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A DELAYED DISCRETE MULTI-GROUP
NONLINEAR EPIDEMIC MODEL WITH
VACCINATION AND LATENCY™
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Abstract A delayed discrete multi-group nonlinear epidemic model with vac-
cination and latency is derived by the application of a nonstandard finite dif-
ference scheme. It is proved that the extinction and persistence of the disease
are determined by a threshold parameter in term of the basic reproduction
number R. More precisely, when R < 1 the disease goes to extinction with
the globally asymptotically stable disease-free equilibrium, while the disease is
persistent with the globally asymptotically stable endemic equilibrium when
R>1.
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1. Introduction

Mumps is an acute viral disease with high infectiousness that is transmitted via
respiratory droplets. Over the last decade, childhood vaccination has resulted in
a significant reduction in mumps incidence. However, the resurgences of mump-
s outbreaks are being frequently reported worldwide, including many high-income
countries with high vaccine coverage such as USA [4,8], Australia [20], Scotland [21].
During multiple outbreaks, most cases diagnosed occurred adolescents and young
adults among highly vaccinated populations [4,8,20,21], which supports that waning
of vaccine-induced immunity has protracted mumps outbreak [20]. On the other
hand, approximately 1/3 of mumps infections present only with nonspecific res-
piratory symptoms, namely, asymptomatic/inapparent infections, which are still
contagious [1,15]. Consequently, both the patients and the asymptomatic individ-
uals are the infection sources. The incubation period after Mumps virus (MuV)
infection varies from 12-25 days [4].

In mathematical epidemiology, the epidemic compartmental models can provide
a better understanding of the disease transmission dynamics. In order to capture the
mechanism of the recent global resurgence of mumps, we developed a multi-group
nonlinear epidemic model with infinite distributed delays of vaccination and latency,
asymptomatic infection (see [9]). In particular, when the probability distributions
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take the form of the step-functions, the model reduces to the following counterpart
version of delay differential equations (DDEs)

S: = @k = (i )5 - Z SiGij + (pil\i + v Si(t — 13))e ™,

7=1
I =pi Y Si(t = 00)Gij(t — o)™ 7 — (i + 6 + 7)) i,
2 (1.1)
A =0 Si(t—03)Gij(t — oi)e ™% — (i + Ai + 1) A,
j=1

where S;, I;, A; respectively represent the numbers of susceptible, symptomatic and
asymptomatic individuals at time ¢ in the ith group. And the biological meanings of
the parameters are described as follows. For certain a group 7 € N, A; denotes the
rate at which new recruits enter into group 4; p;, ¢; are the fractions of vaccinated,
unvaccinated new recruits in group i, respectively; the vaccination rate for suscep-
tible individuals is denoted by v;; k; € [0,1] measures the infectivity factor for A;
class; the natural death rate of each class, the death rates due to symptomatic,
asymptomatic infections are respectively denoted by pu;, d; and A;; v; and r; are the
recovery rates of I; and Aj; classes. And (;; measure the transmission rate between
S; and I;. Meanwhile, the infectious force functions g;;(I;) and G;;(A;) satisfy

Bij = 9i;(0), w;Bij = Gi;(0), Gij(Aj) = kjgij(A;), for k; >0, (1.2)

where the functions g;;(z)(i,7 = 1,2,...,m) satisfy the following assumption (A):

(A) For z >0, gij(x) > 0 with “=" holding iff z = 0, and g;;(z) > 0, g;(z) < 0.

It is well known that the epidemic data are usually discrete in practice since they
are collected daily, monthly or yearly, etc. Moreover, for the purpose of performing
numerical simulations, it is necessary to discretize the continuous epidemic models of
differential equations, and a variety of standard finite discretization (SFD) schemes
such as Euler, Runge-Kutta methods have been utilized to obtain the approximate
solutions of the models in [6,17]. However, these SFD schemes may give rise to
negative solutions or some spurious dynamical behaviours (e.g., converging to false
equilibria or periodic cycles), even lead to numerical instabilities (NI), seeing [6,17].
Instead, Mickens [11-14] developed a robust nonstandard finite difference (NSFD)
scheme that performs well in preserving as many dynamical properties of the original
continuous models (i.e., ODEs, DDEs, PDEs) according to recent exploration of the
scholars (e.g., [2,3,7,16,18,22-25]). As a result of the mentioned themes, we apply
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NSFD scheme [11-14] to model (1.1) and obtain the discrete version as follows

