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Abstract In this paper, we study long time behavior of a non-autonomous
stochastic modified Swift-Hohenberg equation with multiplicative noise in stra-
tonovich sense. We show that a random D-pullback attractor exists in H2

0

for the corresponding non-autonomous random dynamical system. Due to
the stochastic term, the estimates are delicate, the Ornstein-Uhlenbeck(O-U)
transformation and its properties are used to overcome the difficulty that the
stochastic term brings to us.
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1. Introduction

We consider the asymptotic behavior of solution to the following stochastic modified
Swift-Hohenberg equation with multiplicative noise:

du+(42u+24u+au+b|∇u|2+u3−g(x, t))dt= lu(t) ◦ dW (t), in D×[τ,∞), (1.1)

u =
∂u

∂ν
= 0 on ∂D × [τ,∞), (1.2)

u(x, τ) = uτ (x) in D. (1.3)

Where D is a bounded open domain in R2 with a smooth boundary ∂D, a, b and
l are arbitrary constants, g is an external forcing term, lu is the noise intensity,
W (t) is a two-sided real-valued Wiener process on a probability space which will be
specified later.

The Swift-Hohenberg type equations arising in the study of convective hydro-
dynamical, plasma confinement in toroidal and viscous film flow, was introduced
by authors in [20] and the long time behavior have been investigated by several au-
thours [14–16,26]. If b = 0 and we omit the noise term lu ◦ dW (t) and the external
force g(x, t), which means b = 0, l = 0, g = 0, the system becomes the usual Swift-
Hohenbeg equation [7,19]. A.Doelman et al. in [5] proposed system (1.1)-(1.3) with
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l = 0, g = 0 for a pattern formation system with two unbounded directions that is
near the onset to instability. Rencently, many authors have paid much attention to
analyze the long time behavior of dynamical system generated by (1.1)-(1.3) and
have made a lot of progress( [9,17,18,26,27]). Polate [18] established the existence
of global attractor( [13, 22]) for system (1.1)-(1.3) when g ≡ 0 and l = 0, Park [17]
proved the existence of pullback attractor( [2, 8, 10, 12, 21, 23–25]) with exponential
growth of the external forcing term g(x, t) when l = 0, Xu [27] proved the exis-
tence of uniform attractors when the external term g(x, t) satisfies the translation
bounded condition. The existence of random term in (1.1) is more consistent in
practice problems, when l 6= 0, the system (1.1)-(1.3) becomes a stochastic partial
differential equation, to the best our knowledge, the existence of the random pull-
back attractors for a non-autonomous modified Swift-Hohenberg equation has not
yet been considered.

In this paper, we consider the existence of random D-pullback attractors of
system (1.1)-(1.3). We let an operation A = −∆ and λ be the first eigenvalue of
A. For any t ∈ R, the external force g(x, t) ∈ L2(D), we assume that there exists
M > 0 such that

‖g(x, t)‖2 ≤Meα|t|, for any t ∈ R, 0 ≤ α < λ
100 . (1.4)

The assumption is same as [10, 18], through simple calculation, for all t ∈ R, we
have

H1(t) :=

∫ t

−∞
e
λ
4 s‖g(x, s)‖2ds<∞, H2(t)=

∫ t

−∞

∫ s

−∞
e
λ
4 y‖g(x, y)‖2dyds<∞, (1.5)∫ t

−∞
e−

λ
2 sH3

1 (s)ds<∞,
∫ t

−∞
e−λsH5

1 (s)ds <∞, for any t ∈ R. (1.6)

An outline of this paper is as follows: In section 2, we recall some basic con-
cepts about random D-pullback attractor and the existence theorem of random
D-pullback attractor. In section 3, we prove that the stochastic dynamical system
generated by (1.1)-(1.3) exists a random D-pullback attractor in H2

0 (D).

2. Preliminaries

In this section, we first give some basic definitions and abstract results concerning
the random D-pullback attractor for non-autonomous random dynamical system [1].
The reader is referred to [3, 6, 8, 11,12,23–25] for more details.

