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Abstract We consider a (3+1)-dimensional Kadomtsev-Petviashvili (KP) e-
quation. By using the Hirota bilinear operators, we construct the bilinear
form of the equation. Based on the resulting bilinear form, we further derive
the Bäcklund transformation and the traveling wave solutions of the equation.
Furthermore, lump solutions are constructed by searching the positive function
from the Hirota bilinear formalism. Meanwhile, we also obtain the interaction
solutions between lump solutions and the stripe solitons. We discuss the in-
fluences of each parameters on these exact solutions by using several graphics.
Finally, we successfully construct its rogue wave solutions and multi-kink soli-
tary wave solutions. It is hoped that our results can be used to enrich the
dynamical behavior of the (3+1)-dimensional KP-type equations.
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1. Introduction

Nonlinear evolution equations (NLEEs) play a vital role in nonlinear complex phys-
ical phenomena. NLEEs have been regarded as the models to describe some non-
linear phenomena in fluid mechanics, plasma physics, optical fibers and solid state
physics, etc [2,8,9,12]. With the development of science, the research of NLEEs is a
importance topic [14], and their solutions play an important role in the field of non-
linear science. It is well known that the Kadomtsev-Petviashvili (KP) equation is an
important model in the NLEEs, which can be used to describe water waves of long
wavelength with weakly non-linear restoring forces and frequency dispersion [36].

Recently, both mathematician and physicist make much important efforts in
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this area and demonstrate various useful techniques [5]. These results are used to
find solition solutions and rogue waves solutions [1, 6, 31, 32, 37]. At present, high-
dimensional NLEEs are getting more and more attention. Especially, the (3+1)-
dimensional KP-type equations not only demonstrate the inelastic interactions but
also admit localized coherent structures. The KdV-type and KP-tye equations
are some very important nonlinear equations in nonlinear mathematical physics
[3, 13, 25, 26]. There are also recent systematical studies on lump solutions and
interaction solutions to integrable equations by Ma and his collaborators [15–17,19].

As we know, the most classic KP equation [11] reads

(ut + 6uux + u3x)x + 3uyy = 0, (1.1)

which can characterize the growth of shallow water waves in quasi one-dimension,
with the weak influence. It also describes the evolution of quasi-one-dimensional
shallow water waves when effects of the surface tension and the viscosity are neg-
ligible. A variety of modified and extended KP equations has been examined in
the literature [4, 18, 24]. For example, the (3+1)-dimensional B-type KP equation
(BKP) is presented by

uty + αuxxxy + 3β(uxuy)x + γuxz = 0, (1.2)

it can be viewed as a shifted (2+1)-dimensional BKP equation for z = x. In this
work, we will study a (3+1)-dimensional KP-type equation given by

5
∂

∂z
ux − 6uy

∂

∂x
ux − 6ux

∂

∂x
uy +

∂

∂y
(ut − 2uxxx) = 0, (1.3)

where u is a complex function about x, y, z, and t. It is a second member in the entire
Kadomtsev-Petviashvili (KP) hierarchy [10]. Some researchers use the simplified
Hereman-Nuseir form to establish one and two soliton solutions for each extended
equation, and develop specific constraints that guarantee the existence of multiple
soliton solutions for each equation in [35]. The rogue wave and a pair of resonance
stripe solitons of the KP equation have been considered in [39]. Eq. (1.3) is a
special case in [20, 21] where the authors used a generalized Hirota disturbance
mechanism to construct multiple rouge wave solutions of differential equations. Here
we are inspired to further generalize them to generate some new phenomena for the
equation (1.3). In [22,23], there are recent innovative studies on lump solutions with
higher-order dispersion relations and for linear partial differential equations (PDEs).
The main purpose of this paper is to study the travelling wave solutions, lump
solutions, rogue wave solutions and interaction solutions of the (3+1)-dimensional
KP-type equation (1.3) by using the symbolic calculation methods [7,27,28,33]. In
[38], authors studied abundant mixed lump-soliton solutions of the BKP equation.

