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GENERAL HIGH-ORDER BREATHER
SOLUTIONS, LUMP SOLUTIONS AND MIXED

SOLUTIONS IN THE (2+1)-DIMENSIONAL
BIDIRECTIONAL SAWADA-KOTERA
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Abstract In this paper, we investigate some interesting solution structures
of the (2+1)-dimensional bidirectional Sawada-Kotera (bSK) equation. We
obtain general high-order breather solutions by utilizing the Hirota’s bilinear
method united with the perturbation expansion technique. Taking a long-wave
limit of the obtained breather solutions and then making particular parameter
constraints, smooth rational solutions are generated, which include high-order
lumps and mixed solutions consisting of lumps and stripe. In order to easily
explore the dynamical behaviors, some plots are presented to analyse these
solutions.
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1. Introduction

Nonlinear evolution equations (NLEEs) can depict a wide variety of nonlinear phe-
nomena in plasma physics and nonlinear optics, and many others, especially in
mathematical physics. It is very important to seek exact solutions of NLEEs to
study of many complex mathematical physical phenomena and other nonlinear en-
gineering problems [5,9,19,20,22,25]. In order to find the solutions to NLEEs and
to examine the physical properties of these solutions, many powerful methods are
used to deal with NLEEs, such as Darboux transformation [6,13], Hirota’s bilinear
method [7,14], inverse scattering transform method [1], the Lie group method [4,8]
and so on. Such a variety of the searchs may lead to new developments of analyti-
cal solution. We usually obtain several kinds of solutions, such as soliton, peakons,
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kinks, breather, lump, rogue wave solutions and many others.
Recently, the study of breather solution and lump solution of physical equations

have attracted a growing amount of attention. In 2015, Ma gave a way to get the
lump solution of a evolution equation by using the Hirota’s bilinear method [16]. By
the way and symbolic computations, many kinds of integrable equations obtain their
lump solutions, such as the Kadomtsev-Petviashvili equation [16], the BKP equa-
tion [27], the (2+1)-dimensional Sawada-Kotera equation [29], reduced generalized
KP equation [26], (2+1)-dimensional Boussinesq equation [15], (2+1)-dimensional
Burgers equation [26] and so on. Moreover, many scholars have explored the mixed
solution of nonlinear evolution equations(NLEEs), which include lump-stripe, lump-
kink, lump-soliton, and other mixed solutions [2, 10,18,21,24,28,30].

In this paper, we study a (2+1)-dimensional bidirectional Sawada-Kotera (bSK)
equation [11]

− 45u2ux − 15uuxxx − 15uxuxx − 15uut − 15ux(∂x)−1(ut) + 5(∂x)−1utt

− 5uxxt − uxxxxx + 9uy = 0,
(1.1)

where

(∂x)−n =

(
d

dx

)−n
, (1.2)

it was formulated there as a bidirectional generalization of the Sawada-Kotera (SK)
equation

ut + 45u2ux − 15uxuxx − 15uuxxx + uxxxxx = 0. (1.3)

Because of its connection with the SK equation Eq. (1.3), the bSK Eq. (1.1)
also belongs to the Kadomtsev-Petviashvili equations of B type (BKP) hierarchy [3].
The approximate and exact solutions of the bSK Eq. (1.1) are discussed in [12,17].
In [17], with the help of the resulting Riccati equation, Ma and Geng derived some
exact solutions, Darboux and Bäklund transformations of the bSK Eq. (1.1). In
[12], Lai and Cai calculated Adomian polynomials and obtained several classes of
explicit solutions of bSK Eq. (1.1) by means of Maple, which include solitary wave
solutions, doubly periodic solutions, two-soliton solutions. However, there are only
a few works to study other dynamic behavior of Eq. (1.1).

To author’s knowledge, many works have been done for bSK Eq. (1.1), but
higher-order breather and lump solutions for bSK Eq. (1.1) have not been investi-
gated before. The main purpose of this paper is to construct general higher-order
breather and lump solutions, and to explore their fascinating dynamical behaviors.
The structure of the paper is arranged as follows: In Section 2, we construct the
bilinear form of the bSK equation. In Section 3, 4, and 5, based on the obtained
bilinear form, the general higher-order breathers are derived. By taking a long-wave
limit of these obtained breather solution, general higher-order lumps are generated,
and dynamics of these solutions are discussed. In Section 6 and 7, mixed solutions
consisting of lumps and stripe are yielded. Our results are summarised in the final
section.