Let (X, ‖ · ‖X) be a separable Banach space with Borel σ-algebra B(X) and
(Ω,F ,P) be a probability space. In this paper, the term P-a.s.(the abbreviation
for P almost surely) denotes that an event happens with probability one. In other
words, the set of possible exception may be non-empty, but it has probability zero.

Definition 2.1( [1, 3, 4, 11, 24, 25]). (Ω,F ,P, (θt)t∈R) is called a metric dynamical
systems if θ : R×Ω→ Ω is (B(R)⊗F ,F)-measurable, and θ0 is the identity on Ω,
θs+t = θt ◦ θs for all t, s ∈ R and θtP = P for all t ∈ R.

Definition 2.2( [8, 12,23–25]). A non-autonomous random dynamical system
(NRDS) (ϕ, θ) on X over a metric dynamical system (Ω,F ,P, (θt)t∈R) is a mapping

ϕ(t, τ, ω) : X → X, (t, τ, ω, x)→ ϕ(t, τ, ω)x,
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which represents the dynamics in the state space X and satisfies the properties
(i) ϕ(τ, τ, ω) is the identity on X;
(ii) ϕ(t, τ, ω) = ϕ(t, s, θs−τω)ϕ(s, τ, ω) for all τ ≤ s ≤ t;
(iii) ω → ϕ(t, τ, ω)x is F-measurable for all t ≥ τ and x ∈ X.
A NRDS (ϕ, θ) is called a continuous random dynamical system if ϕ(t, τ, ω) :

X → X is continuous for all t ≥ τ and ω ∈ Ω. A NRDS (ϕ, θ) is called a norm-to-
weak continuous random dynamical system if xn → x, ϕ(t, τ, ω)xn ⇀ ϕ(t, τ, ω)x for
all t ≥ τ , and ω ∈ Ω. Obviously, a continuous NRDS is also a norm-to-weak NRDS.

In the sequel, we use D to denote a collection of some families of nonempty
bounded subsets of X:

D′ ∈ D, D′ = {D(t, ω) ∈ B(X) : t ∈ R, ω ∈ Ω}.

Definition 2.3( [8,12,23–25]). A set B′ ∈ D is called a randomD-pullback bounded
absorbing set for NRDS (ϕ, θ) if for any t ∈ R and any D′ ∈ D, there exists τ0(t,D′)
such that ϕ(t, τ, θτ−tω)D(τ, θτ−tω) ⊂ B(t, ω) for any τ ≤ τ0.

Definition 2.4.( [8, 12, 23–25]). A set A = {A(t, ω) : t ∈ R, ω ∈ Ω} is called a
random D-pullback attractor for (ϕ, θ) if the following hold:

(i) A(t, ω) is a random compact set;
(ii) A is invariant; that is, for P-a.s. ω ∈ Ω, and τ ≤ t, ϕ(t, τ, ω)A(τ, ω) =

A(t, θt−τω);
(iii) A attracts all sets in D, that is, for all B′ ∈ D and P-a.s. ω ∈ Ω,

lim
τ→−∞

d(ϕ(t, τ, θτ−tω)B(τ, θτ−tω), A(t, ω)) = 0,

where d is the Hausdorff semimetric given by dist(B,A) = supb∈B infa∈A ‖ b−a ‖X .

Definition 2.5( [8,12]). A NRDS (ϕ, θ) on a Banach space X is said to be pullback
flattening if for every random bounded set B′ = {B(t, ω) : t ∈ R, ω ∈ Ω} ∈ D, for
any ε > 0 and ω ∈ Ω there exist a T (B′, ε, ω) < t and a finite dimensional subspace
Xε such that

(i) P (
⋃
τ≤Tε ϕ(t, τ, θτ−tω)B(τ, θτ−tω)) is bounded, and

(ii)||(I − P )(
⋃
τ≤Tε ϕ(t, τ, θτ−tω)B(τ, θτ−tω))||X < ε,

where P : X → Xε is a bounded projector.

