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DIMENSION FOR A RANDOM
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Abstract In this article, we study a random reaction-diffusion equation driv-
en by a Brownian motion with a wide class of nonlinear multiple. First, it is
exhibited that the weak solution mapping L2(RN ) into Lp(RN ) ∩H1(RN ) is
Hölder continuous for arbitrary space dimension N ≥ 1, where p > 2 is the
growth degree of the nonlinear forcing. The main idea to achieve this is the
classic induction technique based on the difference equation of solutions, by
using some appropriate multipliers at different stages. Second, the continu-
ity results are applied to investigate the sample-wise regular dynamics. It is
showed that the L2(RN )-pullback attractor is exactly a pullback attractor in
Lp(RN ) ∩H1(RN ), and furthermore it is attracting in Lδ(RN ) for any δ ≥ 2,
under almost identical conditions on the nonlinearity as in Wang et al [31],
whose result is largely developed in this paper. Third, we consider the box-
counting dimension of the attractor in Lp(RN )∩H1(RN ), and two comparison
formulas with L2-dimension are derived, which are a straightforward conse-
quence of Hölder continuity of the systems.
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1. Introduction

In this article, we consider the regular dynamics of the following random reaction-
diffusion equation driven by an unbounded stationary stochastic process with a
general nonlinear multiple,

du

dt
= ∆u− λu+ f(t, x, u) + g(t, x) + h(t, x, u)G(ϑtω), t > τ, x ∈ RN , (1.1)

with the initial condition

u(τ, x) = uτ , x ∈ RN , (1.2)

†The corresponding author. Email address: gshzhao@sina.com
1Chongqing Key Laboratory of Social Economy and Applied Statistics, School
of Mathematics and Statistics, Chongqing Technology and Business Univer-
sity, 400067 Chongqing, China
∗The authors were supported by CTBU Grant (Nos. KFJJ2018101,
ZDPTTD201909), Chongqing NSF Grant (No. cstc2019jcyj-msxmX0115)
and China NSF Grant (No. 11871122).

http://www.jaac-online.com
http://dx.doi.org/10.11948/20200054


Regular dynamics and box-counting dimension. . . 423

where λ > 0, g ∈ L2
loc(R, L2(RN )), and W (t) is a two-sided Browian motion over a

classical Wiener probability space (Ω,F ,P), where Ω = {ω ∈ C(R,R) : ω(0) = 0}
with the compact open topology such that Ω is Polish space, F is its Borel σ-algebra,
and P is the Wiener probability measure on (Ω,F). The Brownian motion W (t, ω)
is identified as ω(t), i.e., W (t, ω) = ω(t). We define a Wiener shift {ϑt}t∈R over Ω
defined as ϑtω(.) = ω(.+ t)− ω(t) for every t ∈ R. This shift preserves the Wiener
measure and is ergodic. Thus the quadruple form (Ω,F ,P, {ϑt}t∈R) forms a ergodic
metric dynamical system, see [1].

For [ 6= 0, let G : Ω→ R be a random variable such that

G(ω) =
ω([)

[
.

By the Wiener shift {ϑt}t∈R we have

G(ϑtω) =
ω(t+ [)− ω(t)

[
, t ∈ R.

Then by the characteristics of Brownian motion, G(ϑtω) is a stationary process with
a normal distribution and is unbounded in t for almost all ω ∈ Ω. It is noted that
G(ϑtω) can be regarded as a discrete version of the white noise. This stationary
process was used to study the chaotic behavior of random differential equations
driven by a multiplicative noise of G(ϑtω), see [21,25].

The random forcing in (1.1) is an unbounded multiplicative noise by a Brownian
motion and a nonlinear multiple h. We impose almost identical conditions on f
and h as in Wang et al [31], where the authors proved the existence of pullback
random attractor for problem (1.1)-(1.2) in L2(RN ) and obtained the Wong-Zakai
approximation results for the additive noise and linear multiplicative noise cases.
The same results are also investigated in [20] if the state space is bounded for
problem (1.1)-(1.2).

Note that we ignore the dependence of G on [ for our problem, since we do
not consider the approximation with respect to [ as in [31]. Nevertheless, for the
Wong-Zakai approximations as |[| → 0, [36] obtain some Higher-order results in the
cases of h(t, x, u) = φ(x) and h(t, x, u) = u.

In this paper, we study some further asymptotic dynamics of problem (1.1)-(1.2)
with a general nonlinear multiple h in some high-order regular (stronger) spaces.
For this purpose, we prove the Hölder continuity of solutions in Lp(RN )∩H1(RN ).
The main idea comes from the spirit in [3], where the Sobolev embedding is used.
However, the embedding condition N ≥ 3 is much restrictive. To surmount this
hurdle, we directly obtain an iterative relation from the nonlinearity. In partic-
ular, some appropriate multipliers at different stages are appropriately employed.
By many intricate calculus estimates, we obtain the higher order integrability of
difference of solutions in Lδ(RN ) for arbitrary δ ≥ 2; see Theorem 4.1, and the
Hölder continuity of solutions in H1(RN ) for the initial data belonging to L2(RN );
see Theorem 5.1.

Further, we use the the continuity results to explain the needed regular asymp-
totic dynamics. On the one hand, we show that the L2(RN )-attractor derived in [31]
is compact and attracting in the topology of space Lp(RN )∩H1(RN ), and further-
more is attracting in Lδ(RN ) for arbitrary δ ≥ 2, see Theorem 6.2 and 6.3 . On the
other hand, the Hölder continuity helps us to compare the box-counting dimension
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of the attractor in Lp(RN ) ∩ H1(RN ) with that in L2(RN ), and two comparison
formulas with L2-dimension are derived; see Theorem 7.1.

The theory of attractors feature prominently in understanding the long time be-
havior of deterministic or random dynamical system, see recent works [2,8,14,23,26].
The regular asymptotic dynamics in Lp and H1 spaces are richly investigated, for
instance, [27, 33, 34, 43] for the deterministic equations, and [9, 13, 17–19, 35, 38, 39]
for the stochastic differential equations on bounded or unbounded domains. It is
pointed out that in random cases, the random forcing in the mentioned literature
was always the additive noise or the linear multiplicative noise. The related method
is the well-known truncation estimate [13, 39], tail estimate technique and spectral
decomposition method [17]. Conversely, here the considered random forcing is driv-
en by a multiplicative noise with a general multiple h. Furthermore, the nonlinear
deterministic forcing f is different from the version used in [38–40], where a mono-
tone condition is explicitly assumed. In this paper, the form of nonlinearity is
completely borrowed from the original sources with only some small additional as-
sumptions on the coefficient. The nonlinear structure of the forcings is an obstacle
for us to obtain some higher-order estimate of difference of solutions. To solve this,
we analyse the structure of the nonlinearities f and h, and a monotone property is
in essence derived, which is crucial for our inductive idea.

We recall the results on the continuity of solution of partial differential equations
in regular spaces. In the deterministic case of the reaction-diffusion equation, if the
state space O ⊂ RN is bounded, Robinson [22, pp. 227–231] proved in 2001 that the
strong solution u : H1

0 (O) ∩ Lp(O)→ H1
0 (O) is continuous for N ≤ 2, where p ≥ 2

is the order of the nonlinearity of polynomial growth. However, if N = 3, the proof
in [22] required p ≤ 4. The continuity in Lp(O) was not included there. Up to 2008,
Trujillo and Wang [28] proved that the strong solutions u : H1

0 (O)∩Lp(O)→ H1
0 (O)

is continuous for any N ≥ 1 and p ≥ 2, which largely extended the result in [22].
The key point in that paper is to derive the estimates that tdudt ∈ L

∞(0, T ;H2(O))
by differentiating the equation with respect to t. However, since the Browian motion
is not necessary differentiable, then the method used in the deterministic cases is
not applicable to the stochastic differential equations such as problem (1.1)-(1.2).