The paper is arranged as follows: In Sect. 2, we obtain its bilinear representation
by using Hirota’s bilinear method and Bell’s polynomial theory. By using the re-
sulting bilinear form, in Sect. 3, we derive Bäcklund transformation of the equation.
Then, we also get the traveling wave solutions via the Bäcklund transformation. In
Sect. 4, the lump solutions are constructed by the using the bilinear form. In Sect.
5, we construct interaction solution for the lump solution with one stripe soliton
by combining quadratic function. In Sect. 6, we obtain rogue waves and rational
breather waves by using some ansätz functions. In Sect. 7, we present its mult-
kink solitary wave solutions via a very natural way. Finally, some conclusions are
presented in the last section.
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2. Bilinear formalism

First of all, we introduce a potential field transformation

u = qx. (2.1)

Substituting (2.1) into (1.3), integrating the equation with respect to x twice, and
employing the results provided in [29,30,34], we can obtain

E(q) = Pty + 5Pxz − 2P3xy = 0, (2.2)

under the following variable transformation

q = 2 ln f ⇔ u = 2(ln f)x, (2.3)

where the Hirota D-operator is determined as follows:

Dn1
x Dn2

y Dn3
t g · f

=(
∂

∂x
− ∂

∂x′
)n1(

∂

∂y
− ∂

∂y′
)n2(

∂

∂t
− ∂

∂t′
)n3g(x, y, t)f(x′, y′, t′)|x=x′,y=y′,t=t′ , (2.4)

with g(x, y, t) and f(x′, y′, t′) being functions of x, y, t and x′, y′, t′. Here n1, n2 and
n3 are all the non-negative integers. Then we obtain

DxDtf · f = 2(fxtf − fxft),
D2
xf · f = 2(fxxf − f2xx),

DxDyf · f = 2(fxyf − fxfy). (2.5)

Therefore, the Hirota’s bilinear equation of (3+1)-dimensional KP-type equation
(1.3) reads

(DtDy + 5DxDz − 2D3
xDy)f · f = 0, (2.6)

under the transformation
u = 2(ln f)x, (2.7)

where f is a real function about x, y, z and t, and DtDy, DxDz and D3
xDy are the

Hirota’s bilinear operates.

3. Bäcklund transformation and traveling wave so-
lutions

In this section, we will construct an important function M to obtain bilinear op-
erator, and get the Bäcklund transformation by using the bilinear operator. Then,
we obtain the traveling wave solutions of Eq. (1.3).

3.1. Bäcklund transformation

Firstly, assuming that there exists another real function to derive the Bäcklund
transformation, so we have a bilinear equation as

(DtDy + 5DxDz − 2D3
xDy)f ′ · f ′ = 0. (3.1)
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Now, we construct a key function M as follows:

M = [(DtDy+5DxDz − 2D3
xDy)f ′ · f ′]f · f−[(DtDy + 5DxDz − 2D3

xDy)f · f ]f ′ · f ′,
(3.2)

and assuming M = 0, one obtains

[(DtDy+5DxDz−2D3
xDy)f ′ ·f ′]f ·f = [(DtDy+5DxDz−2D3

xDy)f ·f ]f ′ ·f ′, (3.3)

where we have several types of exchange formulas of bilinear operator as:

(DiDjf
′f ′)ff−(DiDjff)f ′f ′ = 2Dj(Dif

′f)ff ′, (DiDjf
′f)ff ′ = (DjDif

′f)ff ′,
(3.4)

and

2(D3
iDjf

′f ′)ff − 2(D3
iDjff)f ′f ′

=Di[(3D
2
iDjf

′f)ff ′ + (3D2
i f
′f)(Djff

′) + (6DiDjf
′f)(Diff

′)]

+Dj [(D
3
i f
′f)ff ′ + (3D2

i f
′f)(Djff

′)], (3.5)

with i, j = x, y, z, t. It shows that f ′ can be used to solve (2.6) and also denotes a
solution of (3.1). Now, we obtain the detailed calculation as:

M = [(DtDyf
′f ′)ff − (DtDyff)f ′f ′]− 2[(D3

xf
′f ′)ff − (D3

xff)f ′f ′]

+ 5[(DxDzf
′f ′)ff − (DxDzff)f ′f ′]

= 2Dy(Dtf
′f)ff ′ −Dx[(3D2

xDyf
′f)ff ′ + (3D2

xf
′f)(Dyff

′) + 6(DxDyf
′f)(Dxff

′)]