Theorem 2.1( [12]). Suppose that (ϕ, θ) is a norm-to-weak continuous NRDS on a
uniformly convex Banach space X. If (ϕ, θ) possesses a random D-pullback bounded
absorbing sets B′ = {B(t, ω) : t ∈ R, ω ∈ Ω} and (ϕ, θ) is pullback flattening, then
there exists a random D-pullback attractor A = {A(t, ω) : t ∈ R, ω ∈ Ω} and

A(t, ω) =
⋂
s≤t

⋃
τ≤s

ϕ(t, τ, θτ−tω)B(τ, θτ−tω).

3. Random pullback attractor for modified Swift-
Hohenberg

In this section, we will use abstract theory in section 2 to obtain the random D-
pullback attractor for equation (1.1)-(1.3). We introduce an Ornstein-Uhlenbeck
process

z(θt(ω)) := −
∫ 0

−∞
eτ (θtω)(τ)dτ, t ∈ R.
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We known from [4], it is the solution of Langevin equation

dz + zdt = dW (t).

W (t) is a two-sided real-valued Wiener process on a probability space (Ω,F ,P),
where

Ω = {ω ∈ C(R,R) : ω(0) = 0},

F is the Borel algebra induced by the compact open topology of Ω, and P is the
corresponding Wiener measure on {Ω,F}. We identify ω(t) with W (t), i.e.,

W (t) = W (t, ω) = ω(t), t ∈ R.

Define the Wiener time shift by

θtω(s) = ω(s+ t)− ω(t), ω ∈ Ω, t, s ∈ R.

Then (Ω,F ,P, θt) is an ergodic metric dynamical system.
From [3,4,11], it is known that the random variable z(ω) is tempered and there

exists a θt-invariant set of full measure Ω̃ ⊂ Ω such that for all ω ∈ Ω̃:

lim
t→±∞

|z(θtω)|
|t|

= 0, lim
t→±∞

1

t

∫ t

0

z(θsω)ds = 0, (3.1)

and for any ε > 0, there exists ρ(ε) > 0, such that

|z(θtω)| ≤ ρ(ω) + ε|t|, |
∫ t

0

z(θsω)ds| ≤ ρ(ω) + ε|t|. (3.2)

Let v(s, τ, θs−tω), vτ ) = e−lz(θs−τω)u(s), τ ≤ s ≤ t, then
dv = −le−lz(θs−tω)u(s)dz+ e−lz(θs−tω)du. Using Langevin equation, combined with
the original equation (1.1), we get

dv

ds
+ ∆2v + 2∆v + (a− lz)v + belz(θs−tω)|∇v|2 + e2lz(θs−tω)v3

= e−lz(θs−tω)g(x, s), in D × [τ, t],

(3.3)

and

v =
∂v

∂ν
= 0 on ∂D × [τ, t], (3.4)

v(x, τ) = vτ = e−lz(θs−tω)uτ (x) in D. (3.5)

Equation (1.1)-(1.3) is equivalent to equation (3.3)-(3.5), by a standard Faedo-
Galerkin approximation approache, it can be proved that the problem (3.3)-(3.5)
is well posed in H2

0 (D), that is, for every τ ∈ R and vτ ∈ H2
0 (D), there exists a

unique solution v ∈ C([τ,∞), H2
0 (D)) (see e.g. [18, 22]). Furthermore, the solution

is continuous with respect to the initial condition vτ in H2
0 (D). To construct a

non-autonomous random dynamical system {V (t, τ, ω)} for problem (3.3)-(3.5), we
define V (t, τ, ω) : H2

0 (D)→ H2
0 (D) by V (t, τ, ω)vτ . Then the system {V (t, τ, ω)} is

a non-autonomous random dynamical system in H2
0 (D).
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We now apply Theorem 2.1 in section 2 to obtain the random D-pullback attrac-
tors for non-autonomous modified Swift-Hohenberg equation, according to equiva-
lence, we only consider the random D-pullback attractor of equation (3.3)-(3.5).

For convenience, the Lp(D) norm will be denoted by ‖ · ‖p, H = L2(D) with a
scalar product (u, v) =

∫
D
u(x)v(x)dx and the norm of Sobolev spaces W k

p (D) by
‖ · ‖k,p, we regard the space H2

0 (D) endowed with the norm ‖u‖2,2 = ‖ 4 u‖, c or
c(ω) denote the arbitrary positive constants, which only depend on ω and may be
different from line to line and even in the same line.