In 2015, in the random case, by using the Sobolev critical embedding that

H1
0 (O) ↪→ L

2N
N−2 (O) and a mathematical induction method, Cao et al [3] proved the

continuity of solutions from H1
0 (O)∩Lp(O) to H1

0 (O) with N ≥ 3 and p ≥ 2. This
method successfully surmounted the obstacle of non-differentiability of the white
noises, and was also used to obtain the higher-order integrability of attractor for
stochastic p-Laplacian with multiplicative noise on unbounded domain [39]. Latter,
Zhu and Zhou [43] generalized this technique to derive the the continuity of solu-
tions from L2(RN ) to H1(RN ) for the deterministic reaction-diffusion equations on
unbounded domain. However, since the proof in [3, 39, 43] heavily depended the
Sobolev critical embedding inequalities, the dimension N ≥ 3 for reaction-diffusion
equations (rep. N > p for p-Lapacian equations [39]) is required and the technique
can not be applied directly to the general case N ≥ 1, especially in unbounded
domains. Recently, by an induction technique as in [38, 40], Cui et al [10] studied
the strong (L2, Lγ ∩H1

0 )-continuity for the deterministic reaction-diffusion equation
on bounded domain in any space dimension, and in particular some applications to
the fractional dimension was also covered.

The finite box counting dimension (fractional dimension) of attractor is of im-
portance in the sense that if a compact subset A of a metric space X has a finite
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fractional dimension dimX(A) of A such that dimX(A) < N
2 , then A can be embed-

ded into RN by an injective mapping, see [4, 15]. In other words, the asymptotic
behavior of these systems is determined by only a finite number of degree of free-
dom [22]. The box counting dimension of random attractors was studied in [16]. For
the applications to the stochastic partial differential equations, [32,41,42] obtained
the finite dimension of stochastic reaction-diffusion equations, FitzHugh-Nagumo
system and strongly damped wave equation on bounded domains. This paper dis-
cusses the box counting dimension in regular spaces and some comparison relations
are derived.

The structure of this paper is as follows. Section 2 is concerned with the notion
of pullback random attractor and existence result of bi-spatial attractor for non-
autonomous random dynamics systems. In Section 3, we present the assumptions
on the nonlinearities. In Section 4, we prove the Hölder continuity of solutions
in Lp(RN ) with respect to initial data in L2(RN ) and high-order integrability of
difference in Lδ(RN ) for arbitrary δ > 2. Section 5 studies the Hölder continuity
of solutions in H1(RN ). Section 6 and 7 are the applications of the Hölder con-
tinuity results to obtain pullback random attractor in Lp(RN ) ∩H1(RN ) and two
comparison formulas about box counting dimension with L2-dimension.

2. Non-autonomous random attractors and random
dynamical systems

In this section, we recall some basic notions on the pullback random attractor
[29,30] and the existence theorem of bi-spatial attractor [18,37] for non-autonomous
random dynamical systems. The reader is referred to the monographs [1, 5] for a
comprehensive information on the random dynamical systems, and to [6, 7, 24] for
the original work.

Let (X,B(X)) and (Y,B(Y )) be two completely separable metric spaces, where
X serves as the initial space, and Y as the regular space, satisfying Y ⊂ X (Y has
stronger topology than X generally). Let (Ω,F , P, {ϑt}t∈R) be a metric dynamical
system (briefly, MDS ϑ), R+ = {t ∈ R : t ≥ 0}, and 2X be the collection of all
subsets of X. Let D be a collection of some families of nonempty subsets of the
initial space X, which serves as the universe of sets.

Definition 2.1. A family of single-valued mappings ϕ : R+ × R × Ω × X 7→
X, (t, τ, ω, x) 7→ ϕ(t, τ, ω, x) is called a random cocycle on X over an MDS ϑ if
for all s, t ∈ R+, τ ∈ R and ω ∈ Ω, the following statements are satisfied:
• ϕ(., τ, ., .) : R+ × Ω×X 7→ X is (B(R+)×F × B(X),B(X))-measurable;
• ϕ(0, τ, ω, .) is the identity on X;
• ϕ(t+ s, τ, ω, .) = ϕ(t, τ + s, ϑsω, ϕ(s, τ, ω, .)).

Definition 2.2. Let ϕ be a random cocycle on X over an MDS ϑ such that
ϕ(t, τ, ω, .) maps X into Y for every t > 0, τ ∈ R and ω ∈ Ω. A random cocycle ϕ
is said to be continuous in X if the mapping ϕ(t, τ, ω, .) : X 7→ X is continuous for
each t ∈ R+, τ ∈ R and ω ∈ Ω. A random cocycle ϕ is said to be continuous from
X to Y if the mapping ϕ(t, τ, ω, .) : X 7→ Y is continuous for each t > 0, τ ∈ R and
ω ∈ Ω.

Definition 2.3. Let D : R×Ω→ 2X\∅;D : (τ, ω) 7→ D(τ, ω) ∈ 2X be a set-valued
mapping with closed images. We say D : (τ, ω) 7→ D(τ, ω) is measurable with



426 W. Zhao

respect to F (briefly, F-measurable) in X if for every fixed x ∈ X and τ ∈ R, the
mapping

ω 7→ dX(x,D(τ, ω)) = inf
z∈D(τ,ω)

dX(x, z)

is (F ,B(R))-measurable. If D is measurable, then the family of its images D =
{D(τ, ω) : τ ∈ R, ω ∈ Ω} is also called a random set.

Definition 2.4. Let ϕ be a random cocycle on X over an MDS ϑ. A family of sets
A = {A(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D is called a pullback attractor in X for ϕ if the
following statements hold:
• A is a random set in X and A(τ, ω) is compact in X for every τ ∈ R and

ω ∈ Ω;
• A is invariant, that is, for every τ ∈ R and ω ∈ Ω, ϕ(t, τ, ω,A(τ, ω)) =

A(τ + t, ϑtω),∀ t ≥ 0;
• A is attracting in X, namely, for every τ ∈ R and ω ∈ Ω and D ∈ D,

lim
t→∞

distX(ϕ(t, τ − t, ϑ−tω,D(τ − t, ϑ−tω)),A(τ, ω)) = 0.

Suppose further that ϕ(t, τ, ω, .) maps X into Y for every t > 0, τ ∈ R and
ω ∈ Ω. Then a family of sets A = {A(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D is called a
(X,Y )-pullback attractor for ϕ if there hold:
• A is a random set in Y , A(τ, ω) is compact in Y for every τ ∈ R and ω ∈ Ω;
• A is attracting in Y , namely, for every τ ∈ R and ω ∈ Ω and D ∈ D,

lim
t→∞

distY (ϕ(t, τ − t, ϑ−tω,D(τ − t, ϑ−tω)),A(τ, ω)) = 0,

where distY is the Hausdorff semi-metric in 2Y with

distY (A,B) = sup
x∈A

inf
y∈B

dY (x, y).

We present the following results for the regularity of pullback random attractor
for non-autonomous dynamical systems from [18, 37], where the measurability of
attractor in regular space is from [11, Theorem 19]. The result in the initial space
X is adapted from [29,30].

Theorem 2.1. Suppose that ϕ is a continuous random cocycle on X (over an MDS
ϑ) and D is inclusion closed universe in the initial space X. Suppose that

(i) ϕ has a closed D-pullback random absorbing set K = {K(τ, ω) : τ ∈ R, ω ∈
Ω} ∈ D in X, i.e., K is a closed random set and for every τ ∈ R, ω ∈ Ω and D ∈ D
, there exists an absorbing time T = T (τ, ω,D) > 0 such that for all t ≥ T ,

ϕ(t, τ − t, ϑ−tω,D(τ − t, ϑ−tω)) ⊆ K(τ, ω);

(ii) ϕ is D-pullback asymptotically compact in X, i.e., for every τ ∈ R and
ω ∈ Ω, the sequence

{ϕ(tn, τ − tn, ϑ−tnω, xn)}∞n=1 is precompact in X,

whenever tn →∞, xn ∈ D(τ − tn, ϑ−tnω) with D ∈ D;
Then the random cocycle ϕ possesses a unique D-pullback random attractor A =

{A(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D such that for every τ ∈ R and ω ∈ Ω,

A(τ, ω) = ∩s>0∪t≥sϕ(t, τ − t, ϑ−tω,K(τ − t, ϑ−tω))
X
. (2.1)
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Suppose further that Y ⊂ X and ϕ(t, τ, ω, .) maps X into Y for every t > 0, τ ∈
R and ω ∈ Ω and ϕ is D-pullback asymptotically compact from X to Y i.e., for
every τ ∈ R and ω ∈ Ω, the sequence

{ϕ(tn, τ − tn, ϑ−tnω, xn)}∞n=1 is precompact in Y,

whenever tn →∞, xn ∈ D(τ − tn, ϑ−tnω) with D ∈ D.
Then the D-pullback random attractor A defined as (2.1) is also a (X,Y )-

pullback random attractor, which can be structured by the Y -metric, namely, for
every τ ∈ R and ω ∈ Ω,

A(τ, ω) = ∩s>0∪t≥sϕ(t, τ − t, ϑ−tω,K(τ − t, ϑ−tω))
Y
.