S- _ S- - . .
Z"“th" = qili — (i +vi)Si, 0 — Z Sin Gl + (pili + Visinfl,erl)eimna
j=1
Iin+1 — Iln - n—~; —i0;
At = Pi Z Sin4i+1Gij femHT — (g + 0y + %‘)Iinﬂ,
j=1
A — A s L
% = 0; Sin_/,i+1 GZ Z"e pioq _ (N’L + A\ + Ti)A’in+17
=1
=4 .
Gl 1= 91y (1) + Gy (As, ), Gl = () + Gus(As o)
pitoi=1 ieN"={1,2...m}, neN,

(1.3)
where N denotes nonnegative integer, At > 0 is the time step size, and the param-
eters remain the same as in model (1.1). It is natural to assume that there exist
integers l;, ¢; such that 7; = [;At, o; = £;/At, i € N*. The initial condition of model
(1.3) reads

Si. = 01i(s), Li, = ¢2i(s), Ai, = $3i(s), éwi(s) >0, ¢pi(0) >0,
s=—d,—d+1,...,0, d=max{l;,¢;: i€ Nt} b=1,23.

(1.4)

This article as a continuation of the work of our differential model (1.1) (see [9]).
We further consider the difference model (1.3) and are aimed at verifying whether
this method can effectively guarantee the dynamics of the corresponding continuous
model (1.1) or not. The organization of this paper is as follows. Some preliminaries
are presented in Section 2. Sections 3 and 4 focus on exploring the global stability
of the disease-free equilibrium and the endemic equilibrium of model (1.3), respec-
tively. Several examples are demonstrated to confirm our analysis results in Section
5. We close with a brief discussion section.

2. Preliminaries

Assign n; = p; + 6 +7vi, hi = p; + A + 5. Rewriting model (1.3) give us

S S, + At(q; + pie™ T Ay + Atl/isin—liJrl e HiTi
int1 — _ ; ,
1+ At(ps +vi) + At 'Zl G
J=
L, +Atp; Y- Si,, Gl e
Ii = Jj=1
" 11 Aty : (2.1)
A, + At Y Sin_z..;.lGZ_gie_“iU’i
A — j=1 ¢
Z7L+1 - 1 + Athl ,
pi+oi=14ieN"={1,2,...m}, neN.

By condition (A), we obtain

9i (L)1, < 9i5(1;,) < gi;(0)1;, . (2.2)
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Let ¥(z) =« — 1 — Inx, similar to Proposition A.1 in Ref. [19], one can prove the
following Lemma 2.1.

Lemma 2.1. The condition (A) implies that for all and I;, , I7 > 0,

(1) = w(ijjj(é]] ))) - \P(II];) <0. (2.3)

Neat, we consider the positivity and boundedness of any solution of model (1.3).

Lemma 2.2. Let (S;,,1;,,A;,) be a solution of model (1.3) subject to initial con-

In) ~ln?

dition (1.4), then the solution remains nonnegative and bounded for all n € N.

Proof. Clearly, all solutions of (2.1) with initial condition (1.4) remain nonnega-
tive for all n € N. For each ¢, denote

F, =8, +1;, +A; + Atz Z SikHGi_cje—Atm(n—k) + AtViSin_,,i+16_“”'i7

n

j=1k=n—¢;
(2.4)
and a calculation shows that
Fi"‘*'l N Fin :Sin'H o Sin + Iin+1 - I’Ln + Ain+1 - Ain
m n
+ At Z Z Sik+1G?j€7Atui(n*k+])
J=lk=n—{;+1
- Atz Z SzkHGk —Atp;(n—k)
j=1k=n—¥;
* Atl/isi"—’i+2e_uin - AtViSin 141 e HiTi
=At |:qu1 - (,u’t + Vz in+1 Z Sln+1 pzA + VzSzn L +1)6 Wi
m
" Z Sinie"'JrlGZj_lieimgi - niIinJrl - hiAin+1
j=1