For our purpose that the following Gagliardo-Nirenberg inequality will be used.

Lemma 3.1 (Gagliardo-Nirenberg Inequality). Let D be an open, bounded domain
of the Lipschitz class in Rn. Assume that 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞, 1 ≤ r, 0 < θ ≤ 1
and let

k − n

p
≤ θ(m− n

q
)− (1− θ)n

r
.

Then the following inequality holds:

‖u‖k,p ≤ c(D)‖u‖1−θr ‖u‖θm,q

Here, we need to point out an essential error in literature [13,14], the sign in the
middle on the right side of the G-N inequality is a minus sign, but literature [13,14]
writes it as a plus sign and proved the main results.

Lemma 3.2. Assume that |b|c(D) < 1, then for all t ≥ τ , the following inequalities
hold:

‖v(t, τ, θτ−tω)‖2 ≤ c(ω)(e−
λ
4 (t−τ)‖vτ‖2 + 1 + e−

λ
4 tH1(t)), (3.6)

and ∫ t

τ

e
λ
2 (s−t)+2l

∫ t
s
dr‖4v‖2ds

≤c(ω)((1 + (t− τ))e−
λ
4 (t−τ)‖vτ‖2 + 1 + e−

λ
4 tH1(t) + e−

λ
4 tH2(t)).

(3.7)

Proof. Let v(s) = v(s, τ, θs−tω) denotes the solution of equation (3.3)-(3.5). Taking
the inner product of equation (3.3) with v, we get

1

2

d

ds
‖v‖2 + ‖∆v‖2 = 2‖∇v‖2 + (lz − a)‖v‖2 − e2lz(θs−tω)‖v‖44

−belz(θs−tω)
∫
D

|∇v|2vdx+ e−lz(θs−tω)(g(x, s), v).
(3.8)

By the Hölder inequality and the Young inequality, we have

2‖∇v‖2 = 2

∫
D

|v||∆v|dx ≤ 4‖∆v‖‖v‖ ≤ 1

4
‖∆v‖2 + 4‖v‖2, (3.9)

and

e−lz(θs−tω)|(g(x, s), v)| ≤ λ

2
‖v‖2 +

1

2λ
e−2lz(θs−tω)‖g(x, s)‖2. (3.10)
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Applying the Hölder inequality and the Gagliardo-Nirenberg inequality with
k = 1, p = 8

3 , r = 4, n = m = q = 2, θ = 1
2 , we have

|b|elz(θs−tω)
∫
D

|∇v|2|v|dx ≤ |b|elz(θs−tω)‖∇v‖28
3

‖v‖4

≤ |b|c(D)elz(θs−tω)‖∆v‖‖v‖24

≤ 1

4
‖∆v‖2 + b2c2(D)e2lz(θs−tω)‖v‖44

(3.11)

By the Poincaré inequality λ‖v‖2 ≤ ‖∆v‖2, and (3.9)-(3.11), we get

d

ds
‖v‖2 +

1

2
‖∆v‖2 − 2lz‖v‖2

≤ −2e2lz(θs−tω)‖v‖44 + c‖v‖2 + 2b2c2(D)e2lz(θs−tω)‖v‖44 + ce−2lz(θs−tω)‖g(x, s)‖2

= e−2lz(θs−tω)(−2(1− b2c2(D))‖u(s)‖44 + c‖u‖2 + c‖g(x, s)‖2).

(3.12)
Since b2c2(D) < 1, there exists M > 0 such that

(−2(1− b2c2(D))‖u(s)‖44 + c‖u‖2) ≤M.