3. Mathematical Background on the equation

In this section, we give the conditions on the nonlinearity f and h, which is totally
borrowed from [31]. The nonlinear function f in (1.1) is continuous on R×RN ×R
and satisfies the following conditions: for all t, s ∈ R and x ∈ RN and

f(t, x, s)s ≤ −α1|s|p + ψ1(t, x), (3.1)

|f(t, x, s)| ≤ α2|s|p−1 + ψ2(t, x), (3.2)

∂

∂s
f(t, x, s) ≤ −α3|s|p−2 + ψ3(t, x), (3.3)

where p > 2, α1, α2 and α3 are positive constants, ψ1 ∈ L1
loc(R, L1(RN ))∩ L

p
2

loc(R,

L
p
2 (RN )), ψ2 ∈ L2

loc(R, L2(RN )) ∩ Lp1loc(R, Lp1(RN )) with 1
p1

+ 1
p = 1, and ψ3 ∈

L∞loc(R, L∞(RN )).
Let h : R× RN × R→ R be continuous such that for all t, s ∈ R and x ∈ RN

|h(t, x, s)| ≤ β1(t, x)|s|q−1 + β2(t, x), (3.4)∣∣∣ ∂
∂s
h(t, x, s)

∣∣∣ ≤ β3(t, x)|s|q−2 + β4(t, x), (3.5)

where 2 ≤ q < p, β1 ∈ L
p
p−q
loc (R, L

p
p−q (RN )) ∩ L

2p−2
p−q
loc (R, L

2p−2
p−q (RN )) and β2 ∈

L2
loc(R, L2(RN )) ∩ L

2p−2
p−1

loc (R, L
2p−2
p−1 (RN )) and β3, β4 ∈ L∞loc(R, L∞(RN )).

Remark 3.1. The conditions on f and h are the same as in [21, 31]. For our
purpose, we need to split f into f = f1 + f2 with

f1 = − α3

2(p− 1)
|s|p−2s, (3.6)

and f2 = f − f1. Then f1 is monotonous, i.e., there exists a positive constant c1
such that

(f1(t, x, s1)− f1(t, x, s2))(s1 − s2) ≤ −c1|s1 − s2|p, (3.7)

where c1 = c1(α3, p,N). Since ∂
∂sf1(t, x, s) = −α3

2 |s|
p−2 for p > 2, then it is easy

to see that f2 satisfies

∂

∂s
f2(t, x, s) ≤ −α3

2
|s|p−2 + ψ3(t, x), (3.8)

where α3 and ψ3 are as in (3.3).
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Remark 3.2. For the function h, it is easy to check that condition (3.5) implies
that

|h(t, x, s1)− h(t, x, s2)| ≤ β5(t, x)|s1 − s2|(1 + |s1|q−2 + |s2|q−2). (3.9)

for some β5 ∈ L∞loc(R, L∞(RN )).

For the non-autonomous term g and ψ1, we will assume that for any τ ∈ R,∫ τ

−∞
eλs(‖g(s)‖2 + ‖ψ1(s)‖L1)ds < +∞. (3.10)

As for the existence of the tempered random attractor, we need further to assume
that the non-autonomous term satisfies for any c > 0,

lim
t→−∞

ect
∫ 0

−∞
eλs(‖g(s+ t)‖2 + ‖ψ1(s+ t)‖L1)ds = 0. (3.11)

Throughout the paper, the letter c is a generic positive constant that may change
its value from line to line, and ‖.‖p denote the norm in Lp(RN ). For p = 2 we write
‖.‖2 = ‖.‖.

4. Hölder continuity of solutions in Lp(RN) and high-
order integrability of difference in Lδ(RN) for ar-
bitrary δ ≥ 2

In this section, based on the difference equation of solutions to problem (1.1)-(1.2),
we prove the Hölder continuity of solutions in Lp(RN ) and high-order integrability
of difference in Lδ(RN ) for arbitrary δ ∈ [2,+∞). It is note that the existence and
continuity of solution in L2(RN ) for problem (1.1)-(1.2) have been proved in [31].

Given τ ∈ R and ω ∈ Ω, let ui(t, τ, ω, uτ,i) be the solutions to equations (1.1)-
(1.2) with the initial data uτ,i, i = 1, 2. Then we get the difference equation with
respect to U = u1 − u2:

dU

dt
= ∆U − λU + f(t, x, u1)− f(t, x, u2) + (h(t, x, u1)− h(t, x, u2))G(ϑtω), (4.1)

with the initial condition Uτ = uτ,1 − uτ,2.
For our purpose, we need to give an equivalent form of (4.1) by rewriting the

nonlinearities in (4.1). Let

γf2(t) =

∫ 1

0

∂f2
∂s

(t, x, su1 + (1− s)u2)ds, (4.2)

and

γh(t) =

∫ 1

0

∂h

∂s
(t, x, su1 + (1− s)u2)ds, (4.3)

where f1 and f2 are in (3.6). Then (4.1) is equivalent to

dU

dt
= ∆U − λU + (f1(t, x, u1)− f1(t, x, u2)) + γf2(t)U + G(ϑtω)γh(t)U, (4.4)
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with the initial condition Uτ = uτ,1 − uτ,2.
The following lemma shows the higher-order integrability of difference and Hölder

continuity of solutions to problem (1.1)-(1.2) with f satisfying (3.1)-(3.3) and h sat-
isfying (3.4) and (3.5).

Theorem 4.1. Suppose that (3.1)-(3.5) hold, p > q ≥ 2 and the space dimension
N ≥ 1. Take τ ∈ R, ω ∈ Ω and T > 0. Let ui(t) = ui(t, τ, ω, uτ,i) be the unique
weak solution of Eq.(1.1)-(1.2) corresponding to the initial value uτ,i, i = 1, 2. Then
for every k ∈ N, there exists a positive deterministic constant c(k) depending only
on k, τ, ω, T such that for every t ∈ (τ, τ + T ],

(t− τ)‖(t− τ)bk(u1(t, τ, ω, uτ,1)− u2(t, τ, ω, uτ,2))‖akak ≤ c
(k)‖uτ,1 − uτ,2‖2, (Ak)

and∫ t

τ

‖(s−τ)bk+1(u1(s, τ, ω, uτ,1)−u2(s, τ, ω, uτ,2))‖ak+1
ak+1

ds ≤ c(k)‖uτ,1−uτ,2‖2, (Bk)

where ak = kp− 2(k − 1), k = 1, 2, ...; b1 = 1, bk = 2p+2k−4
kp−2(k−1) , k = 2, 3, ... .