2. Bilinear formalism to (2+1)-D bSK equation

In this section, let us consider a dependent variable transformation,

u = 2(ln f)xx, (2.1)
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substituting Eq. (2.1) into Eq. (1.1), we obtain the following Hirota’s bilinear
form [21]

(5D2
t − 5D3

xDt −D6
x + 9DxDy)f · f

=10fftt − 10f2
t − 10fxxxtf + 30fxfxxt − 30fxxfxt + 10fxxxft − 18fxyf

− 18fxfy − 2fxxxxxxf + 12fxxxxxfx − 30fxxfxxxx + 20fxxxfxxx

=0,

(2.2)

here f is a real function with respect to variable x, y, and t, and the operates

(Dm
t D

n
xD

k
y)f · g

=

(
∂

∂t
− ∂

∂t′

)m(
∂

∂x
− ∂

∂x′

)n(
∂

∂y
− ∂

∂y′

)k
f(x, y, t) · g(x′, y′, t′) | x = x′, y = y′, t = t′.

(2.3)

3. First-order breather and lump solutions of (2+1)-
D bSK equation

We first begin from the two-soliton solution. We assume f in Eq. (2.1) to have the
following formal form:

f = 1 + εf1 + ε2f2, (3.1)

with
f1 = exp(η1) + exp(η2),

f2 = exp(η1 + η2 +A12),
(3.2)

where
ηs = ksx+ ωsy + pst+ φs, s = 1, 2, (3.3)

and ks, ωs, ps and φs are undetermined complex parameters. We substitute f in
(3.1) into (2.2) and collect the power orders of ε, then, we can obtain the following
equations at the ascending power orders of ε:

ε0 : (5D2
t − 5D3

xDt −D6
x + 9DxDy)(1 · 1 + 1 · 1) = 0,

ε1 : (5D2
t − 5D3

xDt −D6
x + 9DxDy)(1 · f1 + f1 · 1) = 0,

ε2 : (5D2
t − 5D3

xDt −D6
x + 9DxDy)(1 · f2 + f1 · f1 + f2 · 1) = 0.

(3.4)

By solving the three equations in (3.4), we can obtain the formula

exp(A12) = − (k1 − k2)6 + 5(w1 − w2)(k1 − k2)3 − 9(p1 − p2)(k1 − k2)− 5(w1 − w2)2

(k1 + k2)6 + 5(w1 + w2)(k1 + k2)3 − 9(p1 + p2)(k1 + k2)− 5(w1 + w2)2
,

(3.5)
and the dispersion relation

9psks − k6
s − 5k3

sws + 5w2
s = 0. (3.6)

In order to guarantee the correspond breather solutions to be real functions,
there are two constrain conditions for a valid calculation: (1) The wave number
ks must be pure imaginary numbers and must satisfy k1 = −k2; (2) The angular
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frequency ps must be real numbers and w1 = w2. Under these constrain conditions,
we can take parameter constraints

w1 = w2 = w, k1 = −k2 = ik, φ1 = φ2 = φ0, (3.7)

where w, k, φ0 are freely real parameters. Therefore, we can obtain η1 = η2, and
the function f in (3.1) can be rewritten as

f =
√
M cosh(Θ) + cos(kx), (3.8)

where
Θ = ωy + pt+ t0,

t0 =
√
Meφ0 ,

M =
(−10w2 − 2k6)i

9k
.

(3.9)

The evolution of u in the (x, y)-plane is shown in Fig.1. Because ks are pure
imaginary and real, u is only periodic in x direction and the period is 2π

k .

(a) (b)

(c)

Figure 1. (Color online) First-order breather solution u of Eq. (1.1) with the parameters K1 = −i,K2 =

i,W1 = 2− 3
2 i,W2 = 2 + 3

2 i; (a)3-D plot, (b)density plot, (c)contour plot.

To generate rational solution, we can take a long-wave limit with the provision

ws = Wsε, ks = Ksε, ε→ 0, eφs = −1, s = 1, 2, (3.10)

in (3.8). The expression of f is given as follows

f = θ1θ2 + θ0, (3.11)
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here

θs =
9tKsWs + 9xK2

s − 5yW 2
s

9Ks
, s = 1, 2.

θ0 = −6K2
2K

2
1 (K1W2 +K2W1)

(K1W2 −K2W1)2
.