Thus we arrive at

d

ds
‖v‖2 +

1

2
‖∆v‖2 − 2lz‖v‖2 ≤ ce−2lz(θs−tω)(1 + ‖g(x, s)‖2). (3.13)

By the Poincaré inequality, we get

d

ds
‖v‖2 + (

λ

2
− 2lz)‖v‖2 ≤ ce−2lz(θs−tω)(1 + ‖g(x, s)‖2). (3.14)

Multiplying (3.14) by e
λ
2 s−2l

∫ s
τ
z(θr−tω)dr and integrating it over (τ, t), we obtain

‖v(t)‖2 ≤ e−
λ
2 (t−τ)+2l

∫ t
τ
z(θr−tω)dr‖vτ‖2

+c

∫ t

τ

e
λ
2 (s−t)+2l

∫ t
s
z(θr−tω)dr−2lz(θs−tω)(1 + ‖g(x, s)‖2)ds.

(3.15)

Using (3.2), we get

e−
λ
2 (t−τ)+2l

∫ t
τ
z(θr−tω)dr ≤ c(ω)e−

λ
4 (t−τ), for any τ ≤ t, (3.16)

e
λ
2 s+2l

∫ 0
s
z(θrω)dr−2lz(θsω) ≤ c(ω)e−

λ
4 s, for any s ≤ 0, (3.17)

and ∫ t

τ

e
λ
2 (s−t)+2l

∫ t
s
z(θr−tω)dr−2lz(θs−tω)(1 + ‖g(x, s)‖2)ds

=

∫ 0

τ−t
e
λ
2 s+2l

∫ 0
s
z(θrω)dr−2lz(θsω)(1 + ‖g(x, s+ t)‖2)ds

≤ eρ(ω)
∫ 0

τ−t
eλs/4(1 + |g(x, s+ t)|2)ds
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= eρ(ω)
∫ t

τ

eλ(s−t)/4(1 + ‖g(x, s)‖2)ds

≤ c(ω)(1 + e−
λt
4 H1(t)). (3.18)

Hence
‖v(t)‖2 ≤ c(ω)(e−

λ
4 (t−τ)‖vτ‖2 + 1 + e−

λt
4 H1(t)). (3.19)

Thus we get the desired result (3.6).

Multiplying (3.15) by e−
λ
2 (t−τ)+2l

∫ t
τ
z(θr−tω)dr and integrating it in (τ, t), and

using (3.15),(3.16), we obtain∫ t

τ

e
λ
2 (s−t)+2l

∫ t
s
z(θr−tω)dr‖v(s)‖2ds

≤c(ω)((t− τ)e−
λ
4 (t−τ)‖vτ‖2 + 1 +H2(t)).

(3.20)

By (3.13), we get∫ t

τ

e
λ
2 s−2l

∫ s
τ
z(θr−tω)drd‖v(s)‖2

=e
λ
2 t−2l

∫ t
τ
z(θr−tω)dr‖v(t)‖2−eλ2 τ‖vτ‖2−

∫ t

τ

(
λ

2
−2lz)e

λ
2 s−2l

∫ s
τ
z(θr−tω)dr‖v(s)‖2ds

≤
∫ t

τ

e
λ
2 s−2l

∫ s
τ
z(θr−tω)dr(−(

1

2
‖4v‖2 − 2lz‖v‖2) + ce−2lz(θs−tω)(1 + ‖g(x, s)‖2))ds.

(3.21)
By (3.2) and (3.20), we obtain

1

2

∫ t

τ

e
λ
2 (s−t)+2l

∫ t
s
dr‖4v‖2ds

≤e−λ2 (t−τ)+2l
∫ t
τ
z(θr−tω)dr‖vτ‖2 +

λ

2

∫ t

τ

e
λ
2 (s−t)+2l

∫ t
s
z(θr−tω)dr‖v(s)‖2ds

+ c

∫ t

τ

e
λ
2 (s−t)+2l

∫ t
s
z(θr−tω)dr−2lz(θs−tω)(1 + ‖g(x, s)‖2)ds

≤c(ω)((1 + (t− τ))e−
λ
4 (t−τ)‖vτ‖2 + 1 + e−

λ
4 tH1(t) + e−

λ
4 tH2(t)). (3.22)

The proof is complete. �

Lemma 3.3. Assume that |b|c(D) < 1, then for all t ≥ τ , the following inequality
holds:

‖∆v(t, τ, θτ−tω)‖2 ≤c(ω)((1 + t− τ +
1

t− τ
)e−

λ
4 (t−τ)(‖vτ‖2 + ‖vτ‖10) + 1

+ e−
λ
4 t((1 +

1

t− τ
)H1(t) + (1 +

1

t− τ
)H2(t)

+

∫ t

−∞
e−λsH5

1 (s)ds)). (3.23)

Proof. Multiplying (3.3) by ∆2v, we have

1

2

d

ds
‖∆v‖2 + ‖∆2v‖2 + 2(4v,∆2v) + (a− lz)‖4v‖2
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+ belz(θs−tω)(|∇v|2,42v) + e2lz(θs−tω)(v3,42v)

=e−lz(θs−tω)(g(x, s),42v). (3.24)

By the Young inequality, we get

− 2(4v,∆2v) ≤ 1

8
‖42v‖2 + 8‖4v‖2;

− belz(θs−tω)(|∇v|2,42v) ≤ 1

8
‖42v‖2 + 2b2e2lz(θs−tω)‖∇v‖44;

− e2lz(θs−tω)(v3,42v) ≤ 1

8
‖42v‖2 + 2e4lz(θs−tω)‖v‖66;

e−lz(θs−tω)(g(x, s),42v) ≤ 1

8
‖42v‖2 + 2e−2lz(θs−tω)‖g(x, s)‖2.

Using the above inequalities to (3.24), we obtain

d

ds
‖∆v‖2 + ‖42v‖2 − 2lz‖4v‖2

≤ (16− 2a)‖4v‖2 + c(e2lz(θs−tω)‖∇v‖44 + e4lz(θs−tω)‖v‖66 + e−2lz(θs−tω)‖g(x, s)‖2).

(3.25)
The Gagliardo-Nirenberg inequality with k = 1, p = 4,m = 4, n = q = r = 2, θ = 3

8
gives

ce2lz(θs−tω)‖∇v‖44 ≤ ce2lz(θs−tω)‖v(t)‖ 5
2 ‖42v‖ 3

2 ≤ 1

4
‖∆2v‖2 + ce8lz(θs−tω)‖v(t)‖10.

The Gagliardo-Nirenberg inequality with k = 0, p = 6,m = 4, n = q = r = 2, θ = 1
6

yields

ce4lz(θs−tω)‖v‖66 ≤ ce4lz(θs−tω)‖v‖5‖42v‖ ≤ 1

4
‖∆2v‖2 + ce8lz(θs−tω)‖v‖10.

Using the Poincaré inequality λ‖∆v‖2 ≤ ‖42v‖2 and the above inequality, we get

d

ds
‖∆v‖2 + (λ2 − 2lz)‖4v‖2

≤ c(‖4v‖2 + e8lz(θs−tω)‖v‖10 + e−2lz(θs−tω)‖g(x, s)‖2).

(3.26)

Multiplying this by (s− τ)e
λ
2 s−2l

∫ s
τ
z(θr−tω)dr and integrating it over(τ, t), we have

(t− τ)e
λ
2 t−2l

∫ t
τ
z(θr−tω)dr‖4v‖2

≤
∫ t

τ

(1 + c(s− τ))e
λ
2 s−2l

∫ s
τ
z(θr−tω)dr‖4v‖2ds

+

∫ t

τ

(s− τ)e
λ
2 s+8l

∫ s
τ
z(θr−tω)dr‖v‖10ds

+

∫ t

τ

(s− τ)e
λ
2 s−2l

∫ s
τ
z(θr−tω)dr−2lz(θs−tω)‖g(x, s)‖2ds, (3.27)

and

‖4v‖2 ≤ c(1 +
1

t− τ
)

∫ t

τ

e
λ
2 (s−t)+2l

∫ t
s
z(θr−tω)dr‖4v‖2ds
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+

∫ t

τ

e
λ
2 (s−t)+2l

∫ t
s
z(θr−tω)dr+8lz(θs−tω)‖v‖10ds

+

∫ t

τ

e
λ
2 (s−t)+2l

∫ t
s
z(θr−tω)dr−2lz(θs−tω)‖g(x, s)‖2ds

=: I1 + I2 + I3. (3.28)