Proof. We prove the result by the induction scheme. First by (3.7), it is clear
that for m ≥ 2,∫

RN
(f1(t, x, u1)− f1(t, x, u2))|U |m−2Udx ≤ −c1‖U(t)‖m+p−2

m+p−2. (4.5)

Using the test function |U |m−2U in (4.4) with m ≥ 2, we obtain

1

m

d

dt
‖U(t)‖mm + λ‖U(t)‖mm + c0‖∇|U(t)|m2 ‖2 + c1‖U(t)‖m+p−2

m+p−2

≤
∫
RN

γf2(t)|U(t)|mdx+ |G(ϑtω)|
∫
RN

γh(t)|U(t)|mdx. (4.6)

By (4.2) and (3.8), the first term on the right hand side of (4.6) is estimated as∫
RN
γf2(t)|U(t)|mdx≤−α3

2

∫
RN

(∫ 1

0

|su1 + (1− s)u2|p−2ds+ ψ3(t, x)
)
|U(t)|mdx

≤−α3

2

∫
RN

∫ 1

0

|su1+(1−s)u2|p−2ds|U(t)|mdx+c

∫
RN
|U(t)|mdx,

(4.7)

since ψ3 ∈ L∞loc(R, L∞(RN )). On the other hand, when 2 < q < p, by (4.3) and
(3.5) and using Young inequality, the second term on the right hand side of (4.6) is
bounded by, for every t ∈ (τ, τ + T ],

|G(ϑtω)|
∫
RN

γh(t)|U(t)|mdx

≤|G(ϑtω)|
∫
RN

(
β3(t, x)

∫ 1

0

|su1 + (1− s)u2|q−2ds+ β4(t, x)
)
|U(t)|mdx

=|G(ϑtω)|
∫
RN

β3(t, x)

∫ 1

0

|su1 + (1− s)u2|q−2ds|U(t)|mdx
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+ |G(ϑtω)|
∫
RN

β4(t, x)|U(t)|mdx

≤α3

2

∫
RN

∫ 1

0

|su1 + (1− s)u2|p−2ds|U(t)|mdx

+ c|G(ϑtω)|
p−2
p−q

∫
RN
|β3(t, x)|

p−2
p−q |U(t)|mdx

+ |G(ϑtω)|
∫
RN

β4(t, x)|U(t)|mdx

≤α3

2

∫
RN

∫ 1

0

|su1 + (1− s)u2|p−2ds|U(t)|mdx+ c

∫
RN
|U(t)|mdx, (4.8)

using β3, β4 ∈ L∞loc(R, L∞(RN )). Combine (4.7) and (4.8) to get that for every
t ∈ (τ, τ + T ],∫

RN
γf2(t)|U(t)|mdx+ |G(ϑtω)|

∫
RN

γh(t)|U(t)|mdx ≤ c
∫
RN
|U(t)|mdx, (4.9)

where c = c(m, τ, ω, T ). If q = 2, then it is easy to show that (4.9) also holds.
Therefore by (4.6) and (4.9), we find that there exist positive constants c1 and c2
such that for every t ∈ (τ, τ + T ], 2 ≤ q < p and m ≥ 2,

d

dt
‖U(t)‖mm + c0‖∇|U(t)|m2 ‖2 + c1‖U(t)‖m+p−2

m+p−2 ≤ c2‖U(t)‖mm, (4.10)

which obviously gives

d

dt
‖U(t)‖mm + c1‖U(t)‖m+p−2

m+p−2 ≤ c2‖U(t)‖mm, (4.11)

where ci = ci(m, τ, ω, T ) for i = 1, 2.
We first show (Ak) and (Bk) hold true for k = 1.
Given m = 2 in (4.10), we have

d

dt
‖U(t)‖2 + c0‖∇U(t)‖2 + c1‖U(t)‖pp ≤ c2‖U(t)‖2. (4.12)

Multiplying (4.12) with e−c2t and then replacing t by s and integrating from τ to t
for t ∈ (τ, τ + T ], we find

‖U(t)‖2 ≤ ec2(t−τ)‖U(τ)‖2, t ∈ (τ, τ + T ]. (4.13)

By (4.12) and (4.13), we obtain that for every t ∈ (τ, τ + T ],∫ t

τ

(‖∇U(s)‖2 + ‖U(s)‖pp)ds ≤ c‖Uτ‖2. (4.14)

Given b1 = 1, from (4.14) it is easy to see that for every t ∈ (τ, τ + T ],∫ t

τ

‖(s− τ)b1U(s)‖ppds ≤ c‖Uτ‖2. (4.15)

Letting m = p in (4.11), we have

d

dt
‖U(t)‖pp + c1‖U(t)‖2p−22p−2 ≤ c2‖U(t)‖pp. (4.16)
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Observer that

(t− τ)b1p
d

dt
‖U(t)‖pp =

d

dt
‖(t− τ)b1U(t)‖pp − b1p(t− τ)b1p−1‖U(t)‖pp. (4.17)

Then multiplying (4.16) with (t − τ)b1p+1 and using (4.17), we see that for every
t ∈ (τ, τ + T ],

(t− τ)
d

dt
‖(t− τ)b1U(t)‖pp + c1‖(t− τ)

p+1
2p−2U(t)‖2p−22p−2

≤c2(t− τ)b1p+1‖U(t)‖pp + b1p(t− τ)b1p‖U(t)‖pp
=c2(t− τ)‖(t− τ)b1U(t)‖pp + b1p‖(t− τ)b1U(t)‖pp
≤c‖(t− τ)b1U(t)‖pp, (4.18)

from which it follows that for every t ∈ (τ, τ + T ],

(t− τ)
d

dt
‖(t− τ)b1U(t)‖pp ≤ c‖(t− τ)b1U(t)‖pp. (4.19)

Replacing t by s in (4.19) and integrating from τ to t for t ∈ (τ, τ+T ], by integration
by parts, we find∫ t

τ

(s− τ)
d

ds
‖(s− τ)b1U(s)‖ppds=(t− τ)‖(t−τ)b1U(t)‖pp−

∫ t

τ

‖(s−τ)b1U(s)‖ppds

≤ c
∫ t

τ

‖(s− τ)b1U(s)‖ppds. (4.20)

By (4.15) and (4.20), we get that for every t ∈ (τ, τ + T ],

(t− τ)‖(t− τ)b1U(t)‖pp ≤ (c+ 1)

∫ t

τ

‖(s− τ)b1U(s)‖ppds ≤ c(1)‖Uτ‖2, (4.21)

where c(1) = c(1)(τ, ω, T ). Multiply (4.18) with (t− τ)p−1 and along with (4.21) to
yield

(t− τ)p
d

dt
‖(t− τ)b1U(t)‖pp + c1‖(t− τ)

2p
2p−2U(t)‖2p−22p−2

≤c(t− τ)p−1‖(t− τ)b1U(t)‖pp ≤ c‖Uτ‖2, (4.22)

for all t ∈ (τ, τ + T ]. Integrating (4.22) from τ to t, by integration by parts, and
utilizing (4.15), we find that for every t ∈ (τ, τ + T ],

c1

∫ t

τ

‖(s− τ)b2U(s)‖2p−22p−2ds ≤ cT‖Uτ‖2 + p

∫ t

τ

(s− τ)p−1‖(s− τ)b1U(s)‖ppds

≤ cT‖Uτ‖2 +pT p−1
∫ t

τ

‖(s−τ)b1U(s)‖ppds

≤ c(1)‖Uτ‖2, (4.23)

where b2 = 2p
2p−2 . Therefore by (4.21) and (4.23) we claim that (Ak) and (Bk) hold

true for k = 1. Letting m = 2p−2 in (4.11), choosing the multipliers first (t−τ)2p+1
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and then (t− τ), by an almost similar procedure as (4.16)-(4.23), we can show that
(A2) and (B2) hold, respectively.