−Dy[(D3
xf
′f)ff ′ + (3D2

xf
′f)(Dxff

′)] + 10Dz(Dxf
′f)ff ′

= 2Dy(Dtf
′f)ff ′ + 10Dz(Dxf

′f)ff ′

−Dx[(3D2
xDyf

′f + a1Dyf
′f + a2f

′f)ff ′ + (3D2
xf
′f + a3Dyf

′f + a4f
′f)(Dyff

′)

+ (6DxDyf
′f + 6a5Dxf

′f)(Dxff
′)]

−Dy[(D3
xf
′f − a1Dxf

′f + a6f
′f)ff ′ + (3D2

xf
′f + a7Dxf

′f − a4f ′f)(Dxff
′)]

= Dx(A1f
′f)ff ′ +Dx(A2f

′f)(Dyff
′) +Dx(A3f

′f)(Dxff
′)

+Dy(A4f
′f)ff ′ +Dy(A5f

′f)(Dxff
′).

By using the exchange (3.4)-(3.6), the Bäcklund transformations of (1.3) are given
by

A1f
′f = −(3D2

xDy + a1Dy + a2 − 10Dz)f
′f = 0,

A2f
′f = −(3D2

x + a3Dy + a4)f ′f = 0,

A3f
′f = −(6DxDy + 6a5Dx)f ′f = 0,

A4f
′f = (2Dt −D3

x + a1Dx − a6)f ′f = 0,

A5f
′f = −(3D2

x + a7Dx − a4)f ′f = 0. (3.6)

3.2. Traveling wave solutions

Next, we substitute a solution f = 1 into the (1.3), we has

Dn
s gf = Dn

s g =
∂n

∂sn
g, n ≥ 1, (3.7)
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which is reduced to the initial variable u. The Bäcklund transformation (3.6) can
be a group of linear equations given by

3f ′xxy + a1f
′
y + a2f

′ − 10f ′z = 0,

3f ′xx + a3f
′
y + a4f

′ = 0,

f ′xy + a5f
′
x = 0,

2f ′t − f ′xxx + a1f
′
x − a6f ′ = 0,

3f ′xx + a7f
′
x − a4f ′ = 0. (3.8)

Then, we assume a function f as follows:

f ′ = 1 + ηeψ1x+ψ2y+ψ3z−ψ4t, ψ1 6= 0, (3.9)

where ψ1, ψ2, ψ3 and ψ4 are some constants, and η is a real parament. Taking a2, a4
and a6 are equal to zero, and η is real paraments, we can obtain

a1 =
2ψ4 + ψ3

1

ψ1
, a3 =

−3ψ2
1

ψ2
, a5 = −ψ2 a7 = −3ψ1,

ψ3 =
3ψ2

1ψ2 + a1ψ2

10
, ψ4 =

ψ3
1 − a1ψ1

−2
. (3.10)

Then, we can get the following exponential wave solution

u = 2[ln f ′]x, (3.11)

with f ′ = 1+ηe−
a7
3 x−a5y+

3ψ2
1ψ2+a1ψ2

10 z+
ψ3
1−a1ψ1

2 t. We introduce a one-order function
as follows

f ′ = ψ1x+ ψ2y + ψ3z − ψ4t. (3.12)

Substituting (3.12) into (3.8), and taking ai = 0(2 ≤ i ≤ 7), we obtain the following
rational solution

u =
2ψ1

ψ1x+ ψ2y + ψ3z − ψ4t
. (3.13)

The solution of u is plotted in Fig. 1. We know that the amplitude, velocity
and width of the traveling wave solution keep invariable during the propagation. It
can show that the amplitudes of the excited state are limited and almost same in
different spaces.
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Figure 1. (Color online) The traveling wave solution (3.11) by choosing suitable parameters: η =

2, ψ1 = 2, ψ2 = 4, ψ3 = 44
5 , ψ5 = −6. (a) Plot3d perspective view of the real part of the wave(z = 0, y =

2). (b)The wave propagation pattern of the wave along the x axis (t = −4, t = 0, t = 4).
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Figure 2. (Color online) The rational one-soliton solution (3.13) by choosing suitable parameters:

ψ1 = −8, ψ2 = −3, ψ3 = −5, ψ5 = − 71
9 . (a) Plot3d perspective view of the real part of the wave(y = 2).

