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Abstract In this paper, we deal with a coupled system of nonlinear fraction-
al multi-point boundary value problems with p-Laplacian operator. The exis-
tence and multiplicity of positive solutions are obtained by employing Leray-
Schauder alternative theory, Leggett-Williams fixed point theorem and Avery-
Henderson fixed point theorem. As an application, two examples are given to
illustrate the effectiveness of our main results.
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1. Introduction

This paper deals with the existence of multiple positive solutions for the following
system nonlinear fractional differential equations multi-point boundary problems
with p-Laplacian operator:

Dβ1

0+(ϕp1(Dα1

0+u(t))) = f(t, u(t), v(t)), t ∈ (0, 1), (1.1)

Dβ2

0+(ϕp2(Dα2

0+v(t))) = g(t, u(t), v(t)), t ∈ (0, 1), (1.2)

subject to the boundary conditions{
u(0) = 0, Dγ1

0+u(1) =
∑m−2
i=1 ξ1iD

γ1
0+u(η1i),

Dα1

0+u(0) = 0, ϕp1(Dα1

0+u(1)) =
∑m−2
i=1 ζ1iϕp1(Dα1

0+u(η1i)),
(1.3)

{
v(0) = 0, Dγ2

0+v(1) =
∑m−2
i=1 ξ2iD

γ2
0+u(η2i),

Dα2

0+v(0) = 0, ϕp2(Dα2

0+v(1)) =
∑m−2
i=1 ζ2iϕp2(Dα2

0+v(η2i)),
(1.4)

where 1 < αi, βi 6 2, 0 < γi 6 1, Dαi
0+ , Dβi

0+ , Dγi
0+ are the standard Riemann-

Liouville fractional derinatives, ϕpi(s) = |s|pi−2s, pi > 1, ϕ−1
pi = ϕqi ,

1
pi

+ 1
qi

=

1(i = 1, 2). We make the following assumptions:
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(s0) 3 < αi + βi 6 4, αi − γi − 1 > 0, i=1,2 ;

(s1) 0 < ξ1i, η1i, ζ1i < 1 (i = 1, 2, · · · ,m− 2) satisfy that

A1 = 1−
m−2∑
i=1

ξ1iη
α1−γ1−1
1i > 0, B1 = 1−

m−2∑
i=1

ζ1iη
β1−1
1i > 0;

(s2) 0 < ξ2i, η2i, ζ2i < 1 (i = 1, 2, · · · ,m− 2) satisfy that

A2 = 1−
m−2∑
i=1

ξ2iη
α2−γ2−1
2i > 0, B2 = 1−

m−2∑
i=1

ζ2iη
β2−1
2i > 0.

Fractional calculus provides an excellent tool in various fields of scientists and
mathematicians due to high profile accuracy and usability. Fractional calculus has
made great advances in the past years. Compared with integer order differential,
fractional differential can better describe some physical phenomenons, that is why
academics of different areas have paid great attention to study it. For more details
of some results on fractional differential equations, we refer the readers to see [2–7,
11–17,28].

In the last years, many scholars study the fractional order differential equation
boundary value problems with p-Laplacian operator, see [4,9,10,15,18–20,22–27,29–
32]. In [26], the authors consider the following boundary value problem of nonlinear
fractional differential equation with p-Laplacian operator:{

Dα(φp(D
αu(t))) = f(t, u(t)), t ∈ [0, 1]T ,

u(0) = u(σ(1)) = Dαu(0), Dαu(σ(1)) = 0,

where 1 < α 6 2 is a real number, the time scale T is a nonempty closed subset of R.
Dα is the comfortable fractional derivative on time scale, and f, g ∈ C([0, σ(1)] ×
[0,∞), [0,∞)). By the use of the approach method and fixed-point theorems on
cone, some existence and multiplicity results of positive solutions are acquired. Li
et al. [23] considered the positive solutions for p-Laplacian fractional differential
equation with a parameter:

Dβ
0+(φp(D

α
0+u(t))) = λf(t, u(t)), t ∈ (0, 1),

[φp(D
α
0+u(0))](i) = 0, i = 0, 1, 2, . . . , l − 2,

[φp(D
α
0+u(t))]

′
|t=1 = b[φp(D

α
0+u(t))]

′
|t=ξ,

u(j)(0) = 0, u′(1) = au′(ξ), j = 0, 1, 2, . . . , n− 2,

where λ > 0, 3 < n− 1 < α 6 n, 3 < l − 1 < β 6 l, and l + n− 1 < α+ β 6 l + n.
The existence and nonexistence of positive solutions are obtained for the boundary
value problems based on the properties of Green’s function and Guo-Krasnosel’skill
fixed point theorem.