By (3.7), we get

I1 = (1 +
1

t− τ
)

∫ t

τ

e
λ
2 (s−t)+2l

∫ t
s
z(θr−tω)dr‖4v‖2ds

≤ (1 +
1

t− τ
)((1 + t− τ)e−

λ
4 (t−τ)‖vτ‖2 + 1 + e−

λ
4 tH1(t) + e−

λ
4 tH2(t)). (3.29)

By (3.6) and (3.2), we have

I2 =

∫ t

τ

e
λ
2 (s−t)+2l

∫ t
s
z(θr−tω)dr+8lz(θs−tω)‖v‖10ds

≤ c(ω)(e−
λ
4 (t−τ)‖vτ‖10 + 1 + e−

λ
4 t

∫ t

−∞
e−λs(H1(s))5ds), (3.30)

and

I3 =

∫ t

τ

e
λ
2 (s−t)+2l

∫ t
s
z(θr−tω)dr−2lz(θs−tω)‖g(x, s)‖2ds ≤ c(ω)e−

λ
4 tH1(t). (3.31)

Combing these estimates with (3.28), we complete the proof of Lemma 3.3. �

LetR be the sets of all functions r : R→ (0,+∞) such that lim
t→−∞

te
λ
4 tr10(t) = 0

and denote by D the class of all families D̂ = {D(t) : t ∈ R} such that D(t) ⊂
B̄(r(t)) for some r(t) ∈ R , B̄(r(t)) denote the closed ball in H2

0 (D) with radius
r(t). Let

r21(t) = 2c(ω)(1 + e−
λ
4 t(H1(t) +H2(t) +

∫ t

−∞
e−λsH5

1 (s)ds)) (3.32)

By lemma 3.3 for any D̂ ∈ D and t ∈ R, there exists τ0(D̂, t, ω) < t such that

‖∆v(t, τ, θτ−tω)‖ ≤ r1(t), for any τ < τ0. (3.33)

Since 0 ≤ α < λ
100 , simple calculation implies that r1(t) ∈ R, which means that the

B(r1(t)) be a family of random D-pullback bounded absorbing sets in H2
0 (D) and

{B(r1(t))} ∈ D.

Theorem 3.1. Assume that |b|c(D) < 1, then the non-autonomous random dynam-
ical system to problem (1.1)-(1.3) possesses a unique random D-pullback attractor
in H2

0 (D).

Proof. By Lemma 3.3, we know that the dynamical system generated by (3.3)-(3.5)
exists a random D-pullback bounded absorbing sets {B(r1(t))} in H2

0 (D), we need
only prove that the system satisfies the pullback flattening condition. Since A−1 is
a continuous compact operator in H, by the classical spectral theorem, there exists
a sequence {λj}∞j=1 satisfing

0 < λ1 ≤ λ2 ≤ · · ·λj ≤ · · · , λj → +∞, as j → +∞,
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and a family of elements {ej}∞j=1 of H1
0 which are orthonormal in H such that

Aej = λjej , ∀j ∈ N+.

Let Hm = span{e1, e2, · · · , em} in H and Pm : H → Hm be an orthogonal
projector. For any v ∈ H we write

v = Pmv + (I − Pm)v = v1 + v2.

Taking inner product of 3.3 with ∆2v2 in H, we get

1

2

d

ds
‖∆v2‖2 + ‖∆2v2‖2 + 2(4v,∆2v2) + (a− lz)‖4v2‖2

+ belz(θs−tω)(|∇v|2,42v2) + e2lz(θs−tω)(v3,42v2)

=e−lz(θs−tω)(g(x, s),42v2). (3.34)

Using a similar method of proof (3.25) and the Poincaré inequality λn‖∆v2‖2 ≤
‖∆2v2‖2, we have

d

ds
‖∆v2‖2 + (λn − 2lz)‖4v2‖2

≤ c(‖4v‖2 + e2lz(θs−tω)‖∇v‖44 + e4lz(θs−tω)‖v‖66 + e−2lz(θs−tω)‖g(x, s)‖2)

≤ c(‖4v‖2 + e2lz(θs−tω)‖∆v‖4 + e4lz(θs−tω)‖∆v‖6 + e−2lz(θs−tω)‖g(x, s)‖2).

