Sk+1 − Tk+1B
T
2 , Zk+1〉 ≤ 〈Sk+1 − Tk+1B

T
2 , Z

∗〉. (3.33)

Adding the inequalities (3.27), (3.30) and (3.33), and using (2.6), (2.7), (2.8)
and (2.9), we can conclude that

1

2
‖Xk+1 − X̄‖2 −

1

2
‖X∗ − X̄‖2

≤〈Mk+1, Pk+1〉+ 〈Nk+1, Qk+1〉 − α〈Yk+1 − Yk, Pk+1 + Yk+1 − Y ∗〉
+〈Sk+1, Uk+1〉+〈Tk+1, Vk+1〉−γ〈Zk+1−Zk, Sk+1+Zk+1−Z∗〉. (3.34)

Combining the inequalities (3.25) and (3.34), we can derive that

〈M∗−Mk+1, Pk+1〉+〈N∗−Nk+1, Qk+1〉+〈S∗−Sk+1, Uk+1〉+ 〈T ∗−Tk+1, Vk+1〉
+ α〈Yk+1 − Yk, Pk+1 + Yk+1 − Y ∗〉+ γ〈Zk+1 − Zk, Sk+1 + Zk+1 − Z∗〉 ≤ 0.

(3.35)
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Noting that

2〈M∗ −Mk+1, Pk+1〉+ 2〈N∗ −Nk+1, Qk+1〉

=
1

α

(
‖Mk+1 −M∗‖2 − ‖Mk −M∗‖2

)
+ α‖Pk+1‖2

+
1

β

(
‖Nk+1 −N∗‖2 − ‖Nk −N∗‖2

)
+ β‖Qk+1‖2,

(3.36)

2〈S∗ − Sk+1, Uk+1〉+ 2〈T ∗ − Tk+1, Vk+1〉

=
1

γ

(
‖Sk+1 − S∗‖2 − ‖Sk − S∗‖2

)
+ γ‖Uk+1‖2

+
1

δ

(
‖Tk+1 − T ∗‖2 − ‖Tk − T ∗‖2

)
+ δ‖Vk+1‖2,

(3.37)

α‖Pk+1‖2 + 2α〈Yk+1 − Yk, Pk+1 + Yk+1 − Y ∗〉
=α‖Pk+1 + Yk+1 − Yk‖2 + α

(
‖Yk+1 − Y ∗‖2 − ‖Yk − Y ∗‖2

) (3.38)

and

γ‖Uk+1‖2 + 2α〈Zk+1 − Zk, Uk+1 + Zk+1 − Z∗〉
=γ‖Uk+1 + Zk+1 − Zk‖2 + γ

(
‖Zk+1 − Z∗‖2 − ‖Zk − Z∗‖2

)
. (3.39)

Combing the inequality (3.35) with the equalities (3.36), (3.37), (3.38), (3.39) and
the definition of Ψk in (3.22), we have

Ψk+1 ≤ Ψk−β‖Qk+1‖2−δ‖Vk+1‖2−α‖Pk+1 + Yk+1 − Yk‖2 − γ‖Uk+1+Zk+1−Zk‖2,

which means that the inequality (3.23) holds. The proof is completed.
Theorem 3.1 implies that the sequence {Ψk} is a nonnegative monotone decreas-

ing with low bounded. Hence, the limit of the sequence {Ψk} exists which means
that the limit of the sequences {Yk}, {Zk}, {Mk}, {Nk}, {Sk} and {Tk} exist, and
Qk+1 → 0, Vk+1 → 0, Pk+1 + Yk+1 − Yk → 0, Uk+1 + Zk+1 − Zk → 0 as k → ∞.
Furthermore, from Pk+1 + Yk+1 − Yk = AXk+1 − Yk → 0, we conclude that the
limit of the sequence {Xk} exists. Assume that Xk → X∗, Yk → Y ∗, Zk → Z∗,
Mk →M∗, Nk → N∗, Sk → S∗ and Tk → T ∗ as k →∞, then (3.26), (3.28), (3.31)
are hold by taking limit respectively. These imply that X∗,M∗, N∗, T ∗, S∗ satisfy
(2.3), (2.4) and (2.5). In addition, X∗, Y ∗ and Z∗ satisfy conditions (2.6)-(2.9)
since Pk+1 + Yk+1 − Yk → 0, Qk+1 → 0, Uk+1 + Zk+1 − Zk → 0 and Vk+1 → 0 as
k →∞. Noting that Xk ∈ SRn×n, so is X∗. In conclusion, it follows from Theorem
2.1 that the matrix triple [X∗, Y ∗, Z∗] is a solution of the problem (2.1), and so
is a solution of the matrix nearness problem (1.1). In addition, noting that the
subjective function of (2.1) is strictly convex and the corresponding constrained set
is closed and convex, the matrix triple [X∗, Y ∗, Z∗] is the unique solution of (2.1).
Hence the sequence generated by Algorithm 1 converges to the unique solution of
the matrix nearness problem (1.1). These results can be described as the following
Theorem 3.2.