On the other hand, the system of fractional differential equations boundary value
problems with p-Laplacian have developed very rapidly. More and more researchers
pay attention to consider the existence results for coupled systems involving frac-
tional differential equations, see [9, 10, 20, 22, 25, 30]. In [10], the authors deal with
a coupled system of singular p-Laplacian differential equations involving fractional
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differential-integral conditions
−Dβ1(ϕp1(−Dα1u1))(t) = λf1(u1(t), Dγ1u1(t), Dγ2u2(t)), t ∈ [0, 1],

−Dβ2(ϕp2(−Dα2u2))(t) = f2(t, u2(t)), t ∈ [0, 1],

Dαiui(0) = Dαiui(1) = 0,

Dγiui(0) = 0, Dαi−1u(1) = ξiI
wi(Dγiui(ηi)), i = 1, 2,

where the nonlinearity f1(x, y, z) may be singular at x = 0, y = 0, z = 0. An
eigenvalue interval for the existence of positive solutions were obtained via the
Schauder’s fixed point theorem and the upper and lower solution method. Hao
et.al [9] considered the following system of nonlinear fractional differential equations
nonlocal boundary value problems with parameters

−Dα1
0+(ϕp1(Dβ1

0+u(t))) = λf(t, u(t), v(t)), t ∈ [0, 1],

−Dα2
0+(ϕp2(Dβ2

0+v(t))) = µg(t, u(t), v(t)), t ∈ [0, 1],

u(0) = u(1) = u′(0) = u′(1), Dβ1

0+u(0) = 0, Dβ1

0+u(1) = b1D
β1

0+u(η1),

v(0) = v(1) = v′(0) = v′(1), Dβ2

0+v(0) = 0, Dβ2

0+v(1) = b2D
β1

0+v(η2),

where αi ∈ (1, 2], βi ∈ (3, 4], ηi ∈ (0, η
1−αi
pi−1

i ), i = 1, 2. f, g ∈ C([0, 1]×[0,∞)2, [0,∞)),
λ and µ are positive parameters. The authors derived various existence results in
terms of different combinations of superlinearity and sublinearity of the nonlinear-
ities.

Motivated by the aforementioned papers, we investigate the existence and mul-
tiplicity of positive solutions for a system of nonlinear fractional differential equa-
tions multi-point boundary value problems with p-Laplacian operator. By employ-
ing Leray-Schauder alternative theory, Avery-Henderson fixed point theorem and
Legget-Williams fixed point theorem, we will discuss the existence and multiplicity
of positive solutions for the system (1.1)-(1.4). The result obtained in this paper
it is possible to replace multi-point boundary conditions by integral boundary con-
ditions with minor modifications. As application, two examples are presented to
illustrate the main results.

2. Preliminaries

In this section, we will present some preliminaries and lemmas that will be used in
the proof of our main results.

Definition 2.1 ( [21]). The Riemann-Liouville fractional integral of order α > 0 is
given by

Iαu(t) =
1

Γ(α)

∫ t

0

(t− s)α−1u(s)ds,

where n − 1 < α < n, provided that the right-hand side is pointwise defined on
(0,+∞).

Definition 2.2 ( [21]). The Riemann-Liouville fractional derivative of order α > 0
of a continuous function y : (0,∞)→ R is given by

Dα
0+y(t) =

1

Γ(n− α)
(
d

dt
)n
∫ t

0

y(s)

(t− s)α−n+1
ds,
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where n = [α] + 1, provided the right side is pointwise defined on (0,+∞).

Lemma 2.1 ( [19]). Let y ∈ C[0, 1]. Then the fractional order BVP

Dβ1

0+(ϕp1(Dα1

0+u(t))) = y(t), t ∈ (0, 1),

u(0) = 0, Dγ1
0+u(1) =

m−2∑
i=1

ξ1iD
γ1
0+u(η1i),

Dα1

0+u(0) = 0, ϕp1(Dα1

0+u(1)) =

m−2∑
i=1

ζ1iϕp1(Dα1

0+u(η1i))

has a unique solution

u(t) =

∫ 1

0

G1(t, s)ϕq1

(∫ 1

0

H1(s, τ)y(τ)dτ

)
ds,

where
G1(t, s) = G11(t, s) + Ḡ12(t, s),

H1(t, s) = H11(t, s) +H12(t, s).

In which

G11(t, s) =


tα1−1(1− s)α1−γ1−1 − (t− s)α1−1

Γ(α1)
, 0 6 s 6 t 6 1,

tα1−1(1− s)α1−γ1−1

Γ(α1)
, 0 6 t 6 s 6 1,

Ḡ12(t, s) =
tα1−1

A1Γ(α1)

[ ∑
η1i>s

ξ1i[η
α1−γ1−1
1i (1− s)α1−γ1−1 − (η1i − s)α1−γ1−1]

+
∑
η1i≤s

ξ1iη
α1−γ1−1
1i (1− s)α1−γ1−1

]
, t, s ∈ [0, 1],

H11(t, s) =


tβ1−1(1− s)β1−1 − (t− s)β1−1

Γ(β1)
, 0 6 s 6 t 6 1,

tβ1−1(1− s)β1−1

Γ(β1)
, 0 6 t 6 s 6 1,

H12(t, s) =
tβ1−1

B1Γ(β1)

[ ∑
η1i>s

ζ1i[η
β1−1
1i (1− s)β1−1 − (η1i − s)β1−1]

+
∑
η1i≤s

ζ1iη
β1−1
1i (1− s)β1−1

]
, t, s ∈ [0, 1].