(b)The wave propagation pattern of the wave along the x axis (t = −4, t = 0, t = 4).

4. Lump solutions

We have obtained the Hirota bilinear equation (2.6) from the second section via the
Bell polynomial. When z = x, the equation is the following formula

B(f · f) = (DtDy + 5DxDx − 2D3
xDy)f · f

= 2[ftyf − ftfy − 2(f3xyf − 3f2xyfx + 3fxxfxy − f3xfy) + 5fxxf − 5fxfx].
(4.1)

Now, we make the following assumption to seek lump solution of (1.3):

f = g2 + h2 + b1,

g = b2x+ b3y + b4t+ b5, h = b6x+ b7y + b8t+ b9, (4.2)

where bi(1 ≤ i ≤ 9) are real paraments to be determined. Substituting (4.2) into
(4.1), we can obtain a polynomial of the variables x, y and t. Eliminating the
coefficients of the polynomial via the symbolic computation, we can get b1, b4, b8 as
follows:

b1 =
6b23(b23 + b27)

5b27
, b4 = − 5b23

b23 + b27
, b8 =

5b23b7
b23 + b27

. (4.3)

Then, f can be determined by

f = [b2x+ b3y −
5b23

b23 + b27
t+ b5]2

+ [b6x+ b7y +
5b23b7
b23 + b27

t+ b9]2

+
6b23(b23 + b27)

5b27
. (4.4)

The solution of u can be written as

u = 4
b2g + b6h

f
, (4.5)

with

g = b2x+ b3y −
5b23

b23 + b27
t+ b5,
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h = b6x+ b7y +
5b23b7
b23 + b27

t+ b9, (4.6)

under the determinant conditions b23 + b27 6= 0 and b1 > 0.
As depicted in Fig. 3, we know that the amplitude, velocity and width of

the lump solution keep invariable during the propagation. It can show that the
amplitudes of the excited state are limited and almost same in different spaces.
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Figure 3. (Color online) The lump solution (4.5) by choosing suitable parameters: b1 = 1, b3 = 2, b6 =
3, b7 = 2. (a) Plot3d perspective view of the real part of the wave(y = 0). (b)The overhead view of the
wave. (c) The wave propagation pattern of the wave along the x axis (t = −4, t = 0, t = 4).

5. Interaction solutions

Now, we discuss the interaction solution between lump solution and one stripe
soliton by using quadratic function with exponential function. We also write f as
a positive function

f = m2 + n2 + l + b1, (5.1)

with

m = b2x+ b3y + b4t+ b5,

n = b6x+ b7y + b8t+ b9,

l = kek1x+k2y+k3t. (5.2)

Substituting (5.2) into (4.1), we obtain

k1 = − 4b26
k2(b22 + b26)

, k3 =
8b46(5b22 − b26)

k32(b22 + b26)3
,

b1 =
k22(b22 + b26)2(b42 − b46)

16b46b
2
2

, b3 = −b2k
2
2(b22 + b26)

4b26
,

b4 = −10b26b2(b22 − 5b26)

(b22 + b26)2k22
, b7 =

k22(b22 + b26)

4b6
,

b8 = −10b36(5b22 − b26)

k22(b22 + b26)2
, b5 = 0, b9 = 0, (5.3)

under the conditions k > 0, b22 > b26, k2b2b6 6= 0. Then f can be determined by

f = [b2x−
b2k

2
2(b22 + b26)

4b26
y − 10b26b2(b22 − 5b26)

(b22 + b26)2k22
t]2
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+ [b6x+
k22(b22 + b26)

4b6
y − 10b36(5b22 − b26)

k22(b22 + b26)2
t]2

+ ke
− 4b26
k2(b22+b26)

x+k2y+
8b46(5b22−b

2
6)

k32(b22+b26)3 +
k22(b22 + b26)2(b42 − b46)

16b46b
2
2

. (5.4)

The solution of u can be written as

u = 2
2b2m+ 2b6n+ kk1e

k1x+k2y+k3t

f
, (5.5)

with

m = b2x−
b2k

2
2(b22 + b26)

4b26
y − 10b26b2(b22 − 5b26)