(3.12)

To guarantee the corresponding rational solutions to be lump solutions, we take
parameters K1 = K2,W1 = W2 in Eq. (3.12). Then, the final expression of rational
solutions u reads

u =
2θ0θ1xθ2x − θ2

1θ
2
2x − θ2

2θ
2
1x

(θ1θ2 + θ0)2
. (3.13)

This lump solution u possesses three critical points

A1 = (− tW1W2

K1W2 +K2W1
,

9

5

K1K2t

K1W2 +K2W1
),

A2 = (
3
√
−2K1K2(K1W2 +K2W1)3 − tW1W2(K1W2 −K2W1)

(K1W2 +K2W1)(K1W2 −K2W1)
,

9

5

K1K2t

K1W2 +K2W1
),

A3 = (
3
√
−2K1K2(K1W2 +K2W1)3 + tW1W2(K1W2 −K2W1)

(K1W2 +K2W1)(K1W2 −K2W1)
,

9

5

K1K2t

K1W2 +K2W1
),

(3.14)
which are derived by solving ∂u

∂x = 0 and ∂u
∂y = 0. Because of the analysis of three

critical points at second-order derivatives ∂2u
∂x2

∂2u
∂y2 −

∂2u
∂x∂y , we can obtain u has one

local maximum (point A1), and two minimum points (point A2, A3). The patterns
of lump solution is shown in Fig.2.

4. Second-order breather and lump solutions of
(2+1)-D bSK equation

We can derive the second-order breather solutions by similar procedures to the
first-order breather, and assume that f has the following expansions in terms of ε:

f = 1 + εf1 + ε2f2 + ε3f3 + ε4f4, (4.1)

then, we substitute (4.1) into bilinear equation (2.2) and collect the coefficients of
ε; Equations of different orders of ε would be yielded. However, it is troublesome
to solve these equations, but worthy to get the second-order breather solutions. We
present the corresponding results as follow:

f1 =
∑
j

eηj , f2 =
∑
j<s

eηj+ηs+Ajs ,

f3 =
∑
j<s<l

eηj+ηs+ηl+Ajsl , f4 = eη1+η2+η3+η4+A,
(4.2)
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(a) (b)

(c)

Figure 2. (Color online) First-order lump solution u of equation (1.1) with the parameters K1 =
1− i,K2 = 1 + i,W1 = 1,W2 = 1: (a) 3-D plot; (b) density plot; (c) contour plot.

where

ηj = kjx+ wjy + pjt+ φj ,

eAjs = − (kj − ks)6 + 5(wj − ws)(kj − ks)3 − 9(pj − ps)(kj − ks)− 5(wj − ws)2

(kj + ks)6 + 5(wj + ws)(kj + ks)3 − 9(pj + ps)(kj + ks)− 5(wj + ws)2

eAjst = eAjseAjleAsl ,

eA =
∏
j<s

eAjs ,

(4.3)
where and the dispersion relation

9pjkj − k6
j − 5k3

jwj + 5w2
j = 0, (4.4)

here j = 1, 2, 3, 4; s = 1, 2, 3, 4; l = 3, 4. The second-order breather solutions also
have two constrain conditions: (1) The wave number ks must be pure imaginary
numbers and satisfy k1 = −k2; (2) The angular frequency ps must be real number
and w1 = w2. Under these constrain conditions, we can obtain η1 = η2, η3 = η4.
The picture of second-order breather solution is shown in Fig.3:

We carry out similar procedures obtained the first-order lump solutions to gen-
erate second-order lump solutions, and take the long wave limit (p, k → 0) with the
provision

eφ0 = −1, (4.5)
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(a) (b)

(c)

Figure 3. (Color online) Second-order breather solution u of equation (1.1) with the parameters K1 =
1
7 + i

9 , K2 = 1
7 −

i
9 ,W1 = 2

9 ,W2 = 2
9 , K3 = − 1

8 + i
4 , K4 = − 1

8 −
i
9 ,W3 = 1

10 −
2
9 i,W4 = 1

10 + 2
9 i, φ1 =

0, φ2 = 0, φ3 = 4, φ4 = 4: (a) the 3-D plot; (b) density plot; (c) contour plot.

in (4.1). Then the expansion of f is expressed as follow

f =
∏
j

θj +
∑

aj<s
∏
k 6=j,s

θk +
∑
j<s

∏
ajs, (4.6)

where

θj =
9tKjWj + 9xK2

j − 5yW 2
j

9Kj
,

θ0 = −
6K2

sK
2
j (KjWs +KsWj)