It is easy to see that

Ḡ12(t, s) =
1

A1

m−2∑
i=1

ξ1iG12(η1i, s)t
α1−1, H12(t, s) =

1

B1

m−2∑
i=1

ζ1iH11(η1i, s)t
β1−1,

where

G12(t, s) =


tα1−γ1−1(1− s)α1−γ1−1 − (t− s)α1−γ1−1

Γ(α1)
, 0 6 s 6 t 6 1,

tα1−γ1−1(1− s)α1−γ1−1

Γ(α1)
, 0 6 t 6 s 6 1.
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In a similar manner, the conclusion of functions G2(t, s) and H2(t, s) for the
homogeneous BVPs consistenting with the fractional differential equation (1.2) and
(1.4) are gain.

Lemma 2.2 ( [19]). The function Gk(t, s)(k = 1, 2) is continuous on [0, 1]× [0, 1]
and has the following properties:

(i) Gk(t, s) > 0, ∀ t, s ∈ (0, 1)× (0, 1);

(ii) Gk(t, s) 6 ρk(s), and where ρk(s) = 1
AkΓ(αk) (1− s)αk−γk−1, ∀ t, s ∈ [0, 1];

(iii) tαk−1Ωk(s) 6 Gk(t, s) 6 Ωk(s), ∀t, s ∈ [0, 1] and where Ωk(s) = hk(s) +
1
Ak

∑m−2
i=1 ξkiGk2(ηki, s), hk(s) = (1−s)αk−γk−1(1−(1−s)γk)/Γ(αk), s ∈ [0, 1].

Lemma 2.3 ( [19]). The function Hk(t, s)(k = 1, 2) satisfies the following inequal-
ities:

(i) Hk(t, s) > 0, ∀(t, s) ∈ (0, 1)× (0, 1);

(ii) Hk(t, s) 6 ωk(s), where ωk(s) = 1
BkΓ(βk) (1 − s)βk−1 for all (t, s) ∈ (0, 1) ×

(0, 1);

(iii) Hk(t, s) > σkνk(s), where νk(s) = 1
Bk

∑m−2
i=1 ζkiHk1(ηki, s), ∀ t ∈ [θ1, θ2], s ∈

(0, 1), σk = mint∈[θ1,θ2] t
βk−1.

Lemma 2.4 ( [8]). Let E be a Banach space, K ⊂ E. Suppose that T : K → K
is a completely continuous operator. Let ε(T ) = {x ∈ K : x = εT (x), 0 < ε < 1}.
Then either

(i) T has at least a fixed point, or

(ii) the set ε(T ) is unbounded.

Lemma 2.5 ( [1]). Let K be a cone in a real Banach space E. If ζ and φ are
increasing, non-negative continuous functional on K. Let χ be a non-negative con-
tinuous functional on K with χ(0) = 0 such that, for some positive constants c and
λ,

ζ(u) 6 χ(u) 6 φ(u), and ‖u‖ 6 λζ(u),

for all u ∈ K(ζ, c). Suppose that there exist positive numbers a < b < r such that

χ(τu) 6 τχ(u), for all 0 6 τ 6 1 and u ∈ ∂K(χ, b).

If T : K(ζ, c)→ K is a completely continuous operator satisfying

(i) ζ(Tu) > r for all u ∈ ∂K(ζ, r);

(ii) χ(Tu) < b for all u ∈ ∂K(χ, b);

(iii) K(φ, a) 6= ∅ and φ(Tu) > a for all u ∈ ∂K(φ, a).

Then T has at least two fixed points u1 and u2 such that a < φ(u1) with χ(u1) < b
and b < χ(u2) with ζ(u2) < c.

Lemma 2.6 ( [18]). (Leggett-Williams) Let E = (E, ‖ · ‖1) be a cone of E, and
Kr = {x ∈ K : ‖x‖ < r}. Suppose there exists a concave nonnegative continuous
functional ψ on K with ψ(x) 6 ‖x‖ for x ∈ Kr. Let T : Kr → Kr be a completely
continuous operator. Assume there are numbers r1, r2 and r3 with 0 < r1 < r2 <
r3 6 r such that
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(i) {x ∈ K(ψ, r2, r3)|ψ(x) > r2} 6= ∅, and ψ(Tx) > r2 for x ∈ K(ψ, r2, r3);

(ii) ‖Tx‖ < r1 for ‖x‖ 6 r1;

(iii) ψ(Tx) > r2 for x ∈ K(ψ, r2, r) with ‖x‖ > r3.

Then T has at least three fixed points x1, x2, x3 with ‖x1‖ < r1, r2 < ψ(x2), r1 <
‖x3‖ with ψ(x3) < r2.