+ At Z Z Sik+1G?j€7Atui(n*k+])

j=1k=n—t;+1

n—1
_Atgm: Z Szk+1Gk —Atp; (n—k)

j=1k=n—¥¢;
+ Atl/Z-Sin_,i“e_””" - AtViSin_lﬁ_le_Min
=At [(‘h‘ +pie TN = (i + i) Sy — i — hidi

m n

+ (1 - eAtM) Z Z SlkﬂGk —Atui(n—ktl) + ViSin—li+2e_Wn}
j=1k=n—£;+1

<ALR; = E; L], (2.5)

o . Atpg _
where N; = (¢; + p;e *7)A; and i; = min {ui + v, ni, ha, %tl, A%s}
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By (2.5), we have

1 AN,

F < F .
S T A T T Ath

We can further obtain

Fo < (rrmn) Bt Gam) ] (26)

Then limsup,,_, ., F;,, < N;/k;. This proves the boundedness of the solution. O

It follows from model (1.3) that there is a disease-free equilibrium(DFE) Ey=
(59,0,0,...,52.0,0), where SY = (q; + pie ™7)A;/[w; + (1 — e #iT )], As in
Ref. 9], we know the basic reproduction number R = p(M,), p is the spectral

radius and
Mo = (awﬁijs?(pf + “,;‘_’i)> . (2.7)
T]'L g mXm

Here B;; are defined in (1.2). For convenience, we denote the matrix B = (5, )m xm.

3. Global stability of the disease-free equilibrium

Theorem 3.1. For model (1.3), assume that B is irreducible. If R <1, then the
unique DFE Ey is globally asymptotically stable (GAS); If R > 1, then the DFE Ej
is unstable.

Proof. Since B is irreducible, we can get the irreducibility of My directly. Fur-
ther, by Perron-Frobenius theorem, there is a strictly positive left eigenvector w =

(w1,wa,...,ws) corresponding to the eigenvalue p(My), which means wp(My) =
wMpy. Assign
-1
Pi | Rili Wi o
R ;= Demmioi 3.1
T (ﬂi+hi> ) Gi= e (3.1)

We construct the following Lyapunov function

Ve S [Un + X + i(Yn + 7).
i=1 j=1
where
U, = L{S?@(‘ng) + el [(nl + AL, + (hi +At)4;,] }
X, = v;SeHiTi k”;ll. \If(sg,kgl),

n—1
Vo= > Si.gi5Ln),
k:n—éi

n—1
Zn=Y " SiGi(Ajn)-

k:’nfzi

(3.2)
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Calculation U,,+1 — U,, along the solution of model (1.3) yields

Un+1 - Un
_L Siniy — S, + 89 In —— S +7re“"”< +At>( —1;,)
At Tn+41 Zn+1 771 7/71+1 in

1
+ ket (h— + At) (A, —Aiy)

)

Sé [(Sinﬂ - Sin)(l — SS? ) + meti (% + At) (Lin., — 1)

in+1

+ ket (hl AL (Ai, s — Ai)

(1 B SSO )

Tn+1

m
qiNi — (pi+vi)Si, ., ZSMH + (pil\i+viSi, +1)e um]

Jj=1

b (L4 )

Pi Z Sin 0,41 G?j—&' e M — (u; + 6; + %)L-,ﬁl]