(b22 + b26)2k22
t,

n = b6x+
k22(b22 + b26)

4b6
y − 10b36(5b22 − b26)

k22(b22 + b26)2
t. (5.6)

As depicted in Fig. 4, we know that the amplitude, velocity and width of the
interaction solution keep invariable during the propagation. It can show that the
amplitudes of the excited state are limited and almost same in different spaces.
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Figure 4. (Color online) The interaction solution (5.5) by choosing suitable parameters: k = 2, k2 =
2, b2 = 3, b6 = 2. (a) Plot3d perspective view of the real part of the wave(y = 0). (b)The overhead view
of the wave. (c)The wave propagation pattern of the wave along the x axis (t = −4, t = 0, t = 4).

6. Rogue wave solutions

In order to find the rogue wave solution of (1.3), let f admit

f = 1 + (n1x+ n2y + n3z + n4t)
2 + n5x

2 + n6(y + z)2 + n7t
2, (6.1)

where ni(i = 1, · · · , 7) are free constants. Substituting (6.1) into (2.6), we can get
the following results

n2 = − n7

5n31
, n3 =

n7(36n31 + n7)

180n51
, n4 =

n7
10n31

, n5 = n6 = 0. (6.2)

Thus, we can obtain u as follows:

u =
4n1(n1x− n7

5n3
1
y +

n7(36n
3
1+n7)

180n5
1

z + n7

10n3
1
t)

1 + (n1x− n7
5n3

1
y +

n7(36n3
1+n7)

180n5
1

z + n7

10n3
1
t)2 + n7t2

. (6.3)
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As depicted in Fig. 5, we know that the amplitude, velocity and width of the
breather wave solution keep invariable during the propagation. It can show that
the amplitudes of the excited state are limited and almost same in different spaces.
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Figure 5. (Color online) The breather wave solution (6.3) by choosing suitable parameters: n1 =
2, n7 = 3. (a)Plot3d perspective view of the real part of the wave(y = 0, z = 0). (b) The overhead view
of the wave. (c) The wave propagation pattern of the wave along the x axis (t = −4, t = 0, t = 4).

In Fig. 5, we find it has a pair of peaks in the opposite direction, which is called
the new breather wave solution. Its graph can be plotted by choosing appropriate
parameters. And there have two similar wave shapes of the rogue wave, so it is also
the two-dimensional rogue wave of (1.3). Thus, we have a rogue wave solution form
as follows:

ũ = ux = 2
2n21f − 4n21(n1x− n7

5n3
1
y +

n7(36n
3
1+n7)

180n5
1

z + n7

10n3
1
t)2

f2
. (6.4)

We can easily find that ũ is also a solution of (1.3), and upper dominant peak and
two holes exist in Fig. 6. We provide one group of graphs related to the solution
by choosing proper parameters. From (6.4) and Fig. 6, we also find the symmetry
of rogue wave will be influenced via some parameters.

As depicted in Fig. 6, we know that the amplitude, velocity and width of the
rogue wave solution keep invariable during the propagation. It can show that the
amplitudes of the excited state are limited and almost same in different spaces.
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Figure 6. (Color online)The rogue wave solution (6.4) by choosing suitable parameters: n1 = 2, n7 = 3.
(a)Plot3d perspective view of the real part of the wave(y = 0, z = 0). (b)The overhead view of the wave.
(c) The wave propagation pattern of the wave along the x axis (t = −4, t = 0, t = 4).
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7. Multi-kink solitary wave solutions

Now, we construct the kink solitary wave solutions by assuming f expressed in the
terms of the parameter ε

f = 1 + εf1 + ε2f2 + ε3f3 + · · · . (7.1)

Substituting (1.3) into (2.6), and equating the coefficients of all power of εn, we
obtain

f1ty + 5f1xz − 2f1xxxy = 0, (7.2)

2(f2ty + 5f2xz − 2f2xxxy) = −(DtDy + 5DxDz −D3
xDy)f1 · f1, (7.3)

(f3ty + 5f3xz − 2f3xxxy) = −(DtDy + 5DxDz −D3
xDy)f1 · f2. (7.4)