Let X = C[0, 1], X is a Banach space with the norm ‖u‖ = maxt∈[0,1] |u(t)|. Let
the Banach space E = X × X be endowed with the norm ‖(u, v)‖1 = ‖u‖ + ‖v‖.
For θ1, θ2 ∈ (0, 1) and θ1 < θ2, denote

K =
{

(u, v) ∈ E : u(t) > 0, v(t) > 0,∀ t ∈ [0, 1],min
t∈I
{u(t) + v(t)} > δ‖(u, v)‖1

}
,

where I = [θ1, θ2], δ = min{δ1, δ2} and δk = mint∈I t
αk−1, k = 1, 2, then K is a

cone of E. Define the operators T1, T2 : E → X and T : E → E as follows:

T1(u, v)(t) =

∫ 1

0

G1(t, s)ϕq1

(∫ 1

0

H1(s, τ)f(τ, u(τ), v(τ))dτ

)
ds, t ∈ [0, 1],

T2(u, v)(t) =

∫ 1

0

G2(t, s)ϕq2

(∫ 1

0

H2(s, τ)g(τ, u(τ), v(τ))dτ

)
ds, t ∈ [0, 1],

T (u, v)(t) = (T1(u, v)(t), T2(u, v)(t)), (u, v) ∈ E.

It is clear that if (u, v) is a fixed point of the operator T in K, then (u, v) is a
positive solution of system (1.1)-(1.4).

3. Main results

Denote

M =
1

A1Γ(α1)Γ(α1 − γ1)(B1Γ(β1 + 1))q1−2
,

N =
1

A2Γ(α2)Γ(α2 − γ2)(B2Γ(β2 + 1))q2−2
,

W =min

{
1

2

(∫ 1

0

Ω1(s)ϕq1(

∫ 1

0

ω1(τ)dτ)ds

)−1

,
1

2

(∫ 1

0

Ω2(s)ϕq2(

∫ 1

0

ω2(τ)dτ)ds

)−1}
,

D=max

{
1

2

(∫ θ2

θ1

Ω1(s)ϕq1(

∫ θ2

θ1

σ1ν1(τ)dτ)ds

)−1

,
1

2

(∫ θ2

θ1

Ω2(s)ϕq2(

∫ θ2

θ1

σ2ν2(τ)dτ)ds

)−1}
.

(3.1)

Theorem 3.1. Suppose the conditions (s0)−(s2) holds, f, g∈C([0, 1]×[0,∞)2,[0,∞))
and there exist real constants mk, nk > 0, k = 1, 2 and m0 > 0, n0 > 0 such that
for all u, v ∈ K, we have

(H1) f(t, u, v) 6 ϕp1(m0 + m1u + m2v), g(t, u, v) 6 ϕp2(n0 + n1u + n2v) and it
is assumed that Mm1 +Nn1 < 1, Mm2 +Nn2 < 1.

Then the the systems (1.1)-(1.4) has at least one solution.
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Proof. Firstly, we show that the operator T : K → K is completely continuous.
For u, v ∈ K and t ∈ [0, 1], we have

‖T (u, v)‖1 = max
t∈[0,1]

|T1(u, v)(t)|+ max
t∈[0,1]

|T2(u, v)(t)|

= max
t∈[0,1]

{∫ 1

0

G1(t, s)ϕq1

(∫ 1

0

H1(s, τ)f(τ, u(τ), v(τ))dτ

)
ds

}
+ max
t∈[0,1]

{∫ 1

0

G2(t, s)ϕq2

(∫ 1

0

H2(s, τ)g(τ, u(τ), v(τ))dτ

)
ds

}
6
∫ 1

0

Ω1(s)ϕq1

(∫ 1

0

H1(s, τ)f(τ, u(τ), v(τ))dτ

)
ds

+

∫ 1

0

Ω2(s)ϕq2

(∫ 1

0

H2(s, τ)g(τ, u(τ), v(τ))dτ

)
ds.

On the other hand, for t ∈ I, we have

T1(u, v)(t) >
∫ 1

0

tα1−1Ω1(s)ϕq1

(∫ 1

0

H1(s, τ)f(τ, u(τ), v(τ))dτ

)
ds,

then T1(u, v)(t) > δ1‖T1(u, v)‖. Similarly, T2(u, v)(t) > δ2‖T2(u, v)‖. Therefore
min

{
T1(u, v)(t) + T2(u, v)(t)

}
> δ‖T (u, v)‖1. It is well know that T (K) ⊂ K. By

the continuous of functions f and g, the operator T is continuous.
Let Ω ⊂ K be bounded. Then there exists L1 and L2 such that

f(t, u(t), v(t)) 6 ϕp1(L1), g(t, u(t), v(t)) 6 ϕp2(L2).

Then for any (u, v) ∈ Ω, it follows from Lemma 2.2 and Lemma 2.3, we have

T1(u, v)(t) =

∫ 1

0

G1(t, s)ϕq1

(∫ 1

0

H1(s, τ)f(τ, u(τ), v(τ))dτ

)
ds

6
∫ 1

0

ρ1(s)ϕq1

(∫ 1

0

ω1(τ)f(τ, u(τ), v(τ))dτ

)
ds

6
L1

A1Γ(α1)Γ(α1 − γ1)(B1Γ(β1 + 1))q1−1
= L1M.

And also

T2(u, v)(t) 6
L2

A2Γ(α2)Γ(α2 − γ2)(B2Γ(β2 + 1))q2−1
= L2N.