Step two. We now prove that (Ak+1) and (Bk+1) hold if (Ak) and (Bk) hold for
some k ≥ 1. To this end, given m = ak+1 in (4.11), we obtain

d

dt
‖U(t)‖ak+1

ak+1
+ c1‖U(t)‖ak+1+p−2

ak+1+p−2 ≤ c2‖U(t)‖ak+1
ak+1

, (4.24)

where ci = ci(k, τ, ω, T ), i = 1, 2. Note that

(t− τ)bk+1ak+1
d

dt
‖U(t)‖ak+1

ak+1
=
d

dt
‖(t− τ)bk+1U(t)‖ak+1

ak+1

− bk+1ak+1(t− τ)bk+1ak+1−1‖U(t)‖ak+1
ak+1

. (4.25)

Multiplying (4.24) with (t − τ)bk+1ak+1+1 and using (4.25), we deduce that for all
t ∈ (τ, τ + T ],

(t− τ)
d

dt
‖(t− τ)bk+1U(t)‖ak+1

ak+1
+ c1(t− τ)bk+1ak+1+1‖U(t)‖ak+1+p−2

ak+1+p−2

≤(c2(t− τ) + bk+1ak+1)‖(t− τ)bk+1U(t)‖ak+1
ak+1

≤c‖(t− τ)bk+1U(t)‖ak+1
ak+1

. (4.26)

Replacing t of (4.26) by s, then integrating from τ to t, by integration by parts
and along with assumption (Bk), we get that there exists a constant c(k+1) =
c(k+1)(k, τ, ω, T ) > 0 such that

(t− τ)‖(t− τ)bk+1U(t)‖ak+1
ak+1

≤ c
∫ t

τ

‖(s− τ)bk+1U(s)‖ak+1
ak+1

ds+

∫ t

τ

‖(s− τ)bk+1U(s)‖ak+1
ak+1

ds

≤ c(k+1)‖Uτ‖2, ∀ t ∈ (τ, τ + T ], (4.27)

which gives that (Ak+1) holds true for arbitrary k ∈ N.
Multiply (4.26) with (t− τ) to show that

(t− τ)2
d

dt
‖(t− τ)bk+1U(t)‖ak+1

ak+1
+ c1(t− τ)bk+1ak+1+2‖U(t)‖ak+1+p−2

ak+1+p−2

≤c(t− τ)‖(t− τ)bk+1U(t)‖ak+1
ak+1

. (4.28)

Since ak+2 = ak+1 + p− 2 and bk+2 = 2p+2k
(k+2)p−2(k+1) = ak+1bk+1+2

ak+1+p−2 , then we have

(t− τ)bk+1ak+1+2‖U(t)‖ak+1+p−2
ak+1+p−2 = ‖(t− τ)bk+2U(t)‖ak+2

ak+2
. (4.29)

Hence by a combination of (4.28) and (4.29), and along with (4.27), it produces
that for t ∈ (τ, τ + T ],

(t− τ)2
d

dt
‖(t− τ)bk+1U(t)‖ak+1

ak+1
+ c1‖(t− τ)bk+2U(t)‖ak+2

ak+2
≤ c‖Uτ‖2, (4.30)

for all t ∈ (τ, τ + T ]. Replacing t by s and integrating (4.30) from τ to t, by
integration by parts using (Bk), we obtain

c1

∫ t

τ

‖(s− τ)bk+2U(s)‖ak+2
ak+2

ds ≤ 2

∫ t

τ

(s− τ)‖(s− τ)bk+1U(s)‖ak+1
ak+1

ds+ cT‖Uτ‖2
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≤ c(k+1)‖Uτ‖2,

for all t ∈ (τ, τ + T ]. This shows that (Bk+1) holds true for arbitrary k ∈ N, which
concludes the total proof.

Remark 4.1. The method used for the difference U can not be carried out for the
single solution u to the problem (1.1)-(1.2) when the forcing g ∈ L2

loc(R, L2(RN )),
in which case we can only show that the solution u(t, τ, ω, uτ ) ∈ Lp(RN )∩H1(RN )
for every t > τ ∈ R and ω ∈ Ω, see Remark 5.1 in the following. Of course, if
g ∈ L∞loc(R, L∞(RN )) , by a similar technique as the above theorem we can prove
the solution u(t, τ, ω, uτ ) ∈ Lr(RN ) for every t > τ ∈ R, ω ∈ Ω and any r ≥ p.

Remark 4.2. If k = 1, we have

‖(u1(t, τ, ω, uτ,1)− u2(t, τ, ω, uτ,2))‖p ≤
c

(t− τ)
p+1
p

‖uτ,1 − uτ,2‖
2
p ,

i.e., the solution is 2
p -Hölder continuous from L2(RN ) to Lp(RN ) for t > τ and

p > 2.

5. Hölder continuity of solutions in H1(RN)

In this section, the decomposition of the nonlinearity f is unavailable for us to
establish the difference estimates in H1(RN ), and thus we directly cope with (4.1),
for which the following additional condition on f is needed: there exists a ψ4 ∈
L∞loc(R, L∞(RN )) such that for all t, s ∈ R and x ∈ RN ,∣∣∣ ∂

∂s
f(t, x, s)

∣∣∣ ≤ ψ4(t, x)(1 + |s|p−2). (5.1)

The following lemma, which is useful in what follows, is adapted from [40].

Lemma 5.1. [40, Lemma 4.2] Let ξ(t), g and h be tree nonnegative and locally
integrable functions on R such that dξ

dt is also locally integrable and

dξ(t)

dt
+ νξ(t) + g(t) ≤ h(t), t ∈ R,

for some constant ν ≥ 0. Then

(i) for arbitrary a > 0 and τ ∈ R, ξ(τ) ≤ e−ντ

a

∫ τ
τ−a e

νsξ(s)ds+e−ντ
∫ τ
τ−a e

νsh(s)ds.
(ii) for arbitrary a, ε > 0 and σ ∈ [τ − a, τ ],

ξ(σ) + e−ντ
∫ τ

τ−a
eνsg(s)ds ≤ (eνa + 1)e−ντ

ε

∫ τ

τ−a−ε
eνsξ(s)ds

+ (eνa + 2)e−ντ
∫ τ

τ−a−ε
eνsh(s)ds.

In particular, (i) and (ii) hold for ν = 0.

Lemma 5.2. Suppose that (3.1)-(3.5) hold. Take τ ∈ R, ω ∈ Ω and T > 0. Then
there exist a constant c = c(τ, ω, T ) > 0 such that the solution u of problem (1.1)
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satisfies for t ∈ (τ, τ + T ],

‖u(t, τ, ω, uτ )‖2 +

∫ t

τ

(‖∇u(s, τ, ω, uτ )‖2 + ‖u(s, τ, ω, uτ )‖pp)ds

≤c(1 +

∫ τ+T

τ

‖g(s, .)‖2ds+ ‖uτ‖2),

(5.2)

(t− τ)‖u(t, τ, ω, uτ )‖pp + (t− τ)

∫ t

t+τ
2

‖u(s, τ, ω, uτ )‖2p−22p−2ds

≤c(1 +

∫ τ+T

τ

‖g(s, .)‖2ds+ ‖uτ‖2),

(5.3)

(t− τ)‖∇u(t, τ, ω, uτ )‖2 ≤ c(1 +

∫ τ+T

τ

‖g(s, .)‖2ds+ ‖uτ‖2). (5.4)

Proof. Using the test function u in (1.1), we have

1

2

d

dt
‖u‖2 + λ‖u‖2 + ‖∇u‖2 =

∫
RN

f(t, x, u)udx+

∫
RN

g(t, x)udx

+ G(ϑtω)

∫
RN

h(t, x, u)udx, (5.5)

where by Young inequality we have∣∣∣ ∫
RN

g(t, x)udx
∣∣∣ ≤ λ

4
‖u‖2 +

1

λ
‖g(t, .)‖2, (5.6)

and by (3.1), we get∫
RN

f(t, x,u)udx ≤ −α1‖u‖pp +

∫
RN

ψ1(t, x)dx, (5.7)

and by (3.4), it follows that

|G(ϑtω)|
∣∣∣ ∫

RN
h(t, x, u)udx

∣∣∣ ≤ |G(ϑtω)|
∫
RN

(β1(t, x)|u|q−1 + β2(t, x))|u|dx

≤ α1

2

∫
RN
|u|pdx+ c|G(ϑtω)|

p
p−q ‖β1(t, .)‖

p
p−q
p
p−q

+ c|G(ϑtω)|p1‖β2(t, .)‖p1p1 . (5.8)

