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ZERO-HOPF BIFURCATION IN NUCLEAR
SPIN GENERATOR SYSTEM∗

Renxiang Shi1,† and Jiang Yu2

Abstract By computing we obtain that P1(0, 0, 1) is a zero-Hopf equilibrium
point of nuclear spin generator system. We prove that there exist two families
of nuclear spin generator system which has the zero-Hopf equilibrium point
P1(0, 0, 1). Furthermore we prove that a limit cycle bifurcated from P1(0, 0, 1)
by averaging method of one order and second order respectively.
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1. Introduction

In this paper, we study zero-Hopf bifurcation of nuclear spin generator system:

ẋ = −βx+ y, ẏ = −x− βy(1− kz), ż = β(α(1− z)− ky2) (1.1)

where x, y, z are the components of the nuclear magnetization vector in the X,Y, Z
direction respectively , α ∈ (0, 1] for physical consideration β ≥ 0, βα ≥ 0 are linear
damping term, βk is proportional to the amplifier gain in the voltage feedback.
It was first introduced by Sherman [12] for describing the nuclear spin generator,
he give condition on existence, uniqueness and stability of periodic solution within
some parametric region. Besides there have been many works about the dynamics
of this system. In Li etc [8], the author discuss the Hopf bifurcation by Liapunov-
Schmidt reduction. In Valls [14], the author study the integrability of system (1.1).
In [13,15], chaos in nuclear spin generator system is discussed. In [7,10], the authors
study the synchronization problem of this system.

Zero-Hopf equilibrium point refer to the equilibrium point of 3-dimensional au-
tonomous differential system which has eigenvalue ±iω, 0. Generally zero-Hopf
bifurcation refer to 2-parameter unfolding of a 3-dimensional autonomous differen-
tial system at zero-Hopf equilibrium point. As the two parameters varies in a small
neighborhood of the isolated equilibrium point, the unfolding has different dynam-
ics, where the isolated equilibrium point have the eigenvalues ±iω, 0 when the two
parameters take zero value. As we know, one hand classical Hopf bifurcation refer
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to the case that eigenvalue can not be zero, so it is not feasible to zero-Hopf equi-
librium, on the other hand averaging method is matured tool for finding periodic
solution of nonlinear system, for example, Han [6] study the maximum number of
periodic solution of piecewise smooth periodic equation by the first order average.

Recently by averaging method, there exist many works about zero-Hopf bifurca-
tion [2–5, 9], several kinds of system are discussed such as Chua’s system, Fizhugh
system and Lorenz systems. But in my opinion, there is not work about zero-Hopf
bifurcation of nuclear spin generator system, so we should analysis the zero-Hopf
bifurcation of this system with averaging method.

The averaging method is introduced by Lagrange and Laplace. Faton, Krylov
and Bogolinbov develop the method both in practice and theory. For convenience,
we should give the description of averaging theory in section 3, which is similar to
the appendix in Euzebio etc [4].

By calculating, if α(β2(k− 1)− 1) > 0 hold, nuclear spin generator system (1.1)
has the equilibrium point P1 = (0, 0, 1) and other equilibriums point:

P2(

√
α(β2(k−1)−1)

β2k ,

√
α(β2(k−1)−1)

βk , β
2+1
β2k ), P3(−

√
α(β2(k−1)−1)

β2k ,−
√
α(β2(k−1)−1)

βk , β
2+1
β2k )

We shall only discuss the zero-Hopf bifurcation about equilibrium P1(0, 0, 1)
since we conclude that the points P2 and P3 are not zero-Hopf equilibrium point.

In the following we should give the main results of this paper. First we show
that P1(0, 0, 1) is a zero-Hopf equilibrium point.

Proposition 1.1. There are two families of nuclear spin generator system, where
P1(0, 0, 1) is a zero-Hopf equilibrium point, namely (1) β 6= 0, α = 0, k = 2 (2) β =
0.

Remark 1.1. when β = 0, system (1.1) become

ẋ = y, ẏ = −x, ż = 0, (1.2)

so system (1.2) has a family no-isolated zero-Hopf equilibrium point (0, 0, b)(b ∈ R).

In the following theorems, we study the zero-Hopf bifurcation producing periodic
orbit from zero-Hopf equilibrium point (0, 0, 1).

Theorem 1.1. Let β =
√

1− ω2 + β1ε, α = α1ε, k = 2 + k1ε. If 1 − ω2 > 0,
α1k1 > 0. The nuclear spin generator system (1.1) have a zero-Hopf bifurcation at
equilibrium (0, 0, 1) and a limit cycle appears at this equilibrium point (0, 0, 1) when
ε > 0 sufficiently small.