(3.35)
Multiplying this by (s−τ)eλns−2l

∫ s
τ
z(θr−tω)dr and integrating from τ to t, we obtain

(t− τ)eλnt−2l
∫ t
τ
z(θr−tω)dr‖∆v2‖2

≤
∫ t

τ

eλns−2l
∫ s
τ
z(θr−tω)dr‖∆v‖2ds

+ c

∫ t

τ

eλns−2l
∫ s
τ
z(θr−tω)dr(‖∆v‖2 + e2lz(θs−tω)‖∆v‖4 + e4lz(θs−tω)‖∆v‖6

+ e−2lz(θs−tω)‖g(x, s)‖2)ds. (3.36)

and

‖∆v2‖2 ≤
1

t− τ

∫ t

τ

eλn(s−t)+2l
∫ t
s
z(θr−tω)dr‖∆v‖2ds

+ c

∫ t

τ

eλn(s−t)+2l
∫ t
s
z(θr−tω)dr(‖∆v‖2+e2lz(θs−tω)‖∆v‖4+e4lz(θs−tω)‖∆v‖6

+ e−2lz(θs−tω)‖g(x, s)‖2)ds. (3.37)

(3.33) implies that

‖∆v2‖2 ≤
1

t− τ

∫ t

τ

eλn(s−t)+2l
∫ t
s
z(θr−tω)drr21(s)ds

+ c

∫ t

τ

eλn(s−t)+2l
∫ t
s
z(θr−tω)dr(r21(s) + e2lz(θs−tω)r41(s) + e4lz(θs−tω)r61(s)
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+ e−2lz(θs−tω)‖g(x, s)‖2)ds. (3.38)

By (3.2), we obtain

‖∆v2‖2 ≤c(ω)(
1

t− τ

∫ t

τ

e(λn−λ)(s−t)r21(s)ds

+

∫ t

τ

e(λn−λ)(s−t)(r21(s) + r41(s) + r61(s) + ‖g(x, s)‖2)ds). (3.39)

Let G(t) = H1(t) +H2(t) +
∫ t
−∞ e−λsH5

1 (s)ds, we get

r21(s) ≤ 2c(ω)(1 + e−
λ
4 sG(t)) for any τ ≤ t.

By simple calculation, we get∫ t

τ

e(λn−λ)(s−t)r21(s)ds ≤ c(ω)(
1

λn − λ
+

e−
λ
4 t

λn − 5
4λ
G(t))→ 0 as n→∞,

1

t−τ

∫ t

τ

e(λn−λ)(s−t)r21(s)ds ≤ c(ω)(
1

t−τ
(

1

λn−λ
+

e−
λ
4 t

λn − 5
4λ
G(t)))→ 0 as n→∞,∫ t

τ

e(λn−λ)(s−t)r41(s)ds ≤ c(ω)(
1

λn − λ
+

e−
λ
2 t

λn − 3
2λ
G2(t))→ 0 as n→∞,∫ t

τ

e(λn−λ)(s−t)r61(s)ds ≤ c(ω)(
1

λn − λ
+

e−
3λ
4 t

λn − 7
4λ
G3(t))→ 0 as n→∞.

Since λn → +∞, there exists N , for any n > N , we have∫ t

τ

e(λn−λ)(s−t)‖g(x, s)‖2ds ≤ e−λ4 t
∫ t

τ

e
λ
4 s‖g(x, s)‖2ds,

and

e(λn−λ)(s−t)‖g(x, s)‖2 → 0 as n→∞ for any s < t

by Lebesgue dominated convergent theorem, we get∫ t

τ

e(λn−λ)(s−t)‖g(x, s)‖2ds→ 0 as n→∞.

In summary, we obtain that the terms on the right hand of inequality (3.39) tend to
0 as n→∞, which means that ‖∆v2(t, τ, θτ−tω)‖ → 0, i.e., the random dynamical
system (3.3)-(3.5) satisfies pullback flattening in Theorem 2.1. �
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