Since β2∈L2
loc(R, L2(RN ))∩L

2p−2
p−1

loc (R, L
2p−2
p−1 (RN )) then we have β2∈Lp1loc(R, L

p1(RN )).
By a combination of (5.5)-(5.8), we find that there exists a constant c = c(τ, ω, T ) >
0 such that for all t ∈ [τ, τ + T ],

d

dt
‖u‖2 + ‖∇u‖2 +

α1

2
‖u‖pp ≤ c(‖g(t, .)‖2 + 1). (5.9)

Integrate (5.9) from τ to t to yield that for t ∈ [τ, τ + T ],

‖u(t)‖2 +

∫ t

τ

(‖∇u(s)‖2 +
α1

2
‖u(s)‖pp)ds ≤ c

∫ t

τ

(‖g(s, .)‖2 + 1)ds+ ‖uτ‖2
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≤ c(1 +

∫ τ+T

τ

‖g(s, .)‖2ds) + ‖uτ‖2,

(5.10)

which proves (5.2).
Using the test function |u|p−2u in (1.1), we obtain

1

p

d

dt
‖u‖pp + λ‖u‖pp+(−∆u, |u|p−2u)=

∫
RN

f(t, x, u)|u|p−2udx+

∫
RN
g(t, x)|u|p−2udx

+ G(ϑtω)

∫
RN

h(t, x, u)|u|p−2udx, (5.11)

where it is clear that (−∆u, |u|p−2u) ≥ 0 for p > 2. By (3.1), we get for t ∈ (τ, τ+T ],∫
RN

f(t, x, u)|u|p−2udx ≤ −α1

∫
RN
|u|2p−2dx+

∫
RN

ψ1(t, x)|u|p−2dx

≤−α1

∫
RN
|u|2p−2dx+

λ

2

∫
RN
|u|pdx+

1

2λ

∫
RN
|ψ1(t, x)|

p
2 dx.

(5.12)

From (5.8) we have

G(ϑtω)

∫
RN
h(t, x, u)|u|p−2udx

≤α1

2

∫
RN
|u|2p−2dx+

∫
RN

ψ1(t, x)|u|p−2dx

≤α1

2

∫
RN
|u|2p−2dx+c|G(ϑtω)|

p
p−q

∫
RN
|β1(t, x)|

p
p−q |u|p−2dx

+ c|G(ϑtω)|p1
∫
RN
|β2(t, x)|p1 |u|p−2dx. (5.13)

The Young inequality implies that

c|g(ϑtω)|
p
p−q

∫
RN
|β1(t, x)|

p
p−q |u|p−2dx

≤α1

8

∫
RN
|u|2p−2dx+ c|G(ϑtω)|

2p−2
p−q

∫
RN
|β1(t, x)|

2p−2
p−q dx, (5.14)

and

c|g(ϑtω)|p1
∫
RN
|β2(t, x)|p1 |u|p−2dx

≤α1

8

∫
RN
|u|2p−2dx+ c|G(ϑtω)|

2p−2
p−1

∫
RN
|β2(t, x)|

2p−2
p−1 dx. (5.15)

Combine (5.14) and (5.15) to (5.13) to find that for t ∈ (τ, τ + T ],

G(ϑtω)

∫
RN

h(t, x, u)|u|p−2udx ≤ 3α1

4

∫
RN
|u|2p−2dx+ c. (5.16)

On the other hand, for the forcing term, we have∣∣∣ ∫
RN

g(t, x)|u|p−2udx
∣∣∣ ≤ α1

8

∫
RN
|u|2p−2dx+ c‖g(t, .)‖2. (5.17)
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Thus by a combination of (5.12), (5.16) and (5.17) into (5.11), we obtain that for
t ∈ (τ, τ + T ],

d

dt
‖u‖pp +

α1

8
‖u‖2p−22p−2 ≤ c(1 + ‖g(t, .)‖2). (5.18)

Applying Lemma 5.1 (ii) to (5.18) over the interval [ τ+t2 , t] with ν = 0, a = ε = t−τ
2 ,

we get

‖u(t)‖pp+
α1

8

∫ t

τ+t
2

‖u(s)‖2p−22p−2ds≤
4

t−τ

∫ t

τ

‖u(s)‖ppds+c(1+

∫ τ+T

τ

‖g(s, .)‖2ds). (5.19)

Thus by (5.2) and (5.19), we get for t ∈ (τ, τ + T ],

(t−τ)‖u(t)‖pp+
α1

8
(t−τ)

∫ t

τ+t
2

‖u(s)‖2p−22p−2ds≤c(1+

∫ τ+T

τ

‖g(s, .)‖2ds+‖uτ‖2), (5.20)

which shows (5.3).
Using the test function −∆u in (1.1), we see that

1

2

d

dt
‖∇u‖2 + ‖∆u‖2

≤
∫
RN

f(x, t, u)∆udx+

∫
RN

g(t, x)∆udx+ G(ϑtω)

∫
RN

h(t, x, u)∆udx

≤1

2
‖∆u‖2 + c

∫
RN

(|ψ2(t, x)|2 + |u|2p−2)dx+ c

∫
RN
|g(t, x)|2dx

+ |G(ϑtω)|2
∫
RN

(|β1(t, x)|2|u|2q−2 + |β2(t, x)|2)dx

≤1

2
‖∆u‖2 + c

∫
RN

(|ψ2(t, x)|2 + |u|2p−2)dx+ c

∫
RN
|g(t, x)|2dx

+

∫
RN
|u|2p−2dx+

∫
RN
|G(ϑtω)β1(t, x)|

2p−2
p−q dx+

∫
RN
|G(ϑtω)β2(t, x)|2dx, (5.21)

which clearly gives that for t ∈ (τ, τ + T ],

d

dt
‖∇u‖2 + ‖∆u‖2 ≤ c(‖u‖2p−22p−2 + ‖g(t, .)‖2 + 1). (5.22)

Applying Lemma (ii) to (5.22) over the interval [ τ+3t
4 , t] with ν = 0 and a = ε = t−τ

4 ,
we get that for t ∈ (τ, τ + T ],

(t− τ)‖∇u(t)‖2 + (t− τ)

∫ t

3t+τ
4

‖∆u(s)‖2ds

≤8

∫ t

τ

‖∇u(s)‖2ds+ c(t− τ)

∫ t

t+τ
2

‖u(s)‖2p−22p−2ds+ c

∫ t

τ

(‖g(s, .)‖2 + 1)ds,

from which and (5.3), we infer that (5.4) holds true.

Remark 5.1. This lemma in fact shows that the solution u(t, τ, ω, uτ ) ∈ Lp(RN )∩
H1(RN ) for every t > τ ∈ R and ω ∈ Ω when the initial datum uτ ∈ L2(RN ), which
makes sense for us to discuss the Hölder continuity and attractors in Lp(RN ) ∩
H1(RN ).
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The following result is concern about the Hölder continuity of solutions in
H1(RN ).

Theorem 5.1. Suppose that (3.1)-(3.5) and (5.1) hold. Let τ ∈ R, ω ∈ Ω,
T > 0. Suppose further that ‖uτ,1 − uτ,2‖ ≤ 1. Then there exists a constant
c = c(k, τ, ω, T, ‖uτ,1‖, ‖uτ,2‖) > 0, such that the difference of solutions of problems
(1.1)-(1.2) satisfies for all t ∈ (τ, τ + T ],

(
t− τ

2
)

3p−2
p−1 ‖u1(t, τ, ω, uτ,1)− u1(t, τ, ω, uτ,2)‖2H1 ≤ c‖uτ,1 − uτ,2‖

2
p−1 .