We get a solution of f from the formula (7.2) as follows:

f = 1 + eδ1 , (7.5)

with δ1 = k1x + l1y + α1z + ω1t + ξ1. Substituting (7.5) into (2.6), we obtain

ω1 =
−l1±
√
l21+4k21l1−12k1α1

2 . Taking f2 = f3 = · · · = 0, so one kink soliton solutions
is given by

u1 = 2[ln(1 + eδ1)]x. (7.6)

According to the above method, we also obtain the two kink soliton solutions as
follows

u2 = 2[ln(1 + eδ1 + eδ2 + eδ1+δ2+A12)]x, (7.7)

with δi = kix+ liy + αiz + ωit+ ξi, ωi =
−li±
√
l2i+4k2i li−12kiαi

2 ,

A12 =
(ω1 − ω2)(l1 − l2)− 2(k1 − k2)3(l1 − l2) + 5(k1 − k2)(α1 − α2)

(ω1 + ω2)(l1 + l2)− 2(k1 + k2)3(l1 + l2) + 5(k1 + k2)(α1 + α2)
, (7.8)

where ki, li, αi, ωi, and ωi(i = 1, 2) are some constants.
As depicted in Fig. 7, we know that the amplitude, velocity and width of the

double kink soliton solution keep invariable during the propagation. It can show
that the amplitudes of the excited state are limited and almost same in different
spaces.
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Figure 7. (Color online)The double kink soliton solution (7.7) by choosing suitable parameters:
k1 = −1, k2 = 1, l1 = 1, l2 = −1, α1 = 1, α2 = −1, ξ1 = 1, ξ2 = 1. (a) Plot3d perspective view of the
real part of the wave(y = 0). (b) The overhead view of the wave. (c) The wave propagation pattern of
the wave along the x axis (t = −4, t = 0, t = 4).
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8. Conclusions and discussions

We study the (3+1)-dimensional KP-type equation using the Hirota bilinear method
and the graphical representations of the solutions. The traveling wave, lump, in-
teraction solutions, rogue wave and multi-kink solitary wave solutions are obtained
and the influence of the parameter choice is analysed. In order to find bilinear
formalism and Bäcklund transformation, we need to try them several times, i.e., we
need multiple integrals of x to find bilinear formalism and need to try the M or 2M
multiple times. To construct the lump solutions, we need to satisfy one condition,
i.e., b23 + b27 6= 0 and b1 > 0. When we construct the interaction solution between
lump solution and one stripe soliton by using quadratic function with exponential
function, we also have to satisfy the conditions k > 0, b22 > b26, k2b2b6 6= 0.

The traveling wave solution of (3.13) is presented in Fig. 1. We briefly analyse
the effects of the free parameters on the amplitude and the widths of the traveling
wave solution. Note that the amplitude, velocity and the width of the traveling
wave stay the same during the propagation. It can show that the amplitude of the
excited state is bounded. The dynamic behaviors of the lump solutions in different
planes are demonstrated in Fig. 3. We observed that periodic line waves arise
from the constant background by selecting the appropriate parameters b1 = 1, b3 =
2, b6 = 3, b7 = 2. Besides, the amplitude of the excited state is bounded.

From Figs. 1-4, we have shown the velocity, width and amplitude of these exact
solutions keep invariable during the propagation. The amplitudes are same and
almost limited in different spaces. Finally, we also have shown that a special function
was provided to obtained its kink solitary solutions and rogue wave solutions. In
Fig. 5, we find it has a pair of peaks in the opposite direction, which is called
the new breather wave solution. Its graph can be plotted by choosing appropriate
parameters n1 = 2, n7 = 3. And there have two similar wave shapes of the rogue
wave, so it is also the two-dimensional rogue wave of (1.3). Therefore, we take the
derivative of u with respect to x, we can derive Eq.(6.4) from Eq.(6.3). We can easily
find the upper dominant peak and two holes in Fig. 6, and provide one group of
graphs related to the solution by choosing proper parameters n1 = 2, n7 = 3. From
Eq.(6.4) and Fig. 6, we also find the symmetry of rogue wave will be influenced
via some parameters. As depicted in Figs. 5-7, it clearly shows this unique feature
of these solutions. We also have studied the localization features by employing the
contour line method. The method can also be extend to other types of nonlinear
evolution equations in mathematical physics. It is hoped that our results can enrich
the theories for the associated nonlinear evolution equations.
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