Jj=1

m
+ Tkl ( + At) 0i Z Sl-n%ﬁlG;’j_&e*”“’i — (s + X +13) As

Jj=1
SO 0 Sln . n 0 —1;Ts Si,,,
(1 S ) (pi+vi)S; (1* Sgl> Z Sin,+1Gij +uv Sy e T (Tﬂ - 1)
Tn+1 7 j=1 i
0 — it S’infli+l S’in+1 " n—~; Wi
+viSie (T T g0 ) + Z S Gy —me T (L, + KiAi,)
1 1 j:1
—HiTi 0 Sin-%—l 0 -
S+ (= et (2 S Sy Z S0G =S 8i,, G
) 7fn+1 j=1
S, S, m
0, —iT; n—l;+1 n—l;+1 1n+1 n—~;
+viSle ( gt T +1)+ZSM e
(3 Tn+1 J:1
— Wieﬂigi (Izn + Hz'A'Ln)- (33)
We can also derive that
Xn+1 - Xn
n n—1
—1, G0 HiTi ( iyl 1—1In zk+1 ) Z ( g1 - 1o Sik+1 )]
(s 0
L k=n—1;+1 k=n—1; Si
K S; Si Sin_t.
— 250 — i T tntl 1-1 ntl n—l;+1 1 1 n—l;+1
v;5; e S? S? S? +1+1In S?
i | St Sia, S,
=y SPeHiTi Sgl - S»éﬁl +1In 5 l”“]. (3.4)
g 7 In+1
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Similarly, we have

n
Yn+1*Yn: Z Skarlgm ]k Z Sszrlglj jk)

k=n—{;+1 k=n—/{;
=Si119i5Lin) = Sin 0,419 (Lj ;) (3.5)
and
Zn+1 —Zn = Z Szk_H gz] Z Szk_H glj jk)
=5i,11Gij(Ajn) — Sz'nfeﬁlgij(Ajn%i)- (3.6)
Consequently
V — i T <Sln+1 — O
Vg1 — ch (1—e | ———— o) +ZS
Gnt1
0 — 4Ty Sin*lﬂrl Hio;
— ViSi e 1\11<7) — et Z(Iin + ’%‘Ain) . (37)
Sinin

Recalling (22), gij (I]n) § g;J(O)I]n = Bijjjn and gij (A]n) § Q{J(O)Am = HjﬁijAjn
hold. Then we can obtain that

Vit = Vo < Zw’l o (ﬁ mgl) Zﬁw . A — L, + Kidi,)

= (w1, w2, ..., wn)(MoL — L)
< (p(Mp) — 1) (w1, w2, ... ,wy)L, (3.8)

where L := (I1+r1 A1, Is+koAs, ..., I, +r,A,)T. By using similar arguments with
the proof of Theorem 4.2 in Ref. [23], if p(Mj) < 1, the disease-free equilibrium Fy
is globally asymptotically stable. O

Assume that p(Mg) > 1 and L # 0. Since

i I, =0t Ijn h; A;, —0+ Ajn

MO_<M01-S§<P i 9idi) 0 W)) 7
mXm

we have w(MoL — L) = w(p(Myp) — 1)L > 0. It follows form the continuity of g;;
that V.41 — V,, > 0 in a neighbourhood of Ey, namely, if p(Mgy) > 1, then Ejy is
unstable.
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4. Global stability of the endemic equilibrium

If R > 1 and B is irreducible, it is obvious that (1.3) has at least an endemic
equilibrium (EE), denoted by E*, which is determined by the following equations:

(¢ +pie )N = (i + v3) ST +ZS* Gy —viSfe M
Jj=1
pZ _HLUL ZS G
Z]’

hi = ji@’““” ZS;"G;;,
7 j:1

ie Nt ={1,2,...m},

where G¥; = gij(I]*) + gij(A;)v pi+ o =1

Theorem 4.1. For model (1.3), suppose that B is irreducible. If R > 1, then E*
is GAS and is thus the unique EFE.