Proof. We begin with some estimates for the nonlinearities. First, by (5.1) we
infer that for all t ∈ (τ, τ + T ],∣∣∣ ∫

RN
(f(t, x, u1)− f(t, x, u2))Utdx

∣∣∣
≤c
∫
RN

(1 + |u1|p−2 + |u2|p−2)|U ||Ut|dx

≤1

4
‖Ut‖2 + c‖U‖2 + c

∫
RN

(|u1|2p−4 + |u2|2p−4)|U |2dx

≤1

4
‖Ut‖2 + c‖U‖2 + c(‖u1‖2p−42p−2 + ‖u2‖2p−42p−2)‖U‖22p−2, (5.23)

where Ut is the derivative of U with respect to the time t. On the other hand, since
2 ≤ q < p, then by (3.9) we have for all t ∈ (τ, τ + T ],∣∣∣ ∫

RN
(h(t, x, u1)− h(t, x, u2))G(ϑtω)Utdx

∣∣∣
≤|G(ϑtω)|

∫
RN
|β5(t, x)|(1 + |u1|q−2 + |u2|q−2)|U ||Ut|dx

≤1

4
‖Ut‖2 + c‖U‖2 + |G(ϑtω)|2

∫
RN
|β5(t, x)|2(|u1|2q−4 + |u2|2q−4)|U |2dx

≤1

4
‖Ut‖2 + c‖U‖2 + c

∫
RN

(|u1|2p−4 + |u2|2p−4)|U |2dx

+

∫
RN
|β5(t, x)G(ϑtω)|

2p−4
p−q |U |2dx

≤1

4
‖Ut‖2 + c‖U‖2 + c(‖u1‖2p−42p−2 + ‖u2‖2p−42p−2)‖U‖22p−2. (5.24)

Taking the inner product of (4.1) in L2(RN ) with Ut, along with (5.23) and (5.24),
we deduce that, with t replaced by s, for all s ∈ [τ, τ + T ],

d

ds
‖∇U(s)‖2 ≤ c‖U(s)‖2+c(‖u1(s)‖2p−42p−2+‖u2(s)‖2p−42p−2)‖U(s)‖22p−2. (5.25)

By multiplying (5.25) by (s− t+τ
2 )

3p−2
p−1 for s ∈ [ t+τ2 , t] with t ∈ (τ, τ + T ], we get

(s− t+ τ

2
)

3p−2
p−1

d

ds
‖∇U(s)‖2

≤c(s− t+τ
2

)
3p−2
p−1 ‖U(s)‖2+c(s− t+τ

2
)

3p−2
p−1 (‖u2(s)‖2p−42p−2+‖u1(s)‖2p−42p−2)‖U(s)‖22p−2.

(5.26)
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By integrating (5.26) over the intervals [ t+τ2 , t], we deduce that for all t ∈ (τ, τ +T ],

(
t− τ

2
)

3p−2
p−1 ‖∇U(t)‖2

≤c
∫ t

t+τ
2

‖∇U(s)‖2ds+ c

∫ t

t+τ
2

‖U(s)‖2ds

+ c(t− τ)
p−2
p−1

∫ t

t+τ
2

(s− t+ τ

2
)

2p
p−1 (‖u1(s)‖2p−42p−2 + ‖u2(s)‖2p−42p−2)‖U(s)‖22p−2ds.

(5.27)

We now estimate every term on the right hand side of (5.27). By (4.13) and (4.14)
we have for all t ∈ (τ, τ + T ],

c

∫ t

t+τ
2

‖∇U(s)‖2ds+ c

∫ t

t+τ
2

‖U(s)‖2ds ≤ c‖uτ,1 − uτ,2‖2. (5.28)

For the last term on the right hand side of (5.27), by using Hölder inequality, we
deduce that

c(t− τ)
p−2
p−1

∫ t

t+τ
2

(s− t+ τ

2
)

2p
p−1 (‖u1(s)‖2p−42p−2 + ‖u2(s)‖2p−42p−2)‖U(s)‖22p−2ds

≤c
(

(t− τ)

∫ t

t+τ
2

(‖u1(s)‖2p−22p−2 + ‖u2(s)‖2p−22p−2)ds
) p−2
p−1

×
(∫ t

t+τ
2

(s− t+ τ

2
)2p‖U(s)‖2p−22p−2ds

) 1
p−1

. (5.29)

By Lemma 4.1 (B1) with k = 1 and (5.3) it follows from (5.29) that

c(t− τ)
p−2
p−1

∫ t

t+τ
2

(s− t+ τ

2
)

2p
p−1 (‖u1(s)‖2p−42p−2 + ‖u2(s)‖2p−42p−2)‖U(s)‖22p−2ds

≤c‖uτ,1 − uτ,2‖
2
p−1 . (5.30)

Hence by a combination of (5.28) and (5.30) into (5.27) to yield that for all t ∈
(τ, τ + T ],

(
t− τ

2
)

3p−2
p−1 ‖∇U(t)‖2 ≤ c1(‖uτ,1 − uτ,2‖2 + ‖uτ,1 − uτ,2‖

2
p−1 ). (5.31)

This along with (4.13) concludes the total proof.

Remark 5.2. According to Theorem 5.1, the solution u(t, τ, ω, .) is 1
p−1 -Hölder

continuous from L2(RN ) to H1(RN ) for every t > τ ∈ R and ω ∈ Ω.

Remark 5.3. The condition (5.1) on f is also assumed in [20, 31], which can be
replaced by the following weaker version: there exists a ψ4 ∈ L∞loc(R, L∞(RN )) such
that for all t, s ∈ R and x ∈ RN ,

|f(t, x, s1)− f(t, x, s2)| ≤ ψ4(t, x)|s1 − s2|(2 + |s1|p−2 + |s2|p−2). (5.32)
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Remark 5.4. From Theorem 4.1 and 5.1, we know that the solution of problem
(1.1)-(1.2) is Hölder continuous from L2(RN ) to Lp(RN )∩H1(RN ) with respect to
the initial data. However this continuity is not uniform with respect to t in a small
neighborhood of the initial time t = τ , because the left-hand side of inequalities
(5.31) and (4.21) may vanish when t ↓ τ , even though the initial data belong to
Lp(RN ) ∩H1(RN ).

6. Regular dynamics of Pullback attractors

This section is to generalize the pullback attractor derived in [31] to the higher
regular spaces Lp(RN ) and H1(RN ) with almost the same conditions on f and h.
For this purpose, we need to show the D-pullback asymptotically compact of ϕ from
L2(RN ) to Lp(RN ) and H1(RN ), respectively. First we recall some known results
in the literature.

Let u be a solution of problem (1.1)-(1.2). Given t ∈ R+, τ ∈ R and ω ∈ Ω, the
cocycle in L2(RN ) is defined as

ϕ(t, τ, ω, uτ ) = u(t+ τ, τ, θ−τω, uτ ). (6.1)

Then ϕ is continuous on L2(RN ) over the MDS (Ω,F ,P, {ϑt}t∈R) which is intro-
duced in the introduction.

For the universe of sets, we suppose that D is a collection of all families of
tempered subsets of L2(RN ), i.e.,

D = {D = {D(τ, ω) : τ ∈ R, ω ∈ Ω} : D is tempered in L2(RN )}. (6.2)

Then it is obvious that D is inclusion closed.

Lemma 6.1. [31, Corollary 3.1] Suppose that (3.1)-(3.5), (3.10) and (3.11) hold.
Then the continuous cocycle ϕ of problem (1.1)-(1.2) has a closed measurable D-
pullback absorbing set K = {K(τ, ω) : τ ∈ ε R, ω ∈ Ω} ∈ D.

Lemma 6.2. [31, Lemma 3.6] Suppose that (3.1)-(3.5), (3.10) and (3.11) hold.
Then the continuous cocycle ϕ of problem (1.1)-(1.2) is D-pullback asymptotically
compact in L2(RN ).

Theorem 6.1. [31, Theorem 3.1] Suppose that (3.1)-(3.5), (3.10) and (3.11) hold.
Then the continuous cocycle ϕ of problem (1.1)-(1.2) admits a unique D-pullback
random attractor, which is characterized by, for each τ ∈ R and ω ∈ Ω

A(τ, ω) = ∩s≥0∪t≥sϕ (t, τ − t, ϑ−tω,K (τ − t, ϑ−tω))
L2(RN )

= {%(0, τ, ω) : %(., τ, ω)is a D− complete orbit of ϕ}. (6.3)

Lemma 6.3. [38, Lemma 2.10] Suppose that ϕ is a random cocycle on X over
(Ω,F , P, {ϑt}t∈R) and further ϕ(t, τ, ω, .) : X 7→ Y is continuous for every t > 0, τ ∈
R and ω ∈ Ω. Assume that ϕ is D-pullback asymptotically compact in X. Then ϕ
is D-pullback asymptotically compact from X to Y , i.e., for each τ ∈ R, ω ∈ Ω and
D ∈ D, the sequence {ϕ(tn, τ − tn, ϑ−tnω, xn)}∞n=1 has a convergent subsequence in
Y whenever tn →∞ and xn ∈ D (τ − tn, ϑ−tnω).