(KjWs −KsWj)2
,

(4.7)

here j = 1, 2, 3, 4, s = 1, 2, 3, 4, and j < s, Kj , Wj are complex parameters. In
order to ensure the corresponding rational solutions to be lump solutions, the con-
strain conditions are K1 = K2,K3 = K4,W1 = W2,W3 = W4. This solution with
parameters

K1 = 2− 3

2
i,K2 = 2 +

3

2
i,K3 = 2− 3

2
i,K4 = 2 +

3

2
i,

W1 = W2 = 2,W3 = W4 = 3,
(4.8)

is shown as the following form

u = 2 ln(f2)xx, (4.9)
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with

f2 =36t4 + 120t3x− 64t3y +
709

4
t2x2 − 400

3
t2xy +

11344

225
t2y2 + 125tx3

− 1036

9
tx2y +

8288

135
txy2 − 512

27
ty3 +

625

16
x4 − 455

18
x3y +

6781

2025
x2y2

− 2912

405
xy3 +

256

81
y4 +

6184085555

2090916
t2 − 26602957225

9409122
xy − 29340955220

4704561
ty

− 31443971875

8363664
x2 − 1765346875

1045458
tx+

424945749199

211705245
y2 +

349834765625

1568187
.

(4.10)
The second-order lump solution is shown in Fig.4.

(a) (b)

Figure 4. (Color online) Second-order lump solution u of equation (1.1) with the parameters K1 =

2 − 3
2 i,K2 = 2 + 3

2 i,K3 = 2 − 3
2 i,K4 = 2 + 3

2 i,W1 = 2,W2 = 2,W3 = 3,W4 = 3: (a) 3-D plot; (b)
density plot.

5. Higher-order breather and lump solutions of
(2+1)-D bSK equation

Higher-order breather and lump solutions are generalized in this section. Firstly,
we assume f has the folowing higher-order expansions in terms of ε:

f = 1 + εf1 + ε2f2 + ε3f3 + · · · εnfn · · · . (5.1)

Then, we substitute f into the bilinear equation (2.2) and collect the coefficients
of ε; 2n+1 equations of different orders of ε would be yielded. We can solve these
equations and present the corresponding results as follow:

f =
∑
µ=0,1

e
∑(N)

j<s µjµsAjs+
∑N

j<s µjηj , (5.2)

where

ηj = kjx+ wjy + pjt+ φj ,

eAjs = − (kj − ks)6 + 5(wj − ws)(kj − ks)3 − 9(pj − ps)(kj − ks)− 5(wj − ws)2

(kj + ks)6 + 5(wj + ws)(kj + ks)3 − 9(pj + ps)(kj + ks)− 5(wj + ws)2
,

(5.3)
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and
9pjkj − k6

j − 5k3
jwj + 5w2

j = 0, (5.4)

here kj , pj , wj , φj are arbitrary complex constants. The notation
∑
µ=0 indicates

over all possible combinations of µ1 = 0, 1, µ2 = 0, 1, · · · , µN = 0, 1; the
∑N
µ=0 is

over all possible combinations of the N elements with the special condition j < s.
The n-th order breather solutions can be generated from 2n-soliton solutions

and parameters must be taken conjugations in (5.2)

N = 2n, k∗n+j = kj , p
∗
n+j = pj , w

∗
n+j = wj , φ

∗
n+j = φj , (5.5)

and these parameters also satisfy the same restrictions as first-order breather solu-
tion, then n-breather solutions would be obtained.

We apply a long-wave limit to generate rational solutions, and take parameters
in (5.2)

ks = Ksε, ps = Psε, ws = Wsε, (5.6)

with the provision
eφs = −1, s = 1, 2, · · ·N, (5.7)

then taking the limit as ε → 0, the function f given by (5.2) is changed into pure
rational function. General higher-order rational solutions of (2+1)-dimensional bSK
equation can be presented as follow:

u = 2(ln fN )xx, (5.8)

where

fN =

N∏
j=1

θj +
1

2

N∑
j,k

αjk

N∏
l 6=j,k

θl + · · ·

+
1

M !2M

N∑
j,k,··· ,m,n

M︷ ︸︸ ︷
αjkαsl · · ·αmn

N∏
P 6=j,k,···m,n

θp + · · · ,

(5.9)

with

θs =
9KsWst+ 9K2

sx− 5W 2
s y

9Ks
, s = 1, 2,

αjs = −6K2
2K

2
1 (K1W2 +K2W1)

(K1W2 −K2W1)2
,

(5.10)

parameters j, k are positive integers and not large than N , but pS ,KsWs are com-
plex constants.