Proof. In the sequel, we finish the proof of Theorem 4.1 into two case: m = 1
and m > 2.
Case 1: m = 1. For convenience, we denote g;;(I;,) as g(I,). Choosing Lyapunov

function

where
U =[50 (5) + (5 + aesnar) (1)
+(%+At5*gw))¢(jg) ,
e Sk
X, = vS*e ¥ k_z_l\p( = ) (4.2)
n—1
Y, = S§*g(I*) k;gw(si’;jjj(f’;)),

=50 3 w( i)

k=n—¢

Together with model (1.3) and equilibrium condition (4.1), we can deduce that

Un+1 - Un
1 . Sn
75(57&1 — S, + 5" In Sm)

+ g (205 + gt (Pt - 2 )

At \ pe=Ho G*

+ALS*G(AY)) (% - ‘:jj +1n AAHL)
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_ Sni1— Sn< S* ) L oI L1, (1 ~ I[*

- At Sn+1 pe hoG* At

n+1

* * In+1 In In g(A*) An+1 - An
+57g( )( I +n In+1> + pe HIG* At
A, A, A,
FEGAN (T - g +1)

~(1- S )[aA = (1 1)1 = S0r G (A + ¥S i)

Sn+1
g(I") ( I )( e
1— Sy g G le T _ ], )
+ pequG* InJrl POn—L+1 € NMn+1

In+1 In In
S*g(I* - —+1
+8%9()( I nan)

e [

* * AnJrl An An
+5 g(A)( E E—l—lnAnH)

*

O

S*
+ Z/S*e_‘”(% — 1) + VS*B_#T<7SH§i+1 — %)}
I

I* I* i
() (1 o ) (pSn,gHG"_Ze_“U _ it g Gre e

pef,qu* n+l I*
In+1 In In

*o(T* ( _in )
SO T

e
F5gun (A - e )
[+ (1—e ]S (2 - ngl - Sil) + S G* — 81 G™
- sf; S*G* + S*G" + us*ew(snéiﬂ _ Sgnil _ 5;:1
i gg:) S g1 G — g(f;:i Sp_p1 G — S*g(I*)I’;fl
+ S*g(I") + S*g(I") (If}jl - % +1n L{il)
+ Q(fo)sn_wanff - msn_wanf - s*g(A*)A"“
+5*G(A*) + s*g(A*)(Ajljl - % +1 A’izl)
=+ (1 — e )] S* (2 - ngl -~ SS+1>

_ Snfl+1 SnflJrl Sn+1
* —UT
vS'e (2, CAERCE 1)
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S g(l,) In I,
+5g(r)(1— g
g( )< S71,+1 g([*) I* n In+1)
S* G(A,) A, Ap
5G4 (1 - _An
+5°6(47)( So [ G(An A T “Anﬂ)

I*
*a(I* 1— _ n—~
+8°9(0) (1= g, S C)
* * A* n—~{
+8°0(4) (1 = g Snen G
— S 1G™ + Sy 1 G (4.3)
To proceed, we can derive that
Xn—i—l - Xn
. Sk Sei1) =[Skt Sk41
— * M7 _ _ _ _ _
vSTe [Z(S 11“3*) Z(S* 11“5*)}
k=n—I+1 k=n—I1
_ Sn+1 Sn—l+1 Sn—l+1
., Q% —uT _
—vS*e ( = e ) (4.4)
and
= Sk+19(I1) Skr19(1x)
Ypi1 — Y, =S*g(I* — = 1 —In———F=
+1 ( )[k_nZeJrl( S*g([*) S*g(I*) )

) nil (M_l—lnm)}

W, N SrgI) S*g(I*)

* * Sn—£+1g(jﬂ—f)
=Sy I,) — Sn— I, I)In —————=, 4.
Sn19(In) = Sn—e419(In—¢) + 5" g(1") In Sr0(ln) (4.5)

together with

k=n—0+1

S/ SG(A Ski1G(A
- Z (W -1- hl W)} :Sn+1g(An) - Sn—f-‘rlg(An—Z)
k=n—¢

Sn7€+1g(An7Z)

Sn+1g(An)
(4.6)

+S*G(A%)In

Combining with the above formulas, we have

Sn S*
Vi1 = Vo =[u+ (1= )]s (2 5t )

Sn+1
S’n—l—i—l Sn—l+1
Dnoltl g4 2nst
n+1 SnJrl )
S* Q(In) I, I,
S*g(I*)(1— — — +1
+5%g( )( Shit g(I%) T* 1L In+1)

e -
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+ s*g(A*)(1 - sfﬂ + ggﬁ)) - % +1In Aiil)