We now address the D-pullback asymptotical compactness of ϕ from L2(RN ) to
Lp(RN ) ∩H1(RN ).
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Lemma 6.4. Suppose that (3.1)-(3.5), (5.1), (3.10) and (3.11) hold. Then the
cocycle ϕ for problem (1.1)-(1.2) is D-pullback asymptotically compact from L2(RN )
to Lp(RN ) ∩H1(RN ).

Proof. By Theorem 4.1 (with k = 1) and Theorem 5.1, we know that ϕ(t, τ, ω, .) :
L2(RN ) 7→ Lp(RN )∩H1(RN ) is continuous for every t > τ ∈ R and ω ∈ Ω. And by
Lemma 6.2 and Lemma 6.3, we get that ϕ is D-pullback asymptotically compact
from L2(RN ) to Lp(RN ) ∩H1(RN ).

Remark 6.1. Assumption (5.1) is only need to obtain the D-pullback asymptotical
compactness from L2(RN ) to H1(RN ).

The following results are concerned with the existence of pullback attractor in
Lp(RN ) ∩ H1(RN ). In particular, some new dynamics of problem (1.1)-(1.2) in
Lδ(RN ) for arbitrary δ ≥ 2 are rigorously demonstrated.

Theorem 6.2. Suppose that (3.1)-(3.5), (3.10) and (3.11) hold. Then the D-
pullback random attractor A derive by Theorem 6.1 is also a (L2(RN ), L2(RN ) ∩
Lp(RN ))-pullback random attractor. Furthermore,

(i) A is attracting in the the space Lδ
(
RN
)
, i.e., for every τ ∈ R, ω ∈ Ω and

D ∈ D
lim
t→∞

distLδ (ϕ (t, τ − t, ϑ−tω,D (τ − t, ϑ−tω)) ,A(τ, ω)) = 0,

for any δ ∈ [2,∞).
(ii) A is difference bounded in Lδ

(
RN
)
, i.e., for every τ ∈ R, ω ∈ Ω, there exists

a positive constant M = M(τ, ω) such that

sup
xi∈A(τ,ω),i=1,2

‖x1(τ, ω)− x2(τ, ω)‖δ ≤M(τ, ω).

(iii) ϕ is translation absorbing in Lδ(RN ), i.e., for every τ ∈ R, ω ∈ Ω, there
exist positive constants T = T (τ, ω,D, %) and M = M(τ, ω) such that for all t ≥ T ,

sup
u0∈D(τ−t,ϑ−tω)

‖ϕ(t, τ − t, ϑ−tω, u0)− %(0, τ, ω)‖δ ≤M(τ, ω),

for every D-complete orbit {%(., τ, ω) : τ ∈ R, ω ∈ Ω} of ϕ and D ∈ D.

Proof. By Lemma 6.1, 6.2 and 6.4, along with Theorem 2.1, we know that A is
(L2(RN ), L2(RN )∩Lp(RN ))-pullback random attractor. The measurability of A in
L2(RN ) ∩ Lp(RN ) is from [11, Theorem 19]. The properties (i)-(iii) can be proved
by a similar procedure as in [38, Theorem 7.1-7.2] and here we omit the proof.

Theorem 6.3. Suppose that (3.1)-(3.5), (5.1), (3.10) and (3.11) hold. Then the
D-pullback random attractor A derive by Theorem 6.1 is also a (L2(RN ), H1(RN ))-
pullback random attractor.

Proof. The result is followed by Lemma 6.1, 6.2 and 6.4, along with Theorem 2.1.

7. Boxing counting dimension of attractors in Lp(RN)
and H1(RN)

In this section, we investigate the boxing counting dimension (fractal dimension) of
A, which is based on the number of closed balls of a fixed radius ε needed to cover
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A. Denote by N(A, ε) the minimum number of balls that cover A (the center of the
covering may not belong to A). Then we define

Definition 7.1. If A is a compact subset of X, the boxing counting dimension of
A, dim(A), is defined as

dim(A) = lim sup
ε→0

log 1
ε
N(A, ε) = lim sup

ε→0

logN(A, ε)

− log ε
.

This shows that the minimum number N(A, ε) ∼ ε− dimB(A). For more informa-
tion on the boxing counting dimension, we refer to [4,22]. For the boxing counting
dimension in Lp for p > 2, the authors in [19, 35] derived the relation of dimension
between Lp and L2, which gives that

p

2(p− 1)
dimL2(A) ≤ dimLp(A) ≤ (p− 1) dimL2(A). (7.1)

In this paper, for the problem (1.1)-(1.2) we will find the optimal bound for the
dimension of attractor in Lp(RN ). Furthermore, we compare theH1(RN )-dimension
with L2(RN )-dimension of attractor.

We first present a lemma on the property of boxing counting dimension.

Lemma 7.1. [4, Lemma 4.2] Let (X, dX) and (Y, dY ) be two metric spaces. If
φ : X 7→ Y is Hölder continuous with exponent θ(0 < θ < 1), i.e., there exists a
constants c > 0 such that,

dY (φ(x1), φ(x2)) ≤ cdX(x1, x2)θ,

for x1, x2 ∈ X with dX(x1, x2) ≤ 1, then

dimY (φ(A)) ≤ dimX(A)/θ.

Then we have

Theorem 7.1. Let A be the pullback attractor defined by (6.3). Then for every
τ ∈ R and ω ∈ Ω,

(i)
p

2(p− 1)
dimL2(A(τ, ω)) ≤ dimLp(A(τ, ω)) ≤ p

2
dimL2(A(τ − 1, ϑ−1ω)),

(ii) dimL2(A(τ, ω)) ≤ dimH1(A(τ, ω)) ≤ (p− 1) dimL2(A(τ − 1, ϑ−1ω)).

Proof. The first inequality of (i) is followed from (7.1). We now check the second
part. By Theorem 4.1, we know that ϕ is 2

p -Hölder continuous from L2(RN ) to

Lp(RN ) for the solution to problem (1.1)-(1.2). Then replacing t by τ , τ − 1 by τ
and ω by ϑ−1ω we get for τ ∈ R and ω ∈ Ω,

‖ϕ(1, τ − 1, ϑ−1ω, x1)− ϕ(1, τ − 1, ϑ−1ω, x2)‖p ≤ c‖x1 − x2‖
2
p ,

for every x1, x2 ∈ L2(RN ). Thus by Lemma 7.1, we get that for τ ∈ R and ω ∈ Ω,

dimLp(ϕ(1, τ − 1, ϑ−1ω,A(τ − 1, ϑ−1ω))) ≤ p

2
dimL2(A(τ − 1, ϑ−1ω)).

Consider that by the invariance, (ϕ(t − 1, τ − t, ϑtω,A(τ − t, ϑ−tω))) = A(τ −
1, ϑ−1ω)). Then by the cocycle property, we immediately find that for every τ ∈ R
and ω ∈ Ω,

dimLp(A(τ, ω)) ≤ p

2
dimL2(A(τ − 1, ϑ−1ω)).
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The first inequality of (ii) is obvious. The second part can be analogously proved
by Theorem 5.1 and Lemma 7.1.

Remark 7.1. In this paper, by proving the Hölder continuity of solutions, we ob-
tained the regular dynamics of random reaction-diffusion driven by a multiplicative
noise with a general nonlinear multiple. This technique is applicable to some other
random partial differential equations driven by such type noise, such as the random
FitzHugh-Nagumo systems and p-Laplacian equations; moreover, we can invetigate
the high-order Wang-Zakai approximations in some regular spaces, which will be
the forthcoming work.
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