Hence, from the above inequalities, the operator T is uniformly bounded.
Next, we shall show that T is equicontinuous. Let 0 6 t1 < t2 6 1, we get

|T2(u, v)(t)− T1(u, v)(t)| =
∣∣∣∣ ∫ 1

0

G1(t2, s)ϕq1

(∫ 1

0

H1(s, τ)f(τ, u(τ), v(τ))dτ

)
ds

−
∫ 1

0

G1(t1, s)ϕq1

(∫ 1

0

H1(s, τ)f(τ, u(τ), v(τ))dτ

)
ds

∣∣∣∣
6

L1

(B1Γ(β1 + 1))q1−1

∣∣∣∣ ∫ 1

0

[G1(t2, s)−G2(t1, s)]ds

∣∣∣∣
(3.2)
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and ∣∣∣∣ ∫ 1

0

[G1(t2, s)−G2(t1, s)]ds

∣∣∣∣
=

∣∣∣∣ ∫ 1

t1

(tα1−γ1−1
2 − tα1−γ1−1

1 )(1− s)α1−γ1−1ds

+

∫ t2

t1

[tα1−γ1−1
2 (1− s)α1−γ1−1 − (t2 − s)α1−γ1−1]ds

+

∫ 1

t1

[(t1 − s)α1−γ1−1 − (t2 − s)α1−γ1−1]ds

+
1

A1
(tα1−1

2 − tα1−1
1 )

∫ 1

0

m−2∑
i=1

ξiG12(ηi, s)ds

+

∫ 1

t2

(tα1−1
2 − tα1−1

1 )(1− s)α1−γ1−1ds

−
∫ t2

t1

tα1−1
1 (1− s)α1−γ1−1ds

∣∣∣∣
6

1

Γ(α1 − γ1)

∣∣∣∣tα1−γ1−1
1 (1− t1)α1−γ1 − tα1−γ1−1

2 (1− t2)α1−γ1
∣∣∣∣

+
1

Γ(α1 − γ1)

∣∣∣∣tα1−1
2 (1− t2)α1−γ1 − tα1−1

1 (1− t1)α1−γ1
∣∣∣∣

+

∑m−2
i=1 ξi

A1Γ(α1)

∣∣∣∣tα1−1
2 − tα1−1

1

∣∣∣∣.

(3.3)

From (3.2) and (3.3), it is easy to see that |T2(u, v)(t)−T1(u, v)(t)| → 0 as t2−t1 →
0. The operator T is equicontinuous. Therefore, T : K → K is a completely
continuous operator.

Finally, it will be verified that the set ε = {(u, v) ∈ K : (u, v) = εT (u, v), 0 <
ε < 1} is bounded. Let (u, v) ∈ ε, we have (u, v) = εT (u, v). For ∀ t ∈ [0, 1], we get

u(t) = εT1(u, v)(t), v(t) = εT2(u, v)(t).

From (H1), we can obtain

u(t)=εT1(u, v)(t)6T1(u, v)(t)=

∫ 1

0

G1(t, s)ϕq1

(∫ 1

0

H1(s, τ)f(τ, u(τ), v(τ))dτ

)
ds

6
∫ 1

0

ρ1(s)ϕq1

(∫ 1

0

ω1(τ)f(τ, u(τ), v(τ))dτ

)
ds

6
m0 +m1u+m2v

A1Γ(α1)Γ(α1 − γ1)(B1Γ(β1 + 1))q1−1

and

v(t) 6
n0 + n1u+ n2v

A2Γ(α2)Γ(α2 − γ2)(B2Γ(β2 + 1))q2−1
.

We get ‖u‖ 6M(m0 +m1u+m2v), ‖v‖ 6 N(n0 + n1u+ n2v). Thus,

‖u‖+ ‖v‖ 6 (Mm0 +Nn0) + (Mm1 +Nn1)‖u‖+ (Mm2 +Nn2)‖v‖.
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Therefore,

‖(u, v)‖1 6
Mm0 +Nn0

S
,

where S = min{1− (Mm1 +Nn1), 1− (Mm2 + Nn2)}. The set ε is bounded. By
Lemma 2.4, T has at least one fixed point. Hence, the system (1.1)-(1.4) has at
least one positive solution.

Theorem 3.2. Suppose the conditions (s0)−(s2) holds, f, g∈C([0, 1]×[0,∞)2,[0,∞))
and there exist positive real numbers 0 < a < b < c such that the functions f, g sat-
isfying the following conditions:
(H2) f(t, u, v) > ϕp1( cDδ ), g(t, u, v) > ϕp2( cDδ ) for t ∈ I and (u, v) ∈ [c, cδ ];

(H3) f(t, u, v) < ϕp1(bW ), g(t, u, v) < ϕp1(bW ) for t ∈ [0, 1] and (u, v) ∈ [0, bδ ];

(H4) f(t, u, v) > ϕp1(aDδ ), g(t, u, v) > ϕp2(aDδ ) for t ∈ I and (u, v) ∈ [δa, a].
Then the system (1.1)-(1.4) has at least two positive solutions (u1, v1) and (u2, v2)
such that

a < max
t∈[0,1]

{u1(t) + v1(t)}, with max
t∈I
{u1(t) + v1(t)} < b,

b < max
t∈I
{u2(t) + v2(t)}, with min

t∈I
{u2(t) + v2(t)} < c.