In order to obtain third-order lump solution, we can consider the case of N = 6
in (5.9). We take special parameters:

K1 = (1 + 2i),K2 = (1− 2i),K3 = (2− 3i

2
),

K4 = (2 +
3i

2
),K5 = (−2

3
+ 2i),K6 = (−2

3
− 2i),

W1 = W2 = 2,W3 = W4 =
5

3
,

W5 = W6 = −1, φi = iπ, i = 1, 2, · · · 6,

(5.11)

then we can derive the third-order lump solution by valid calculation.
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This solution u in the (x, y)-plane is illustrated in Fig.5. From the picture, it is
seen that the maximum amplitudes of third-order lump solution u is up to 1.6 when
these third-order lumps mix with each other (see (b) of Fig.5). At t = −14, t = 14,
third-order lumps respectively separate, and the maximum amplitudes are below
1.6.

(a) (b)

(c) t=-14 (d)

(e) (f)

Figure 5. (Color online) Time evolution of three-order lump solution u of equation (1.1): (a)(b)(c):
3-D plot; (d):density plot with t = −14, (e):density plot with t = 0, (f):density plot with t = 14.

6. Mixed solutions between first-order lump and a
stripe of (2+1)-D bSK equation

The mixed solution between first-order lump and a stripe of the (2+1)-dimensional
bidirectional Sawada-Kotera (bSK) equation will be studied in this section. For the
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purpose of obtaining the mixed solution between lump solution and a stripe, we
first substitute N = 3, k1 = K1ε, k2 = K2ε, w1 = W1ε, w2 = W2ε, φ1 = iπ, φ2 = iπ
into (5.9), then we derive f∗, expand the f∗ in terms of ε at ε = 0 and take the
limit while ε→ 0. Therefore we can obtain another new f , the expression of f is:

f = θ1θ2 + a12 + eη3(θ1θ2 + a12 + θ1a23 + θ2a13 + a13a23), (6.1)

here

θs =
9KsWjt+ 9K2

sx− 5W 2
s y

9Ks
, s = 1, 2, 3,

9psks − k6
s − 5k3

sws + 5w2
s = 0,

(6.2)

and

ajs =


−6Ks

2Kj
2(KjWs+KsWj)

(KjWs−KsWj)2
, s < 3

−6ks
2Kj

2(ks3Kj+Kjws+Wjks)
Kj

2ks6+2Kj
2ks3ws+ks4WjKj+Kj

2ws
2−2WjwsksKj+Wj

2ks2 , s = 3.
(6.3)

In order to get the collision phenomenon, parameters must satisfy K1=K2,
W1=W2, and k3, w3, φ3 are real parameters. To illustrate the particular phenomena
between first-order lump and a stripe, we select the following parameters

K1 = 3 + 3i,K2 = 3− 3i,W1 = 5,W2 = 5,

k3 = 1, w3 = 2, φ3 = 0.
(6.4)

Then take the above parameters into f , we obtain the expression of f as follow:

f =(25 t2 + 18x2 +
15625 y2

1458
+

(3081264300x− 2377518750 y − 14313477600) t

102708810

− 1678968x

14089
+

522500 y

14089
+

20719476

70445
)e2 t+x−y + 25 t2 + 18x2 +

15625 y2

1458

+
(3081264300x− 2377518750 y) t

102708810
+

324

5
.

(6.5)
The evolution of u is shown in the Fig.6. For t < −100, it is seen that first-order
lump and a stripe move on the constant background respectively. When t→ 0, first-
order lump and a stripe begin to collision and consistent. As time goes, first-order
lump and a stripe become to separate and completely separate.

7. Mixed solutions between second-order lump and
a stripe of (2+1)-D bSK equation

The mixed solution between second-order lump and a stripe of the (2+1)-dimensional
bidirectional Sawada-Kotera (bSK) equation will be studied in this section. The
method and process of deriving the mixed solution are the same as first-order lump
and a stripe. We first take k1 = K1ε, k2 = K2ε, w1 = W1ε, w2 = W2ε, φ1 = iπ,
φ2 = iπ into (5.9), then expand the expression at ε = 0 and take the limit. We can
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(a) (b)

(c) (d)

(e) (f)