Theorem 1.2. Let β = β1ε+ β2ε
2, α = α0 + α1ε+ α2ε

2 and k = k0 + k1ε+ k2ε
2,

if α0 = 0,k0 = 2, α1k1 > 0 and β1 6= 0. The nuclear spin generator system (1.1)
have a zero-Hopf bifurcation at equilibrium (0, 0, 1) and a limit cycle appear at this
equilibrium (0, 0, 1) when ε > 0 sufficiently small.

In section 2, Proposition 1.1, Theorems 1.1 and 1.2 are proved respectively. In
the appendix we give the averaging theory of first and second order.

2. The proof of the main results

In this section we give the proofs of the results presented in section 1.
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Proof of proposition 1.1. The characteristic polynomial of linear part of system
(1.1) at the singular point (0, 0, 1) is

p1 = λ3 + β(−k + α+ 2)λ2 + (β2(−kα− k + 2α+ 1) + 1)λ+ βα(β2(−k + 1) + 1).

Imposing that p1(λ) = λ(λ2+ω2). Hence β(−k+α+2) = 0, βα(β2(−k+1)+1) = 0,
β2(−kα− k + 2α+ 1) + 1 = ω2,
so we have

(i) β 6= 0, α = 0, k = 2, 1− β2 = ω2;

(ii) β = 0, 1 = ω2;

(iii) β 6= 0, α 6= 0, k = α+ 2, β2(−k + 1) + 1 = 0, β2(−kα− k + 2α+ 1) + 1 = ω2.

Form (iii), we obtain

β2(−kα− k + 2α+ 1) + 1 = ω2 = − (k − 2)2

k − 1
< 0,

which is a contradiction for k− 1 = α+ 2 > 0, so statement (1) and (2) follows.

Proof of theorem 1.1. Let

β =
√

1− ω2 + εβ1, α = εα1, k = 2 + εk1

with ε > 0 sufficiently small, system (1.1) becomes
ẋ = −(

√
1− ω2 + εβ1)x+ y,

ẏ = −x− (
√

1− ω2 + εβ1)y + (2 + εk1)(
√

1− ω2 + β1ε)zy,

ż = −(2 + εk1)(
√

1− ω2 + εβ1)y2 − εα1(
√

1− ω2 + εβ1)z + εα1(
√

1− ω2 + εβ1).

(2.1)
First we translate equilibrium (0, 0, 1) to origin by x = X, y = Y, z = Z + 1.

Then do the rescaling of variables X = εU , Y = εV , Z = εW , system (2.1) becomes
U̇ = −

√
1− ω2U + V + εF11(U, V,W ),

V̇ = −U +
√

1− ω2V + εF21(U, V,W ) + ε2F22(U, V,W ) + ε3F23(U, V,W ),

Ẇ = εF31(U, V,W ) + ε2F32(U, V,W ) + ε3F33(U, V,W ),

(2.2)
where

F11=−β1U,

F21=V (β1+
√

1−ω2(2W+k1)), F22 =V (W (k1
√

1−ω2+2β1)+β1k1), F23 =V β1k1W,

F31=−
√

1−ω2(2V 2+α1W ), F32 =−(V 2(2β1+k1
√

1−ω2)+β1α1W ), F33 =−β1k1V 2,

when ε = 0, we shall write the linear part at the origin of (2.2) into real Jordan
normal form 

0 −ω 0

ω 0 0

0 0 0

 .
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For doing that we do the linear change of variables

(U, V,W )> = P (u, v, w)>, (2.3)

where

P =


−ω
√

1− ω2 0

0 1 0

0 0 1

 ,

system (2.2) becomes 
u̇ = −vω + εf11(u, v, w) +O(ε2),

v̇ = uω + εf21(u, v, w) +O(ε2),

ẇ = εf31(u, v, w) +O(ε2),

(2.4)

where

f11(u, v, w) = −β1u+ v(
1

ω
(2β1

√
1− ω2 + k1 + 2w)− ω(k1 + 2w)),

f21(u, v, w) = vβ1 + v
√

1− ω2(k1 + 2w),

f31(u, v, w) = −(α1w + 2v2)
√

1− ω2.

Writing system (2.4) in cylindrical coordinates (θ, r, w) by u = r cos θ, v = r sin θ
and w = w, then we take θ as independent variable:

dr
dθ = εR11(θ, r, w) +O(ε2),

dw
dθ = εR12(θ, r, w) +O(ε2),

(2.5)

where

R11(θ, r, w) =
1

ω
(−rβ1(sin2 θ − cos2 θ) + r

√
1− ω2 sin2 θ(k1 + 2w)

+ r sin θ cos θ(
1

ω
(k1 + 2w + 2β

√
1− ω2)− ω(k1 + 2w))),

R12(θ, r, w) = −
√

1− ω2

ω
(wα1 + 2r2 sin2 θ).