Proof. Due to Theorem 3.1, we know T : K → K is a completely continuous
operator. Let

ζ(u, v) = min
t∈I
{u(t) + v(t)}, χ(u, v) = max

t∈I
{u(t) + v(t)},

φ(u, v) = max
t∈[0,1]

{u(t) + v(t)}, K(ζ, c) = {(u, v) ∈ K : ζ(u, v) < c}.

Obviously, ζ(u, v) 6 χ(u, v) 6 φ(u, v) and

‖(u, v)‖1 6
1

δ
min
t∈I
{u(t) + v(t)} =

1

δ
ζ(u, v).

For all (u, v) ∈ K, µ ∈ [0, 1], we have

χ(µu, µv) = max
t∈I
{µu(t) + µv(t)} = µχ(u, v).

It is clear that χ(0, 0) = 0. Next, we shall verify that condition (i) of Lemma 2.5 is
satisfied. Since (u, v) ∈ ∂K(ζ, c), we get

min
t∈I
{u(t) + v(t)} = c, and c 6 ‖u‖+ ‖v‖ 6 c

δ
.

From (H2), one has

ζ(T (u, v)) = min
t∈I

T (u, v)(t)

= min
t∈I

{∫ 1

0

G1(t, s)ϕq1

(∫ 1

0

H1(s, τ)f(τ, u(τ), v(τ))dτ

)
ds

+

∫ 1

0

G2(t, s)ϕq2

(∫ 1

0

H2(s, τ)g(τ, u(τ), v(τ))dτ

)
ds

}
>δ
∫ θ2

θ1

Ω1(s)ϕq1

(∫ θ2

θ1

σ1ν1(τ)f(τ, u(τ), v(τ))dτ

)
ds
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+ δ

∫ θ2

θ1

Ω2(s)ϕq2

(∫ θ2

θ1

σ2ν2(τ)g(τ, u(τ), v(τ))dτ

)
ds

>c. (3.4)

Now, we will show that condition (ii) of Lemma 2.5 is contented. Since (u, v) ∈
∂K(χ, b), we have

0 6 u(t) + v(t) 6 ‖u‖+ ‖v‖ 6 b

δ
for t ∈ [0, 1].

By (H3), we have

χ(T (u, v)) = max
t∈I

T (u, v)(t)

= max
t∈I

{∫ 1

0

G1(t, s)ϕq1

(∫ 1

0

H1(s, τ)f(τ, u(τ), v(τ))dτ

)
ds

+

∫ 1

0

G2(t, s)ϕq2

(∫ 1

0

H2(s, τ)g(τ, u(τ), v(τ))dτ

)
ds

}
6
∫ 1

0

Ω1(s)ϕq1

(∫ 1

0

ω1(τ)f(τ, u(τ), v(τ))dτ

)
ds

+

∫ 1

0

Ω2(s)ϕq2

(∫ 1

0

ω2(τ)g(τ, u(τ), v(τ))dτ

)
ds

6b.

Finally, we shall show that condition (iii) of Lemma 2.5 is contented. Since (0, 0) ∈
K and a > 0. K(φ, a) 6= ∅. Let (u, v) ∈ ∂K(φ, a),

δa 6 u(t) + v(t) 6 ‖u‖+ ‖v‖ = a for t ∈ I.

It follows from (H4) that

φ(T (u, v)) = max
t∈[0,1]

T (u, v)(t) > a.

The process of proof is same as (3.4), so we omit it.
Therefore, the hypotheses of Lemma 2.5 have been satisfied. Thus, the operator

T (u, v) has at least two fixed points (u1, v1) and (u2, v2) such that

a < max
t∈[0,1]

{u1(t) + v1(t)}, with max
t∈I
{u1(t) + v1(t)} < b,

b < max
t∈I
{u2(t) + v2(t)}, with min

t∈I
{u2(t) + v2(t)} < c.

Hence, the system (1.1)-(1.4) has at least two positive solutions (u1, v1) and (u2, v2).

Theorem 3.3. Suppose the conditions (s0) − (s2) holds and there exist constants
0 < r1 < r2 < r3 6 r such that

(H5) lim sup
u+v→0

max
t∈[0,1]

f(t, u, v)

ϕp1(u+ v)
< ϕp1(W ), lim sup

u+v→0
max
t∈[0,1]

g(t, u, v)

ϕp2(u+ v)
< ϕp2(W );

(H6) f(t, u, v) > ϕp1( r2Dδ ), g(t, u, v) > ϕp2( r2Dδ ) for t ∈ I, (u, v) ∈ [r2,
r2
δ ]×[r2,

r2
δ ].
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Then the systems (1.1)-(1.4) has at least three positive solutions (u1, v1), (u2, v2)
and (u3, v3) with ‖(u1, v1)‖1 < r1, r2 < ζ(u2, v2) < ‖(u2, v2)‖1 < r, r3 < ‖(u3, v3)‖1
with ζ(u3, v3) < r2.

Proof. Due to Theorem 3.1, there exists enough r > r1 > 0, T : Kr → Kr is
completely continuous. Since (H5), we get

f(t, u, v) 6 ϕp1(W (u+ v)), t ∈ [0, 1], 0 6 u+ v 6 r1,

g(t, u, v) 6 ϕp2(W (u+ v)), t ∈ [0, 1], 0 6 u+ v 6 r1.