Figure 6. (Color online) Profiles of mixed solution between first-order lump and a stripe with the
parameters K1 = 3 + 3i,K1 = 3− 3i,W1 = 5,W2 = 5 at times (a) t = −100; (b) t = 0; (c) t = 100; (d)
contour plot at t = −100; (e) contour plot at t = 0; (f) contour plot at t = 100.

obtain

f =θ1θ2θ3θ4 + a12θ3θ4 + a13θ2θ4 + a14θ2θ3 + a23θ1θ4 + a24θ1θ3 + a34θ1θ2

+ a12a34 + a13a24 + a14a23 + eη5(θ1θ2θ3θ4 + a45θ1θ2θ3 + a35θ1θ2θ4

+ a25θ1θ3θ4 + a15θ2θ3θ4 + (a35a45 + a34)θ1θ2 + (a25a45 + a24)θ1θ3

+ (a25a35 + a23)θ1θ4 + (a15a45 + a14)θ2θ3 + (a15a35 + a13)θ2θ4

+ (a15a25 + a12)θ3θ4 + a12a34 + a24a15a35

+ (a25a35a45 + a23a45 + a35a24 + a25a34)θ1

+ (a15a35a45 + a14a35 + a13a45 + a15a34)θ2

+ (a15a25a45 + a21a45 + a24a15 + a14a25)θ3

+ (a15a35a25 + a23a15 + a21a35 + a25a31)θ4

+ a13a24 + a14a23 + a12a35a45 + a13a25a45

+ a14a25a35 + a34a15a25 + a23a15a45 + a15a25a35a45),

(7.1)
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here

θs =
9KsWjt+ 9K2

sx− 5W 2
s y

9Ks
, s = 1, 2, 3, 4

9psks − k6
s − 5k3

sws + 5w2
s = 0,

(7.2)

and

ajs =

−6
Ks

2Kj
2(KjWs+KsWj)

(KjWs−KsWj)2
, s < 5,

−6
ks

2Kj
2(ks3Kj+Kjws+Wjks)

Kj
2ks6+2Kj

2ks3ws+ks4WjKj+Kj
2ws

2−2WjwsksKj+Wj
2ks2 , s = 5.

(7.3)

In order to get the mixed solutions between second-order lump and a stripe of bSK
equation, there are restrictions for a valid calculation: K1=K2, K3=K4, W1=W 2,
W3=W 4, and k5, w5, φ5 are real parameters. We take the following parameters

K1 =
2

3
,K2 =

2

3
,K3 = −3

4
+
i

3
,K4 = −3

4
− i

3
,

W1 =
3

4
− i,W2 =

3

4
+ i,W3 = −3

4
− i

4
,W4 = −3

4
+
i

4
,

k5 = 1, w5 =
1

2
, φ5 = 0.

(7.4)

Then we substitute above parameters into (6.4). We can derive the mixed solution
by valid calculation.

The evolution of u is shown in Fig.7. From the plots, we can see that second-
order lump and a stripe wave move on the constant background respectively at
t = −15. Then the mixed phenomena happen near t = 0, second-order lump are in
a collision with a stripe. After collision, second-order lump and a stripe become to
separate.

8. Conclusion

In this paper, we investigated a (2+1)-dimensional bSK equation. Based on the bi-
linear form, we derive general high-order breathers by the Hirota’s bilinear method.
Taking a long-wave limit of the obtained breather solutions, several smooth rational
solutions of the (2+1)-dimensional bSK equation are generated, which include n-th
lump solution and the mixed solutions comprising lump solution and stripe. First-
order breather and second-order breather solution are shown in Figs.1, 3. And their
corresponding lump solutions are shown in Figs.2, 4. The third-order lump solution
is shown in Fig.5. The mixed solution composed of lumps and a stripe are present-
ed. The corresponding dynamical behaviors are analyzed in Figs.6, 7. Finally, it is
expected that these results can also be applied to illustrate the dynamical behavior
of nonlinear wave fields.
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(a) (b)

(c) (d)

(e) (f)

Figure 7. (Color online) Profiles of mixed solution between second-order lump and a stripe with the

parameters K1 = 2
3 , K2 = 2

3 , K3 = − 3
4 + i

3 , K4 = − 3
4 −

i
3 , k5 = 1,W1 = 4

3 − i,W2 = 4
3 + i,W3 =

− 4
3 −

i
4 ,W4 = − 4

3 + i
4 , w5 = 1

2 ; (d) contour plot at t = −15; (e) contour plot at t = 0; (f) contour plot
at t = 15.
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