+ S*g(I*)(l - ﬁsn,mm-‘)

+ 5 G(AY) (1 - &C;SMS”—MGM)

+S*g(I") In w +S*G(A")n W (4.7)
Since

S o e ST TS,
In S";igg‘:z)‘f) =In sfﬂ —In giﬁ; +1In Azjl
R

(4.7) can be rewritten as

Vit1 =V,

e (1= e S g (St gy St
+S*G*(1 - Sf:—l +1n sf;) +5%g( )(‘;’g’;; “In zgji - ﬁ—" +1n%)
1 57G(A") (g((ﬁj)) I g((fljj)) - )

esar (1= PO e )

+ 5°G(A%) (1 —~ A*;”éfgﬁj_é +1In A*i"élenij_g)

. s G*g(In_) G g(In—s)
+ 579U )(1 T Gnty(IY) 1 aneg(]*))

+ 5*G(A") (1 _ gn%é(;}; +1In gfgé(:i) (4.8)
where
S*g(I*) (1 - E AiC ))) + S*Q(A*)(l - g%é&@;)

=5 g(I )+S g(A >_ ( Gn(e Z) + Gn(ff 6))

e Calca (17 K

Notice that

s - 1 g = 8() -+ () <o)
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G(A,) G(4,) A, An_ G(A,) A, _
gmﬂ‘mgmw‘2?+MZ¥—WQmMQ_WQF)_”&”

Hence

(SnJrl - S*)2

— SnflJrl)

Voss = Vi = — [+ (1= ™)1 o

— I/S*e*’”\ll(

S*
—9GW( )+§ﬂﬁﬁ@g+§g@ﬂﬂ&»

Sn+1

I*Sn—f-i-lGn_e A*Sn_€+1Gn—£
—SF([\U( 2T ) g g(A)p( Ene e
59()( S*G* i1 ) 576( )( 9G%M1)

G*Q(In—f)

G*g(An—Z)). (49)

That is to say, V11 —V,, <0 and “=" holds if and only if S,,—; = S, = 5*, I,_¢ =
I,=1" A,y = A, = A* for almost all [, £ > 0, thus {V,, } is a monotone decreasing
sequence. Since V,, > 0, we can derive that lim, _,(V,4+1 —V,) > 0. Then similar
to Ref. [9], the only compact invariant subset of {lim, ,oo(Vp41 —V,) = 0} is
the singleton {E*}. And it follows from LaSalle’s invariance principle that E* is
globally asymptotically stable.

Case 2: m > 2. Define
wU:S;kG* i,j€N+

i)

and

Z Wi —wW21 + —Wmil
Jj#1
—wia W25 **+ —Wm2
w = J#2 ,
—Wim —W2m *°° Z Wmj
Jj#m

where w is the Laplacian version of the matrix (w;j)mxm. It follows form the
irreducibility of (Bi;)mxm that (wi;)mxm and w are irreducible. It follows from
Lemma 2.1 in [5] that the solution space C of system w¢ = 0 has dimension 1. Let
a;;,1 <14 < m, be the co-factor of the ith diagonal entry of w. Then the base £ of
C is in the form of & = (£1,&,...,&m)T = (a11,a29, - -+, @mm)?. Whence &; > 0.

Define the following Lyapunov function

m m

WzZ&M+%+Z&ﬁ&%

i=1 j=1
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where
A PHEAR (i ;mg Mt;s*gm a)e(le)
+ (g m - Atj;s:gnm;))ﬁf(%)] :
X, = v, Sre i kn;l. \1:(55+) (4.10)
Vi = 5104 (1)) Zz B(Zn)
Z, = 57Gij (A7) knn; @(m)
The difference of U,, satisfies
Unt1 — Uy
:é (Sis =85+ 57 Sji)
*L(ZMWZS*% A*>)(AZ;1 - ffff o A’iﬂ)
< (- g ) (L ) e ()
+Zs*gw ) ( “;“ - 5 +1n I;l)
S
(1 ) b 90807 5 G i8S
+ (i m) (1- AA+) (o jz: Siv i n Gl e — i, )