Suppose (u, v) ∈ Kr1 , then ‖(u, v)‖1 6 r1, we have

‖T (u, v)‖1 = max
06t61

{
T1(u, v)(t) + T2(u, v)(t)

}
= max

06t61

{∫ 1

0

G1(t, s)ϕq1

(∫ 1

0

H1(s, τ)f(τ, u(τ), v(τ))dτ

)
ds

+

∫ 1

0

G2(t, s)ϕq2

(∫ 1

0

H2(s, τ)g(τ, u(τ), v(τ))dτ

)
ds

}
6r1W

∫ 1

0

Ω1(s)ϕq1

(∫ 1

0

ω1(τ)dτ

)
ds

+ r1W

∫ 1

0

Ω2(s)ϕq2

(∫ 1

0

ω2(τ)dτ

)
ds

6r1.

This shows that condition (ii) of Lemma 2.6 is fulfilled.
Denote r2 > 0, r3 = r2

δ < r, K(ζ, r2, r3) = {(u, v) ∈ K : r2 6 ζ(u, v), ‖(u, v)‖1 6
r3}. The definition of ζ is defined as in above Theorem 3.2. We choose u(t) +
v(t) = r2

δ for t ∈ [θ1, θ2]. It is clear that u(t) + v(t) = r2
δ ∈ K(ζ, r2,

r2
δ ), and

ζ(u, v) = r2
δ > r2, and so {(u, v) ∈ K(ζ, r2,

r2
δ ))|ζ(u, v) > r2} 6= ∅. Thus, for all

(u, v) ∈ K(ζ, r2,
r2
δ )), one has

ζ(T (u, v)(t)) = min
t∈I

∣∣T1(u, v)(t) + T2(u, v)(t)
∣∣

= min
t∈I

{∫ 1

0

G1(t, s)ϕq1

(∫ 1

0

H1(s, τ)f(τ, u(τ), v(τ))dτ

)
ds

+

∫ 1

0

G2(t, s)ϕq2

(∫ 1

0

H2(s, τ)g(τ, u(τ), v(τ))dτ

)
ds

}
>
r2D

δ

∫ θ2

θ1

δ1Ω1(s)ϕq1

(∫ θ2

θ1

σ1ν1(τ)dτ

)
ds

+
r2D

δ

∫ θ2

θ1

δ2Ω2(s)ϕq2

(∫ θ2

θ1

σ2ν2(τ)dτ

)
ds

> r2.

Hence the condition (i) of Lemma 2.6 is verified. Next, we prove that (iii) of Lemma
2.6.

mint∈I
∣∣T1(u, v)(t) + T2(u, v)(t)

∣∣ > δ‖T (u, v)‖1 > r2 for (u, v) ∈ K(ζ, r2, r) with
‖T (u, v)‖1 > r2

δ .
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To sum up, all the conditions of Lemma 2.6 are fulfilled, then there exist three
positive solutions (u1, v1), (u2, v2) and (u3, v3) satisfying ‖(u1, v1)‖1 < r1, r2 <
ζ(u2, v2) < ‖(u2, v2)‖1 < r, r3 < ‖(u3, v3)‖1 with ζ(u3, v3) < r2.

Corollary 3.1. Suppose the conditions (s0) − (s2) and (H6) hold. The function
f(t, u, v), g(t, u, v) satisfies

lim sup
u+v→0

max
t∈[0,1]

f(t, u, v)

ϕp1(u+ v)
= 0, lim sup

u+v→0
max
t∈[0,1]

g(t, u, v)

ϕp2(u+ v)
< ϕp2(W ).

Then the systems (1.1)-(1.4) has at least three positive solutions.

Corollary 3.2. Suppose the conditions (s0) − (s2) and (H6) hold. The function
f(t, u, v), g(t, u, v) satisfies

lim sup
u+v→0

max
t∈[0,1]

f(t, u, v)

ϕp1(u+ v)
< ϕp1(W ), lim sup

u+v→0
max
t∈[0,1]

g(t, u, v)

ϕp2(u+ v)
= 0.

Then the systems (1.1)-(1.4) has at least three positive solutions.

4. Examples

Example 4.1. Consider the following fractional differential systems

D
5
2

0+(ϕp1(D
3
2

0+u(t))) = f(t, u(t), v(t)), t ∈ (0, 1),

D
3
2

0+(ϕp2(D
5
2

0+v(t))) = g(t, u(t), v(t)), t ∈ (0, 1),

u(0) = 0, D
1
4

0+u(1) = 1
10D

1
4

0+u( 1
4 ) + 2

10D
1
4

0+u( 1
2 ),

D
3
2

0+u(0) = 0, ϕp1(D
3
2

0+u(1)) = 1
6ϕp1(D

3
2

0+u( 1
4 )) + 1

3ϕp1(D
3
2

0+u( 1
2 )),

v(0) = 0, D
1
2

0+v(1) = 1
3D

1
2

0+v( 3
4 ) + 1

5D
1
2

0+v( 3
2 ),

D
5
2

0+u(0) = 0, ϕp2(D
5
2

0+v(1)) = 1
7ϕp2(D

5
2

0+v( 3
4 )) + 1

2ϕp2(D
5
2

0+v( 3
2 )),

(4.1)

where α1 = 3
2 , α2 = 5

2 , β1 = 5
2 , β2 = 3

2 , γ1 = 1
4 , γ2 = 1

2 , ζ11 = 1
6 , ζ12 = 1

3 , ζ21 = 1
7 ,

ζ22 = 1
2 , η11 = 1

4 , η12 = 1
2 , η21 = 3

4 , η22 = 3
2 , ξ11 = 1

10 , ξ12 = 1
5 , ξ21 = 1

3 , ξ22 = 1
5 ,

p1 = 2, p2 = 3, q1 = 2, p1 = 3
2 , m = 4.