Theorem 3.2. Assume that {Xk} is a sequence generated by Algorithm 1 with any
initial matrices Y0, Z0, M0, N0, S0 and T0 and parameters α, β, γ, δ > 0, then
the sequence {Xk} converges to the unique solution of the matrix nearness problem
(1.1).
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For Algorithm 2, we have similar results and we omit the detail here in order to
save space.

4. Numerical experiments

In this section, we conduct some numerical experiments to illustrate the feasibili-
ty and effectiveness of the ADMM-based methods for solving the matrix nearness
problem (1.1) in the sense of iteration numbers(denoted by ’IT’) and the iteration
CPU time (denoted by ’CPU’). In our numerical experiments, we compare Algo-
rithm 1 and 2 with the method proposed in Peng et al. [18], denoted by Algorithm
PENG CG. Our computations are all implemented in MATLAB 6.5.1 with a ma-
chine precision 2.22×10−16 on a personal computer with 2.70GHz central processing
unit (Intel(R) Core(TM) i7-7500U), 8GB memory and Windows 10 operating sys-
tem. The stopping criterion for the tested methods is√

‖A1XkB1 − C1‖2 + ‖A2XkB2 − C2‖2 ≤ ε,

or the maximum iterations numbers kmax = 15000 is exceeded. Here, ε is a given
tolerance and ε = 10−8 in this paper.

We set parameters α = β = γ = δ = 10 and the initial matrices Y0, Z0,M0,
N0, S0, T0 are chosen as zeros matrices in the Algorithm 1 and 2. X̂1 in Algorithm
PENG CG is chosen as zero matrix. X̄ in the Algorithm 1 and 2 is chosen as
random symmetric matrix, which is the same with X0 in Algorithm PENG CG.

For the three methods, the matrices A1, A2, B1, B2, X̄, C1, C2 are given as follows
(in MATLAB style): A1 = randn(m1, n), A2 = randn(m2, n), B1 = randn(n, p1),
B2 = randn(n, p2), X̄ = randn(n, n), C1 = A1X00B1, C2 = A2X00B2 with X00 =
W +WT and W = randn(n, n). Here the intention of choosing matrices C1, C2 in
this way is to ensure that the matrix nearness problem (1.1) is solvable. As shown
in Table 1, we exhibit the average iteration CPU time(in seconds) and the average
iteration numbers based on 12 tests. We repeated 10 times for each test with the
same randomly generated matrices A1, A2, B1, B2, C1, C2 according to each problem
size.

After analysing the results exhibited in Table 1 and many other unreported tests
for the problem (1.1), we get the following findings: When m1,m2, p1, p2 � n, both
iteration CPU time and iteration numbers of Algorithm 1 and 2 are less than those
of Algorithm PENG CG. That is to say, Algorithm 1 and 2 are more effective than
Algorithm PENG CG. But when the values of m1,m2, p1, p2, n are close to each
other, Algorithm PENG CG is obviously more effective than Algorithm 1 and 2.
When m1 > p1,m2 > p2 and m1,m2 � n, Algorithm 2 performs most effectively,
and Algorithm 1 gets the most excellent performance when m1 < p1,m2 < p2 and
p1, p2 � n.

5. Conclusions

In this paper, by proposing two new equivalent forms of the matrix nearness prob-
lem (1.1), we developed two ADMM-based iterative methods to solve it. The global
convergence of the proposed methods are studied. Numerical results demonstrate
that, in most situations, our methods are more effective than the method proposed
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Table 1. Average iteration CPU time and average iteration numbers for three methods

m1, n, p1,m2, n, p2 Algorithm 1 Algorithm 2 PENG CG

IT(CPU) IT(CPU) IT(CPU)

60,40,60,40,40,40 95(0.2816) 93(0.2920) 87(0.0962)

80,80,80,80,80,80 180(1.9082) 177(1.9588) 135(0.4246)

100,60,400,80,60,400 12(0.2119) 31(0.8040) 53(1.1200)

100,80,500,100,80,600 12(0.4280) 40(2.2092) 64(2.8196)

200,80,600,100,80,600 12(0.6145) 34(2.5548) 48(3.5943)

200,200,200,200,200,200 169(22.7652) 171(24.4079) 153(7.2288)

400,80,100,400,80,100 39(1.5937) 13(0.3860) 65(0.9228)

400,80,400,500,80,600 13(1.6541) 13(1.7225) 32(5.3922)

500,80,100,500,80,100 38(1.9574) 12(0.4155) 64(1.1279)

500,80,500,500,80,500 13(1.7635) 13(1.7453) 31(5.4235)

600,80,600,500,80,500 12(2.0026) 12(2.0268) 30(6.9631)

600,100,200,500,100,200 17(1.9751) 12(1.0496) 49(2.7036)

in Peng et al. [18]. In addition, the new methods can abstractly be further ex-
tended to solve the nearness symmetric solution associated with matrix equations
(A1XB1, · · · , AkXBk) = (C1, · · · , Ck) with k ≥ 3 [21].

Acknowledgments. The authors are grateful to both reviewers and the editors
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