m ; I I
+Zs*gu I* ( n::l - I: +1nI

Tn41

N—
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m Al 1 i
381Gy (T *ii“ 7)

j=1 (3 Tn+1

1) s (0- ) - S son- S

Si Szn_ S
+ v Sie T (% - 1) + v Sfe T ( —litl | Pindl )}

S: s
—~  gi}) ;
(G

In+1
m
o S ZS* Gyt
j=1
m
Gij(AZ A
(3 f”d@—z)
o aeTG Aiin

m A m
n—~l; —p;o; tntl * Yk — 1,05
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According to Theorem 3.1 and Corollary 3.3 in Ref. [10], we can derive that V1 —
V., < 0. Similar to the proof in Case 1, we get that E* is GAS. O

5. Numerical simulations

In this section, we will perform two numerical examples to illustrate our theoretical

results. With selection of m =2, ¢,;(I;) = fi? and the following parameters
J

Table 1. Parameters

parameter ¢ g2 Ay Ay o o pe v va KL K2 p1 P2

value 02 01 645 24 0.1 005 02 04 02 06 0.8 09

parameter l% i ; P2 01 02 l% l% 01 02 1 Y2
value 1 2 0.7 0.75 0.3 025 2 1 0.2 0.15 0.3 0.2

parameter \p Ao T T

value 0.15 0.1 0.05 0.25
0.006 0.004
Choose B = Pu bz = . A calculation shows R = 0.2372.
B21 Bos 0.007 0.005

It follows from Theorem 3.1, the disease-free equilibrium E, = [50,0, 0, 25,0, 0] of
model (1.3) is globally asympotically stable (see Fig.1).

0.06 0.04
We consider B = Pu bz = . Then R = 2.372. The endemic

Ba1 Pas 0.07 0.05

equilibrium E* = [28.2107,2.4844,2.1295; 11.0236, 2.6239, 1.0496] of model (1.3) is
globally asympotically stable (see Fig.2) by Theorem 4.1.
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Figure 2.

6. Discussions

In [9], we developed a multi-group nonlinear epidemic model with delays of vacci-
nation, latency, and asymptomatic infection. Due to the complexity of the model
and technical shortcomings, we failed to give the numerical simulations of the above



306 J. Hu, Z. Liu, L. Wang & R. Tan

continuous differential model. However, the discrete models can provide efficient
computational models of the continuous models for numerical simulations. As a
continuation of the work of our differential model in Ref. [9], a reasonable idea is
to discretize the continuous model in Ref. [9]. To this end, we apply NSFD scheme
to discretize the above continuous model (1.1) and obtain its discrete analog model
(1.3). Recalling our paper, it is easy to see that there exists correspondence between
our discrete results ( Theorems 3.1 and 4.1) and the continuous results (Theorem
5.1) in Ref. [9]. That is, the basic reproductive number R fully determines the
extinction and persistence of the epidemic of model (1.3). The disease-free equilib-
rium is globally asymptotically stable if R is not more than one, while the unique
endemic equilibrium exists and is globally asymptotically stable when R is great
than one. This is the result obtained by constructing the appropriate Lyapunov
functions, and the construction in this paper is different from Ref. [9], for details to
see the discrete Lyapunov functions V;, (page 5), V,, (page 8) and V,, (page 13) in
this paper and the continuous Lyapunov functions Uy (page 9), Us (page 11) and
W (page 14) in Ref. [9].

Meanwhile, in terms of the NSFD scheme, it is worth highlighting that there
are few research results on global dynamics of multi-group epidemic model with
delay (e.g., Ref. [22]). Our initial thought is to use the NSFD scheme to discretize
the main model proposed in the Ref. [9], but it was found that the model is too
complicated to solve the problem. Therefore, we have to start with a relatively
simple goal and choose one of the cases (i.e., Case I in Ref. [9]). Fortunately, we
finished the investigation in this relatively simple case and obtained some theoretical
results (see Theorems 3.1 and 4.1). Until now, we focus on the above continuous
version in Ref. [9] and look forward to achieve better results in the future.
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