Simple computation shows that

A1 = 1−
2∑
i=1

ξ1iη
α1−γ1−1
1i = 0.7611 > 0, B1 = 1−

2∑
i=1

ζ1iη
β1−1
1i = 0.8613 > 0;

A2 = 1−
2∑
i=1

ξ2iη
α2−γ2−1
2i = 0.45 > 0, B2 = 1−

2∑
i=1

ζ2iη
β2−1
2i = 0.2639 > 0.

It is clear that (s0)− (s2) holds.

Let f(t, u(t), v(t)) = t+ u(t) + v(t), g(t, u(t), v(t)) = (t+ 0.5u(t) + 0.1v(t))
1
2 . If

we choose m0 = m1 = m2 = 1, n0 = n1 = n2 = 1. Clearly, (H1) holds. Thus, all
the hypotheses of Theorem 3.1 are satisfied. Hence, the systems (4.1) has at least
one solutions.
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Example 4.2. Consider the following fractional differential systems

D
5
3

0+(ϕ2(D
4
3

0+u(t))) = f(t, u(t), v(t)), t ∈ (0, 1),

D2
0+(ϕ3(D

5
3

0+v(t))) = g(t, u(t), v(t)), t ∈ (0, 1),

u(0) = 0, D
1
3

0+u(1) = 1
2D

1
3

0+u( 1
7 ),

D
5
3

0+u(0) = 0, ϕ2(D
5
3

0+u(1)) = 1
4ϕ2(D

5
3

0+u( 1
7 )),

v(0) = 0, D
1
3

0+v(1) = D
1
3

0+u( 1
4 ),

D2
0+v(0) = 0, ϕ3(D2

0+v(1)) = 1
2ϕ3(D2

0+v( 1
4 )),

(4.2)

where α1 = 5
3 , α2 = 2, β1 = 4

3 , β2 = 5
3 , γ1 = 1

3 , γ2 = 1
3 , ζ11 = 1

4 , ζ21 = 1
2 , η11 = 1

7 ,
η21 = 1

4 , ξ11 = 1
2 , ξ21 = 1, p1 = 2, p2 = 3, q1 = 2, q1 = 3

2 , m = 3, θ1 = 1
3 , θ2 = 1

2 .
Simple computation shows that

A1 = 1− ξ11η
α1−γ1−1
11 = 0.7386 > 0, B1 = 1− ζ11η

β1−1
11 = 0.8693 > 0;

A2 = 1− ξ21η
α2−γ2−1
21 = 0.6032 > 0, B2 = 1− ζ21η

β2−1
21 = 0.9213 > 0.

It is clear that (s0)− (s2) holds.
Let f(t, u, v) = (106 + t)(u + v)2, g(t, u, v) = (106 + t)(u + v)3. We obtain

σ1 = 3−
1
3 , σ2 = 1

3 , D = 200, W = 1.0865. Choose r2 = 1
10 , then

f(t, u, v) = (106 + t)(u+ v)2 > 104 > 60=ϕp1(
r2D

δ
), (u, v)∈

[
1

10
,

3

10

]
×
[

1

10
,

3

10

]
,

g(t, u, v)=(106+t)(u+v)3 > 8000>3600=ϕp2(
r2D

δ
), (u, v)∈

[
1

10
,

3

10

]
×
[

1

10
,

3

10

]
.

So condition (H6) was satisfied.

lim sup
u+v→0

max
t∈[0,1]

f(t, u, v)

ϕp1(u+ v)
= lim sup

u+v→0
max
t∈[0,1]

(106 + t)(u+ v)

= lim sup
u+v→0

(106 + 1)(u+ v) < 1.8065 = ϕp1(W ),

lim sup
u+v→0

max
t∈[0,1]

g(t, u, v)

ϕp2(u+ v)
= lim sup

u+v→0
max
t∈[0,1]

(106 + t)(u+ v)

= lim sup
u+v→0

(106 + 1)(u+ v) < 3.2635 = ϕp2(W ).

So condition (H5) holds. By the use of Theorem 3.3, the systems (4.2) has at least
three positions solutions.

5. Conclusion

In this paper, we obtained several sufficient conditions for the existence and multi-
plicity of positive solutions for a coupled system of nonlinear fractional multi-point
boundary value problems with p-Laplacian operator. Our results will be a useful
contribution to the existing literature on the topic of fractional-order nonlocal dif-
ferential equations. The results of the existence and multiplicity are demonstrated
on two relevant examples.
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