Denote t=θ, ~x=(r, w)∈(0,+∞)×R, T =2π and ~R1(θ, r, w)=(R11(θ, r, w), R12(θ, r, w)).

Then apply the averaging Theorem 3.1 shown in Appendix, we obtain the averaging
function of first order

~R10(r, w) = (R101(r, w), R102(r, w)),

where

R101(r, w) =
1

2π

∫ 2π

0

R11(θ, r, w)dθ =
r
√

1− ω2(k1 + 2w)

2ω
,
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R102(r, w) =
1

2π

∫ 2π

0

R12(θ, r, w)dθ = −
√

1− ω2(r2 + wα1)

ω
.

Then system R101(r, w) = R102(r, w) = 0 have an solution (r∗, w∗) with r∗ > 0,
where

(r∗, w∗) =

(√
k1α1

2
,−k1

2

)
,

the solution exist if α1k1 > 0. It is easy to verify that

A :=
∂(R101, R102)

∂(r, w)
|(r,w)=(r∗,w∗) =

 0

√
2α1k1(1−ω2)

2ω

−
√

2α1k1(1−ω2)

ω −α1

√
1−ω2

ω

 ,

which implies the Jacobian (3.2) take the value det(A) = (1−ω2)k1α1

ω2 6= 0.

The rest proof of the theorem 1.1 follows immediately from Theorem 3.1, if
we show that periodic solution corresponding to equilibrium (r∗, w∗) provides a
periodic orbit bifurcated from the origin of system (2.2) at ε > 0 sufficiently small.

Theorem 3.1 guarantees for ε 6= 0 sufficiently small, the existence of a periodic
orbit (r(θ, ε), w(θ, ε)) corresponding to the point (r∗, w∗) for system (2.5), such that
(r(0, ε), w(0, ε)) → (r∗, w∗) when ε → 0. So system (2.4) has a periodic solution
(u(θ, ε) = r(θ, ε) cos θ, v(θ, ε) = r(θ, ε) sin θ, w(θ, ε)) when ε sufficiently small. Con-
sequently, system (2.2) has the period solution (U(θ), V (θ),W (θ)) obtained through
the change of variables (2.3). Finally, for ε 6= 0 sufficiently small, system (2.1) has
a period solution (x(θ, ε), y(θ, ε), z(θ, ε) = εU(θ), εV (θ), εW (θ) + 1) which goes to
the (0, 0, 1) when ε → 0. Thus it is a periodic solution starting at the zero-Hopf
equilibrium point (0, 0, 1) when ε = 0 sufficiently small. So we complete the proof
of Theorem 1.1.

Proof of theorem 1.2. Let

β = β1ε+ β2ε
2, α = α0 + α1ε+ α2ε

2, k = k0 + k1ε+ k2ε
2,

with ε > 0 sufficiently small, system (1.1) becomes



ẋ = −(β1ε+ β2ε
2)x+ y,

ẏ = −x− (β1ε+ β2ε
2)y + (k0 + k1ε+ k2ε

2)(β1ε+ β2ε
2)zy,

ż = (α0 + α1ε+ α2)(β1ε+ β2ε
2)− (α0 + α1ε+ α2ε

2)(β1ε+ β2ε
2)z

− (k0 + k1ε+ k2ε
2)(β1ε+ β2ε

2)y2.

(2.6)

The linear part of system (2.6) has real Jordan normal form when ε = 0, so there
is no need for rescaling this system. But for making the computing more easy, we
translating (0, 0, 1) to origin by x = X, y = Y, z = Z + 1 and doing the rescaling
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variables (X,Y, Z) = (εU, εV, εW ), we obtain

U̇ = V + εG11(U, V,W ) + ε2G12(U, V,W ),

V̇ = −U + εG21(U, V,W ) + ε2G22(U, V,W ) + ε3G23(U, V,W )

+ ε4G24(U, V,W ) + ε5G25(U, V,W )

Ẇ = εG31(U, V,W ) + ε2G32(U, V,W ) + ε3G33(U, V,W ) + ε4G34(U, V,W )

+ ε5G35(U, V,w),

(2.7)

where

G11(U, V,W ) = −β1U,G12(U, V,W ) = −β2U,
G21(U, V,W ) = β1V (k0 − 1),

G22(U, V,W ) = V (β1(k1 + k0W ) + β2(k0 − 1)),

G23(U, V,W ) = V (β2(k0W + k1) + β1(k1W + k2)),

G24(U, V,W ) = V (k1β2W + k2(β1W + β2)),

G25(U, V,W ) = k2β2VW,

G31(U, V,W ) = −β1α0W,

G32(U, V,W ) = −β2α0W − β1(α1W + k0V
2),

G33(U, V,W ) = −(β2(α1W + k0V
2) + β1(k2V

2 + α2W )),

G34(U, V,W ) = −(β1k2V
2 + β2(−α2W + k1V

2)),

G35(U, V,W ) = −β2k2V 2,

when ε = 0, the linear part at origin of (2.7) has real Jordan normal form
0 1 0

−1 0 0

0 0 0

 .

We write system (2.7) into cylindrical coordinate (θ, r, w) by U = r cos θ, V =
r sin θ,W = w, and then take θ as new independent variable:

dr
dθ = εR11(θ, r, w) + ε2R21(θ, r, w) +O(ε3),

dw
dθ = εR12(θ, r, w) + ε2R22(θ, r, w) +O(ε3),

(2.8)

where

R11(r, w)= β1r(1− k0 + k0 cos2 θ), R12(r, w) = α0β1w,

R21(r, w)=r(β2
1k0 sin θ cos θ(1−k0 sin2θ)−sin2θ(k1β1+k0β2+β1k0w−β2)+β2 cos2θ),

R22(r, w)= β1(α1w + β1α0k0w sin θ cos θ + k0r
2 sin2 θ) + α0β2w.

From Theorem 3.1, we have the averaging function

(R101(r, w), R102(r, w)) = (rβ1(1− k0
2

), α0β1w).
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If k0 6= 2, from the equation (R101(r, w), R102(r, w)) = 0, we have r = 0. It is not
proper because r must be positive. In order to apply the averaging of second order,
we need R101 ≡ 0 and R102 ≡ 0. So we take k0 = 2 and α0 = 0. From Theorem 3.1
in Appendix, we have

R201(r, w) = −1

4
β1r(2k1 + 4w),

R202(r, w) = β1(r2 + α1w).

The equation R201(r, w) = R202(r, w) = 0 has a solution (
√

k1α1

2 ,−k12 ) when k1α1 >

0. In this situations the Jacobian is 0 −
√
2
2 β1
√
k1α1

2β1
√
k1α1 β1α1

 .

Then its Jacobian(3.2) takes the value β2
1α1k1 6= 0. The rest of the proof of theorem

1.2 is similar to Theorem 1.1.

Remark 2.1. We give the description about stability of bifurcated periodic solution
in Appendix.

3. Appendix

In this appendix, we give the averaging theory of first and second order, which is
also used for finding period solutions in nonlinear differential equation. In Sanders
etc [11], we could see more about averaging theory, besides we could finding proof
of averaging theory in Buica etc [1].

Theorem 3.1. Consider the differential system

ẋ(t) = εR1(t, x) + ε2R2(t, x) + ε3R3(t, x, ε) (3.1)

where R1, R2 : R × D → Rn, R3 : R × D × (−εR1 , εR1) → Rn are continuous
function, T -period in the first variable. D is an open subset of Rn, we assume the
hypotheses hold.

(i) R1(t, .), R2(t, .) ∈ C1(D) for all t ∈ R, R1, R2, R3, DxR1 and DxR2 are
locally Lipschitz with respect to x. R3 is differentiable with respect to ε, we define
R10, R20 : D → Rn as

R10(z) =
1

T

∫ T

0

R1(s, z)ds

R20(z) =
1

T

∫ T

0

[DzR1(s, z)

∫ s

0

R1(t, z)dt+R2(s, z)]ds

(ii) For V ⊂ D an open and bounded set and for each ε ∈ (−εR1
, εR1

)\(0), there
exist p ∈ V such that R10(p) + εR20(p) = 0 and

det(
∂(R10 + εR20)

∂z
)|z=p 6= 0. (3.2)
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Then for |ε| > 0 sufficiently small, there exist a T −period solution ϕ(., ε) of system
(3.1) such that ϕ(0, ε)→ p when ε→ 0.

If the function R10 and R20 is not identically zero , then the zeros of R10 +εR20

are mainly the zeros of R10 for ε sufficiently small. In this case, the theorem is
called averaging theory of first order.

If the function R10 is identically zero and R20 is not identically zero, then the
zeros of R10 +εR20 are the zeros of R20. The theorem is called the averaging theory
of second order.

In averaging theory of first order, for the averaged differential equation in D:

ẏ = εR10(y), y(0) = x0, (3.3)

where R10(y) = 1
T

∫ T
0
R1(t, y)dt. The stability of periodic solution ϕ(t, ε) could be

given by the stability of equilibrium point p of averaged system (3.3). That is the
equilibrium point p have the stability behavior of Poincaré map associated to periodic
solution ϕ(t, ε).

In averaging theory of second order, where R10 ≡ 0 and R20 is no-identically
zero, the stability of periodic solution ϕ(t, ε) is given by the stability of equilibrium
point p of averaging system

ẏ = ε2R20(y), y(0) = x0,

where the equilibrium point p associated with the Poincaré map about periodic solu-
tion ϕ(t, ε).
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